|
from typing import List |
|
import torch |
|
import numpy as np |
|
import cv2 |
|
import random |
|
|
|
from pytorch_grad_cam.base_cam import BaseCAM |
|
from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection |
|
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget |
|
|
|
|
|
def cells_to_bboxes(predictions, anchors, S, is_preds=True): |
|
""" |
|
Scales the predictions coming from the model to |
|
be relative to the entire image such that they for example later |
|
can be plotted or. |
|
INPUT: |
|
predictions: tensor of size (N, 3, S, S, num_classes+5) |
|
anchors: the anchors used for the predictions |
|
S: the number of cells the image is divided in on the width (and height) |
|
is_preds: whether the input is predictions or the true bounding boxes |
|
OUTPUT: |
|
converted_bboxes: the converted boxes of sizes (N, num_anchors, S, S, 1+5) with class index, |
|
object score, bounding box coordinates |
|
""" |
|
BATCH_SIZE = predictions.shape[0] |
|
num_anchors = len(anchors) |
|
box_predictions = predictions[..., 1:5] |
|
if is_preds: |
|
anchors = anchors.reshape(1, len(anchors), 1, 1, 2) |
|
box_predictions[..., 0:2] = torch.sigmoid(box_predictions[..., 0:2]) |
|
box_predictions[..., 2:] = torch.exp(box_predictions[..., 2:]) * anchors |
|
scores = torch.sigmoid(predictions[..., 0:1]) |
|
best_class = torch.argmax(predictions[..., 5:], dim=-1).unsqueeze(-1) |
|
else: |
|
scores = predictions[..., 0:1] |
|
best_class = predictions[..., 5:6] |
|
|
|
cell_indices = ( |
|
torch.arange(S) |
|
.repeat(predictions.shape[0], 3, S, 1) |
|
.unsqueeze(-1) |
|
.to(predictions.device) |
|
) |
|
x = 1 / S * (box_predictions[..., 0:1] + cell_indices) |
|
y = 1 / S * (box_predictions[..., 1:2] + cell_indices.permute(0, 1, 3, 2, 4)) |
|
w_h = 1 / S * box_predictions[..., 2:4] |
|
converted_bboxes = torch.cat((best_class, scores, x, y, w_h), dim=-1).reshape(BATCH_SIZE, num_anchors * S * S, 6) |
|
return converted_bboxes.tolist() |
|
|
|
|
|
|
|
def intersection_over_union(boxes_preds, boxes_labels, box_format="midpoint"): |
|
""" |
|
Video explanation of this function: |
|
https://youtu.be/XXYG5ZWtjj0 |
|
|
|
This function calculates intersection over union (iou) given pred boxes |
|
and target boxes. |
|
|
|
Parameters: |
|
boxes_preds (tensor): Predictions of Bounding Boxes (BATCH_SIZE, 4) |
|
boxes_labels (tensor): Correct labels of Bounding Boxes (BATCH_SIZE, 4) |
|
box_format (str): midpoint/corners, if boxes (x,y,w,h) or (x1,y1,x2,y2) |
|
|
|
Returns: |
|
tensor: Intersection over union for all examples |
|
""" |
|
|
|
if box_format == "midpoint": |
|
box1_x1 = boxes_preds[..., 0:1] - boxes_preds[..., 2:3] / 2 |
|
box1_y1 = boxes_preds[..., 1:2] - boxes_preds[..., 3:4] / 2 |
|
box1_x2 = boxes_preds[..., 0:1] + boxes_preds[..., 2:3] / 2 |
|
box1_y2 = boxes_preds[..., 1:2] + boxes_preds[..., 3:4] / 2 |
|
box2_x1 = boxes_labels[..., 0:1] - boxes_labels[..., 2:3] / 2 |
|
box2_y1 = boxes_labels[..., 1:2] - boxes_labels[..., 3:4] / 2 |
|
box2_x2 = boxes_labels[..., 0:1] + boxes_labels[..., 2:3] / 2 |
|
box2_y2 = boxes_labels[..., 1:2] + boxes_labels[..., 3:4] / 2 |
|
|
|
if box_format == "corners": |
|
box1_x1 = boxes_preds[..., 0:1] |
|
box1_y1 = boxes_preds[..., 1:2] |
|
box1_x2 = boxes_preds[..., 2:3] |
|
box1_y2 = boxes_preds[..., 3:4] |
|
box2_x1 = boxes_labels[..., 0:1] |
|
box2_y1 = boxes_labels[..., 1:2] |
|
box2_x2 = boxes_labels[..., 2:3] |
|
box2_y2 = boxes_labels[..., 3:4] |
|
|
|
x1 = torch.max(box1_x1, box2_x1) |
|
y1 = torch.max(box1_y1, box2_y1) |
|
x2 = torch.min(box1_x2, box2_x2) |
|
y2 = torch.min(box1_y2, box2_y2) |
|
|
|
intersection = (x2 - x1).clamp(0) * (y2 - y1).clamp(0) |
|
box1_area = abs((box1_x2 - box1_x1) * (box1_y2 - box1_y1)) |
|
box2_area = abs((box2_x2 - box2_x1) * (box2_y2 - box2_y1)) |
|
|
|
return intersection / (box1_area + box2_area - intersection + 1e-6) |
|
|
|
def non_max_suppression(bboxes, iou_threshold, threshold, box_format="corners"): |
|
""" |
|
Video explanation of this function: |
|
https://youtu.be/YDkjWEN8jNA |
|
|
|
Does Non Max Suppression given bboxes |
|
|
|
Parameters: |
|
bboxes (list): list of lists containing all bboxes with each bboxes |
|
specified as [class_pred, prob_score, x1, y1, x2, y2] |
|
iou_threshold (float): threshold where predicted bboxes is correct |
|
threshold (float): threshold to remove predicted bboxes (independent of IoU) |
|
box_format (str): "midpoint" or "corners" used to specify bboxes |
|
|
|
Returns: |
|
list: bboxes after performing NMS given a specific IoU threshold |
|
""" |
|
|
|
assert type(bboxes) == list |
|
|
|
bboxes = [box for box in bboxes if box[1] > threshold] |
|
bboxes = sorted(bboxes, key=lambda x: x[1], reverse=True) |
|
bboxes_after_nms = [] |
|
|
|
while bboxes: |
|
chosen_box = bboxes.pop(0) |
|
|
|
bboxes = [ |
|
box |
|
for box in bboxes |
|
if box[0] != chosen_box[0] |
|
or intersection_over_union( |
|
torch.tensor(chosen_box[2:]), |
|
torch.tensor(box[2:]), |
|
box_format=box_format, |
|
) |
|
< iou_threshold |
|
] |
|
|
|
bboxes_after_nms.append(chosen_box) |
|
|
|
return bboxes_after_nms |
|
|
|
|
|
|
|
|
|
def draw_predictions(image: np.ndarray, boxes: List[List], class_labels: List[str]) -> np.ndarray: |
|
"""Plots predicted bounding boxes on the image""" |
|
|
|
colors = [[random.randint(0, 255) for _ in range(3)] for name in class_labels] |
|
|
|
im = np.array(image) |
|
height, width, _ = im.shape |
|
bbox_thick = int(0.6 * (height + width) / 600) |
|
|
|
|
|
for box in boxes: |
|
assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height" |
|
class_pred = box[0] |
|
conf = box[1] |
|
box = box[2:] |
|
upper_left_x = box[0] - box[2] / 2 |
|
upper_left_y = box[1] - box[3] / 2 |
|
|
|
x1 = int(upper_left_x * width) |
|
y1 = int(upper_left_y * height) |
|
|
|
x2 = x1 + int(box[2] * width) |
|
y2 = y1 + int(box[3] * height) |
|
|
|
cv2.rectangle( |
|
image, |
|
(x1, y1), (x2, y2), |
|
color=colors[int(class_pred)], |
|
thickness=bbox_thick |
|
) |
|
text = f"{class_labels[int(class_pred)]}: {conf:.2f}" |
|
t_size = cv2.getTextSize(text, 0, 0.7, thickness=bbox_thick // 2)[0] |
|
c3 = (x1 + t_size[0], y1 - t_size[1] - 3) |
|
|
|
cv2.rectangle(image, (x1, y1), c3, colors[int(class_pred)], -1) |
|
cv2.putText( |
|
image, |
|
text, |
|
(x1, y1 - 2), |
|
cv2.FONT_HERSHEY_SIMPLEX, |
|
0.7, |
|
(0, 0, 0), |
|
bbox_thick // 2, |
|
lineType=cv2.LINE_AA, |
|
) |
|
|
|
return image |
|
|
|
|
|
class YoloCAM(BaseCAM): |
|
def __init__(self, model, target_layers, use_cuda=False, |
|
reshape_transform=None): |
|
super(YoloCAM, self).__init__(model, |
|
target_layers, |
|
use_cuda, |
|
reshape_transform, |
|
uses_gradients=False) |
|
|
|
def forward(self, |
|
input_tensor: torch.Tensor, |
|
scaled_anchors: torch.Tensor, |
|
targets: List[torch.nn.Module], |
|
eigen_smooth: bool = False) -> np.ndarray: |
|
|
|
if self.cuda: |
|
input_tensor = input_tensor.cuda() |
|
|
|
if self.compute_input_gradient: |
|
input_tensor = torch.autograd.Variable(input_tensor, |
|
requires_grad=True) |
|
|
|
outputs = self.activations_and_grads(input_tensor) |
|
if targets is None: |
|
bboxes = [[] for _ in range(1)] |
|
for i in range(3): |
|
batch_size, A, S, _, _ = outputs[i].shape |
|
anchor = scaled_anchors[i] |
|
boxes_scale_i = cells_to_bboxes( |
|
outputs[i], anchor, S=S, is_preds=True |
|
) |
|
for idx, (box) in enumerate(boxes_scale_i): |
|
bboxes[idx] += box |
|
|
|
nms_boxes = non_max_suppression( |
|
bboxes[0], iou_threshold=0.5, threshold=0.4, box_format="midpoint", |
|
) |
|
|
|
target_categories = [box[0] for box in nms_boxes] |
|
targets = [ClassifierOutputTarget( |
|
category) for category in target_categories] |
|
|
|
if self.uses_gradients: |
|
self.model.zero_grad() |
|
loss = sum([target(output) |
|
for target, output in zip(targets, outputs)]) |
|
loss.backward(retain_graph=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cam_per_layer = self.compute_cam_per_layer(input_tensor, |
|
targets, |
|
eigen_smooth) |
|
return self.aggregate_multi_layers(cam_per_layer) |
|
|
|
def get_cam_image(self, |
|
input_tensor, |
|
target_layer, |
|
target_category, |
|
activations, |
|
grads, |
|
eigen_smooth): |
|
return get_2d_projection(activations) |
|
|
|
|
|
|
|
|