import gradio as gr from datasets import load_dataset from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments, DataCollatorForSeq2Seq # Load the dataset dataset = load_dataset("json", data_files="dataset.jsonl") # Load the pre-trained model and tokenizer model_name = "Salesforce/codegen-2B-multi" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer.pad_token = tokenizer.eos_token # Tokenize the dataset def tokenize_function(examples): return tokenizer( examples["input"], text_target=examples["output"], truncation=True, # Truncate sequences longer than max_length max_length=512, # Adjust max length if needed padding="max_length" # Pad sequences to max_length ) tokenized_dataset = dataset.map(tokenize_function, batched=True) for i, example in enumerate(tokenized_dataset["train"]): input_len = len(example["input_ids"]) output_len = len(example["labels"]) print(f"Example {i}: Input length = {input_len}, Output length = {output_len}") # Define training arguments training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=1, # Smaller batch size gradient_accumulation_steps=8, # Accumulate gradients to simulate larger batch size num_train_epochs=3, logging_dir="./logs", logging_strategy="steps", save_strategy="epoch", eval_strategy="epoch", learning_rate=5e-5, overwrite_output_dir=True, ) data_collator = DataCollatorForSeq2Seq( tokenizer, model=model, padding=True, # Enable dynamic padding return_tensors="pt" ) trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_dataset["train"], eval_dataset=tokenized_dataset["train"], data_collator=data_collator, # Use dynamic padding ) # Train the model trainer.train() # Save the fine-tuned model trainer.save_model("./fine_tuned_model") tokenizer.save_pretrained("./fine_tuned_model") # Load the fine-tuned model for inference fine_tuned_model = AutoModelForCausalLM.from_pretrained("./fine_tuned_model") fine_tuned_tokenizer = AutoTokenizer.from_pretrained("./fine_tuned_model") # Define a Gradio interface for testing the model def generate_cypress_code(prompt): inputs = fine_tuned_tokenizer(prompt, return_tensors="pt") outputs = fine_tuned_model.generate(inputs["input_ids"], max_length=150, num_return_sequences=1) return fine_tuned_tokenizer.decode(outputs[0], skip_special_tokens=True) # Launch the Gradio interface interface = gr.Interface( fn=generate_cypress_code, inputs="text", outputs="text", title="Cypress Test Generator", description="Enter a description of the test you want to generate Cypress code for.", ) interface.launch()