anantgupta129's picture
init spaces
ab8fcc0
from typing import List
import torch
import numpy as np
import cv2
import random
from pytorch_grad_cam.base_cam import BaseCAM
from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
def cells_to_bboxes(predictions, anchors, S, is_preds=True):
"""
Scales the predictions coming from the model to
be relative to the entire image such that they for example later
can be plotted or.
INPUT:
predictions: tensor of size (N, 3, S, S, num_classes+5)
anchors: the anchors used for the predictions
S: the number of cells the image is divided in on the width (and height)
is_preds: whether the input is predictions or the true bounding boxes
OUTPUT:
converted_bboxes: the converted boxes of sizes (N, num_anchors, S, S, 1+5) with class index,
object score, bounding box coordinates
"""
BATCH_SIZE = predictions.shape[0]
num_anchors = len(anchors)
box_predictions = predictions[..., 1:5]
if is_preds:
anchors = anchors.reshape(1, len(anchors), 1, 1, 2)
box_predictions[..., 0:2] = torch.sigmoid(box_predictions[..., 0:2])
box_predictions[..., 2:] = torch.exp(box_predictions[..., 2:]) * anchors
scores = torch.sigmoid(predictions[..., 0:1])
best_class = torch.argmax(predictions[..., 5:], dim=-1).unsqueeze(-1)
else:
scores = predictions[..., 0:1]
best_class = predictions[..., 5:6]
cell_indices = (
torch.arange(S)
.repeat(predictions.shape[0], 3, S, 1)
.unsqueeze(-1)
.to(predictions.device)
)
x = 1 / S * (box_predictions[..., 0:1] + cell_indices)
y = 1 / S * (box_predictions[..., 1:2] + cell_indices.permute(0, 1, 3, 2, 4))
w_h = 1 / S * box_predictions[..., 2:4]
converted_bboxes = torch.cat((best_class, scores, x, y, w_h), dim=-1).reshape(BATCH_SIZE, num_anchors * S * S, 6)
return converted_bboxes.tolist()
def intersection_over_union(boxes_preds, boxes_labels, box_format="midpoint"):
"""
Video explanation of this function:
https://youtu.be/XXYG5ZWtjj0
This function calculates intersection over union (iou) given pred boxes
and target boxes.
Parameters:
boxes_preds (tensor): Predictions of Bounding Boxes (BATCH_SIZE, 4)
boxes_labels (tensor): Correct labels of Bounding Boxes (BATCH_SIZE, 4)
box_format (str): midpoint/corners, if boxes (x,y,w,h) or (x1,y1,x2,y2)
Returns:
tensor: Intersection over union for all examples
"""
if box_format == "midpoint":
box1_x1 = boxes_preds[..., 0:1] - boxes_preds[..., 2:3] / 2
box1_y1 = boxes_preds[..., 1:2] - boxes_preds[..., 3:4] / 2
box1_x2 = boxes_preds[..., 0:1] + boxes_preds[..., 2:3] / 2
box1_y2 = boxes_preds[..., 1:2] + boxes_preds[..., 3:4] / 2
box2_x1 = boxes_labels[..., 0:1] - boxes_labels[..., 2:3] / 2
box2_y1 = boxes_labels[..., 1:2] - boxes_labels[..., 3:4] / 2
box2_x2 = boxes_labels[..., 0:1] + boxes_labels[..., 2:3] / 2
box2_y2 = boxes_labels[..., 1:2] + boxes_labels[..., 3:4] / 2
if box_format == "corners":
box1_x1 = boxes_preds[..., 0:1]
box1_y1 = boxes_preds[..., 1:2]
box1_x2 = boxes_preds[..., 2:3]
box1_y2 = boxes_preds[..., 3:4]
box2_x1 = boxes_labels[..., 0:1]
box2_y1 = boxes_labels[..., 1:2]
box2_x2 = boxes_labels[..., 2:3]
box2_y2 = boxes_labels[..., 3:4]
x1 = torch.max(box1_x1, box2_x1)
y1 = torch.max(box1_y1, box2_y1)
x2 = torch.min(box1_x2, box2_x2)
y2 = torch.min(box1_y2, box2_y2)
intersection = (x2 - x1).clamp(0) * (y2 - y1).clamp(0)
box1_area = abs((box1_x2 - box1_x1) * (box1_y2 - box1_y1))
box2_area = abs((box2_x2 - box2_x1) * (box2_y2 - box2_y1))
return intersection / (box1_area + box2_area - intersection + 1e-6)
def non_max_suppression(bboxes, iou_threshold, threshold, box_format="corners"):
"""
Video explanation of this function:
https://youtu.be/YDkjWEN8jNA
Does Non Max Suppression given bboxes
Parameters:
bboxes (list): list of lists containing all bboxes with each bboxes
specified as [class_pred, prob_score, x1, y1, x2, y2]
iou_threshold (float): threshold where predicted bboxes is correct
threshold (float): threshold to remove predicted bboxes (independent of IoU)
box_format (str): "midpoint" or "corners" used to specify bboxes
Returns:
list: bboxes after performing NMS given a specific IoU threshold
"""
assert type(bboxes) == list
bboxes = [box for box in bboxes if box[1] > threshold]
bboxes = sorted(bboxes, key=lambda x: x[1], reverse=True)
bboxes_after_nms = []
while bboxes:
chosen_box = bboxes.pop(0)
bboxes = [
box
for box in bboxes
if box[0] != chosen_box[0]
or intersection_over_union(
torch.tensor(chosen_box[2:]),
torch.tensor(box[2:]),
box_format=box_format,
)
< iou_threshold
]
bboxes_after_nms.append(chosen_box)
return bboxes_after_nms
def draw_predictions(image: np.ndarray, boxes: List[List], class_labels: List[str]) -> np.ndarray:
"""Plots predicted bounding boxes on the image"""
colors = [[random.randint(0, 255) for _ in range(3)] for name in class_labels]
im = np.array(image)
height, width, _ = im.shape
bbox_thick = int(0.6 * (height + width) / 600)
# Create a Rectangle patch
for box in boxes:
assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height"
class_pred = box[0]
conf = box[1]
box = box[2:]
upper_left_x = box[0] - box[2] / 2
upper_left_y = box[1] - box[3] / 2
x1 = int(upper_left_x * width)
y1 = int(upper_left_y * height)
x2 = x1 + int(box[2] * width)
y2 = y1 + int(box[3] * height)
cv2.rectangle(
image,
(x1, y1), (x2, y2),
color=colors[int(class_pred)],
thickness=bbox_thick
)
text = f"{class_labels[int(class_pred)]}: {conf:.2f}"
t_size = cv2.getTextSize(text, 0, 0.7, thickness=bbox_thick // 2)[0]
c3 = (x1 + t_size[0], y1 - t_size[1] - 3)
cv2.rectangle(image, (x1, y1), c3, colors[int(class_pred)], -1)
cv2.putText(
image,
text,
(x1, y1 - 2),
cv2.FONT_HERSHEY_SIMPLEX,
0.7,
(0, 0, 0),
bbox_thick // 2,
lineType=cv2.LINE_AA,
)
return image
class YoloCAM(BaseCAM):
def __init__(self, model, target_layers, use_cuda=False,
reshape_transform=None):
super(YoloCAM, self).__init__(model,
target_layers,
use_cuda,
reshape_transform,
uses_gradients=False)
def forward(self,
input_tensor: torch.Tensor,
scaled_anchors: torch.Tensor,
targets: List[torch.nn.Module],
eigen_smooth: bool = False) -> np.ndarray:
if self.cuda:
input_tensor = input_tensor.cuda()
if self.compute_input_gradient:
input_tensor = torch.autograd.Variable(input_tensor,
requires_grad=True)
outputs = self.activations_and_grads(input_tensor)
if targets is None:
bboxes = [[] for _ in range(1)]
for i in range(3):
batch_size, A, S, _, _ = outputs[i].shape
anchor = scaled_anchors[i]
boxes_scale_i = cells_to_bboxes(
outputs[i], anchor, S=S, is_preds=True
)
for idx, (box) in enumerate(boxes_scale_i):
bboxes[idx] += box
nms_boxes = non_max_suppression(
bboxes[0], iou_threshold=0.5, threshold=0.4, box_format="midpoint",
)
# target_categories = np.argmax(outputs.cpu().data.numpy(), axis=-1)
target_categories = [box[0] for box in nms_boxes]
targets = [ClassifierOutputTarget(
category) for category in target_categories]
if self.uses_gradients:
self.model.zero_grad()
loss = sum([target(output)
for target, output in zip(targets, outputs)])
loss.backward(retain_graph=True)
# In most of the saliency attribution papers, the saliency is
# computed with a single target layer.
# Commonly it is the last convolutional layer.
# Here we support passing a list with multiple target layers.
# It will compute the saliency image for every image,
# and then aggregate them (with a default mean aggregation).
# This gives you more flexibility in case you just want to
# use all conv layers for example, all Batchnorm layers,
# or something else.
cam_per_layer = self.compute_cam_per_layer(input_tensor,
targets,
eigen_smooth)
return self.aggregate_multi_layers(cam_per_layer)
def get_cam_image(self,
input_tensor,
target_layer,
target_category,
activations,
grads,
eigen_smooth):
return get_2d_projection(activations)