|
import gradio as gr |
|
from datasets import load_dataset |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments, DataCollatorForSeq2Seq |
|
|
|
|
|
dataset = load_dataset("json", data_files="dataset.jsonl") |
|
|
|
|
|
model_name = "Salesforce/codegen-2B-multi" |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
|
|
def tokenize_function(examples): |
|
return tokenizer( |
|
examples["input"], |
|
text_target=examples["output"], |
|
truncation=True, |
|
max_length=512, |
|
padding="max_length" |
|
) |
|
|
|
tokenized_dataset = dataset.map(tokenize_function, batched=True) |
|
|
|
for i, example in enumerate(tokenized_dataset["train"]): |
|
input_len = len(example["input_ids"]) |
|
output_len = len(example["labels"]) |
|
print(f"Example {i}: Input length = {input_len}, Output length = {output_len}") |
|
|
|
|
|
training_args = TrainingArguments( |
|
output_dir="./results", |
|
per_device_train_batch_size=1, |
|
gradient_accumulation_steps=8, |
|
num_train_epochs=3, |
|
logging_dir="./logs", |
|
logging_strategy="steps", |
|
save_strategy="epoch", |
|
eval_strategy="epoch", |
|
learning_rate=5e-5, |
|
overwrite_output_dir=True, |
|
) |
|
|
|
data_collator = DataCollatorForSeq2Seq( |
|
tokenizer, |
|
model=model, |
|
padding=True, |
|
return_tensors="pt" |
|
) |
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=tokenized_dataset["train"], |
|
eval_dataset=tokenized_dataset["train"], |
|
data_collator=data_collator, |
|
) |
|
|
|
|
|
trainer.train() |
|
|
|
|
|
trainer.save_model("./fine_tuned_model") |
|
tokenizer.save_pretrained("./fine_tuned_model") |
|
|
|
|
|
fine_tuned_model = AutoModelForCausalLM.from_pretrained("./fine_tuned_model") |
|
fine_tuned_tokenizer = AutoTokenizer.from_pretrained("./fine_tuned_model") |
|
|
|
|
|
def generate_cypress_code(prompt): |
|
inputs = fine_tuned_tokenizer(prompt, return_tensors="pt") |
|
outputs = fine_tuned_model.generate(inputs["input_ids"], max_length=150, num_return_sequences=1) |
|
return fine_tuned_tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
interface = gr.Interface( |
|
fn=generate_cypress_code, |
|
inputs="text", |
|
outputs="text", |
|
title="Cypress Test Generator", |
|
description="Enter a description of the test you want to generate Cypress code for.", |
|
) |
|
interface.launch() |