File size: 9,840 Bytes
ab8fcc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
from typing import List
import torch
import numpy as np
import cv2
import random

from pytorch_grad_cam.base_cam import BaseCAM
from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget


def cells_to_bboxes(predictions, anchors, S, is_preds=True):
    """
    Scales the predictions coming from the model to
    be relative to the entire image such that they for example later
    can be plotted or.
    INPUT:
    predictions: tensor of size (N, 3, S, S, num_classes+5)
    anchors: the anchors used for the predictions
    S: the number of cells the image is divided in on the width (and height)
    is_preds: whether the input is predictions or the true bounding boxes
    OUTPUT:
    converted_bboxes: the converted boxes of sizes (N, num_anchors, S, S, 1+5) with class index,
                      object score, bounding box coordinates
    """
    BATCH_SIZE = predictions.shape[0]
    num_anchors = len(anchors)
    box_predictions = predictions[..., 1:5]
    if is_preds:
        anchors = anchors.reshape(1, len(anchors), 1, 1, 2)
        box_predictions[..., 0:2] = torch.sigmoid(box_predictions[..., 0:2])
        box_predictions[..., 2:] = torch.exp(box_predictions[..., 2:]) * anchors
        scores = torch.sigmoid(predictions[..., 0:1])
        best_class = torch.argmax(predictions[..., 5:], dim=-1).unsqueeze(-1)
    else:
        scores = predictions[..., 0:1]
        best_class = predictions[..., 5:6]

    cell_indices = (
        torch.arange(S)
        .repeat(predictions.shape[0], 3, S, 1)
        .unsqueeze(-1)
        .to(predictions.device)
    )
    x = 1 / S * (box_predictions[..., 0:1] + cell_indices)
    y = 1 / S * (box_predictions[..., 1:2] + cell_indices.permute(0, 1, 3, 2, 4))
    w_h = 1 / S * box_predictions[..., 2:4]
    converted_bboxes = torch.cat((best_class, scores, x, y, w_h), dim=-1).reshape(BATCH_SIZE, num_anchors * S * S, 6)
    return converted_bboxes.tolist()



def intersection_over_union(boxes_preds, boxes_labels, box_format="midpoint"):
    """
    Video explanation of this function:
    https://youtu.be/XXYG5ZWtjj0

    This function calculates intersection over union (iou) given pred boxes
    and target boxes.

    Parameters:
        boxes_preds (tensor): Predictions of Bounding Boxes (BATCH_SIZE, 4)
        boxes_labels (tensor): Correct labels of Bounding Boxes (BATCH_SIZE, 4)
        box_format (str): midpoint/corners, if boxes (x,y,w,h) or (x1,y1,x2,y2)

    Returns:
        tensor: Intersection over union for all examples
    """

    if box_format == "midpoint":
        box1_x1 = boxes_preds[..., 0:1] - boxes_preds[..., 2:3] / 2
        box1_y1 = boxes_preds[..., 1:2] - boxes_preds[..., 3:4] / 2
        box1_x2 = boxes_preds[..., 0:1] + boxes_preds[..., 2:3] / 2
        box1_y2 = boxes_preds[..., 1:2] + boxes_preds[..., 3:4] / 2
        box2_x1 = boxes_labels[..., 0:1] - boxes_labels[..., 2:3] / 2
        box2_y1 = boxes_labels[..., 1:2] - boxes_labels[..., 3:4] / 2
        box2_x2 = boxes_labels[..., 0:1] + boxes_labels[..., 2:3] / 2
        box2_y2 = boxes_labels[..., 1:2] + boxes_labels[..., 3:4] / 2

    if box_format == "corners":
        box1_x1 = boxes_preds[..., 0:1]
        box1_y1 = boxes_preds[..., 1:2]
        box1_x2 = boxes_preds[..., 2:3]
        box1_y2 = boxes_preds[..., 3:4]
        box2_x1 = boxes_labels[..., 0:1]
        box2_y1 = boxes_labels[..., 1:2]
        box2_x2 = boxes_labels[..., 2:3]
        box2_y2 = boxes_labels[..., 3:4]

    x1 = torch.max(box1_x1, box2_x1)
    y1 = torch.max(box1_y1, box2_y1)
    x2 = torch.min(box1_x2, box2_x2)
    y2 = torch.min(box1_y2, box2_y2)

    intersection = (x2 - x1).clamp(0) * (y2 - y1).clamp(0)
    box1_area = abs((box1_x2 - box1_x1) * (box1_y2 - box1_y1))
    box2_area = abs((box2_x2 - box2_x1) * (box2_y2 - box2_y1))

    return intersection / (box1_area + box2_area - intersection + 1e-6)

def non_max_suppression(bboxes, iou_threshold, threshold, box_format="corners"):
    """
    Video explanation of this function:
    https://youtu.be/YDkjWEN8jNA

    Does Non Max Suppression given bboxes

    Parameters:
        bboxes (list): list of lists containing all bboxes with each bboxes
        specified as [class_pred, prob_score, x1, y1, x2, y2]
        iou_threshold (float): threshold where predicted bboxes is correct
        threshold (float): threshold to remove predicted bboxes (independent of IoU)
        box_format (str): "midpoint" or "corners" used to specify bboxes

    Returns:
        list: bboxes after performing NMS given a specific IoU threshold
    """

    assert type(bboxes) == list

    bboxes = [box for box in bboxes if box[1] > threshold]
    bboxes = sorted(bboxes, key=lambda x: x[1], reverse=True)
    bboxes_after_nms = []

    while bboxes:
        chosen_box = bboxes.pop(0)

        bboxes = [
            box
            for box in bboxes
            if box[0] != chosen_box[0]
            or intersection_over_union(
                torch.tensor(chosen_box[2:]),
                torch.tensor(box[2:]),
                box_format=box_format,
            )
            < iou_threshold
        ]

        bboxes_after_nms.append(chosen_box)

    return bboxes_after_nms




def draw_predictions(image: np.ndarray, boxes: List[List], class_labels: List[str]) -> np.ndarray:
    """Plots predicted bounding boxes on the image"""

    colors = [[random.randint(0, 255) for _ in range(3)] for name in class_labels]

    im = np.array(image)
    height, width, _ = im.shape
    bbox_thick = int(0.6 * (height + width) / 600)

    # Create a Rectangle patch
    for box in boxes:
        assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height"
        class_pred = box[0]
        conf = box[1]
        box = box[2:]
        upper_left_x = box[0] - box[2] / 2
        upper_left_y = box[1] - box[3] / 2
        
        x1  = int(upper_left_x * width)
        y1 = int(upper_left_y * height)
        
        x2 = x1 + int(box[2] * width)
        y2 = y1 + int(box[3] * height)
        
        cv2.rectangle(
            image,
            (x1, y1), (x2, y2),
            color=colors[int(class_pred)],
            thickness=bbox_thick
        )
        text = f"{class_labels[int(class_pred)]}: {conf:.2f}"
        t_size = cv2.getTextSize(text, 0, 0.7, thickness=bbox_thick // 2)[0]
        c3 = (x1 + t_size[0], y1 - t_size[1] - 3)

        cv2.rectangle(image, (x1, y1), c3, colors[int(class_pred)], -1)
        cv2.putText(
            image,
            text,
            (x1, y1 - 2),
            cv2.FONT_HERSHEY_SIMPLEX,
            0.7,
            (0, 0, 0),
            bbox_thick // 2,
            lineType=cv2.LINE_AA,
        )

    return image


class YoloCAM(BaseCAM):
    def __init__(self, model, target_layers, use_cuda=False,
                 reshape_transform=None):
        super(YoloCAM, self).__init__(model,
                                       target_layers,
                                       use_cuda,
                                       reshape_transform,
                                       uses_gradients=False)

    def forward(self,
                input_tensor: torch.Tensor,
                scaled_anchors: torch.Tensor,
                targets: List[torch.nn.Module],
                eigen_smooth: bool = False) -> np.ndarray:

        if self.cuda:
            input_tensor = input_tensor.cuda()

        if self.compute_input_gradient:
            input_tensor = torch.autograd.Variable(input_tensor,
                                                   requires_grad=True)

        outputs = self.activations_and_grads(input_tensor)
        if targets is None:
            bboxes = [[] for _ in range(1)]
            for i in range(3):
                batch_size, A, S, _, _ = outputs[i].shape
                anchor = scaled_anchors[i]
                boxes_scale_i = cells_to_bboxes(
                    outputs[i], anchor, S=S, is_preds=True
                )
                for idx, (box) in enumerate(boxes_scale_i):
                    bboxes[idx] += box
            
            nms_boxes = non_max_suppression(
                bboxes[0], iou_threshold=0.5, threshold=0.4, box_format="midpoint",
            )
            # target_categories = np.argmax(outputs.cpu().data.numpy(), axis=-1)
            target_categories = [box[0] for box in nms_boxes]
            targets = [ClassifierOutputTarget(
                category) for category in target_categories]

        if self.uses_gradients:
            self.model.zero_grad()
            loss = sum([target(output)
                       for target, output in zip(targets, outputs)])
            loss.backward(retain_graph=True)

        # In most of the saliency attribution papers, the saliency is
        # computed with a single target layer.
        # Commonly it is the last convolutional layer.
        # Here we support passing a list with multiple target layers.
        # It will compute the saliency image for every image,
        # and then aggregate them (with a default mean aggregation).
        # This gives you more flexibility in case you just want to
        # use all conv layers for example, all Batchnorm layers,
        # or something else.
        cam_per_layer = self.compute_cam_per_layer(input_tensor,
                                                   targets,
                                                   eigen_smooth)
        return self.aggregate_multi_layers(cam_per_layer)
    
    def get_cam_image(self,
                      input_tensor,
                      target_layer,
                      target_category,
                      activations,
                      grads,
                      eigen_smooth):
        return get_2d_projection(activations)