ClearVoice / models /av_mossformer2_tse /av_mossformer_tmp.py
alibabasglab's picture
Upload 161 files
8e8cd3e verified
raw
history blame
8.86 kB
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
import math
from .mossformer.utils.one_path_flash_fsmn import Dual_Path_Model, SBFLASHBlock_DualA
from models.av_mossformer2_tse.visual_frontend import VisualFrontend
EPS = 1e-8
class avMossformer(nn.Module):
def __init__(self, args):
super(avMossformer, self).__init__()
N, L, = args.network_audio.encoder_out_nchannels, args.network_audio.encoder_kernel_size
self.encoder = Encoder(L, N)
self.separator = Separator(args)
self.decoder = Decoder(args, N, L)
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_normal_(p)
def forward(self, mixture, visual):
"""
Args:
mixture: [M, T], M is batch size, T is #samples
Returns:
est_source: [M, C, T]
"""
mixture_w = self.encoder(mixture)
est_mask = self.separator(mixture_w, visual)
est_source = self.decoder(mixture_w, est_mask)
# T changed after conv1d in encoder, fix it here
T_origin = mixture.size(-1)
T_conv = est_source.size(-1)
est_source = F.pad(est_source, (0, T_origin - T_conv))
return est_source
class Encoder(nn.Module):
def __init__(self, L, N):
super(Encoder, self).__init__()
self.L, self.N = L, N
self.conv1d_U = nn.Conv1d(1, N, kernel_size=L, stride=L // 2, bias=False)
def forward(self, mixture):
"""
Args:
mixture: [M, T], M is batch size, T is #samples
Returns:
mixture_w: [M, N, K], where K = (T-L)/(L/2)+1 = 2T/L-1
"""
mixture = torch.unsqueeze(mixture, 1) # [M, 1, T]
mixture_w = F.relu(self.conv1d_U(mixture)) # [M, N, K]
return mixture_w
class Decoder(nn.Module):
def __init__(self, args, N, L):
super(Decoder, self).__init__()
self.N, self.L, self.args = N, L, args
self.basis_signals = nn.Linear(N, L, bias=False)
def forward(self, mixture_w, est_mask):
"""
Args:
mixture_w: [M, N, K]
est_mask: [M, C, N, K]
Returns:
est_source: [M, C, T]
"""
est_source = mixture_w * est_mask
est_source = torch.transpose(est_source, 2, 1) # [M, K, N]
est_source = self.basis_signals(est_source) # [M, K, L]
est_source = overlap_and_add(est_source, self.L//2) # M x C x T
return est_source
class Separator(nn.Module):
def __init__(self, args):
super(Separator, self).__init__()
self.layer_norm = nn.GroupNorm(1, args.network_audio.encoder_out_nchannels, eps=1e-8)
self.bottleneck_conv1x1 = nn.Conv1d(args.network_audio.encoder_out_nchannels, args.network_audio.encoder_out_nchannels, 1, bias=False)
# mossformer 2
intra_model = SBFLASHBlock_DualA(
num_layers=args.network_audio.intra_numlayers,
d_model=args.network_audio.encoder_out_nchannels,
nhead=args.network_audio.intra_nhead,
d_ffn=args.network_audio.intra_dffn,
dropout=args.network_audio.intra_dropout,
use_positional_encoding=args.network_audio.intra_use_positional,
norm_before=args.network_audio.intra_norm_before
)
self.masknet = Dual_Path_Model(
in_channels=args.network_audio.encoder_out_nchannels,
out_channels=args.network_audio.encoder_out_nchannels,
intra_model=intra_model,
num_layers=args.network_audio.masknet_numlayers,
norm=args.network_audio.masknet_norm,
K=args.network_audio.masknet_chunksize,
num_spks=args.network_audio.masknet_numspks,
skip_around_intra=args.network_audio.masknet_extraskipconnection,
linear_layer_after_inter_intra=args.network_audio.masknet_useextralinearlayer
)
# reference
# visual
stacks = []
for x in range(5):
stacks +=[VisualConv1D(V=256, H=512)]
self.visual_conv = nn.Sequential(*stacks)
self.v_ds = nn.Conv1d(512, 256, 1, bias=False)
self.av_conv = nn.Conv1d(args.network_audio.encoder_out_nchannels+args.network_reference.emb_size, args.network_audio.encoder_out_nchannels, 1, bias=True)
def forward(self, x, visual):
"""
Keep this API same with TasNet
Args:
mixture_w: [M, N, K], M is batch size
returns:
est_mask: [M, C, N, K]
"""
M, N, D = x.size()
x = self.layer_norm(x)
x = self.bottleneck_conv1x1(x)
visual = visual.transpose(1,2)
visual = self.v_ds(visual)
visual = self.visual_conv(visual)
visual = F.interpolate(visual, (D), mode='linear')
x = torch.cat((x, visual),1)
x = self.av_conv(x)
x = self.masknet(x)
x = x.squeeze(0)
return x
def overlap_and_add(signal, frame_step):
"""Reconstructs a signal from a framed representation.
Adds potentially overlapping frames of a signal with shape
`[..., frames, frame_length]`, offsetting subsequent frames by `frame_step`.
The resulting tensor has shape `[..., output_size]` where
output_size = (frames - 1) * frame_step + frame_length
Args:
signal: A [..., frames, frame_length] Tensor. All dimensions may be unknown, and rank must be at least 2.
frame_step: An integer denoting overlap offsets. Must be less than or equal to frame_length.
Returns:
A Tensor with shape [..., output_size] containing the overlap-added frames of signal's inner-most two dimensions.
output_size = (frames - 1) * frame_step + frame_length
Based on https://github.com/tensorflow/tensorflow/blob/r1.12/tensorflow/contrib/signal/python/ops/reconstruction_ops.py
"""
outer_dimensions = signal.size()[:-2]
frames, frame_length = signal.size()[-2:]
subframe_length = math.gcd(frame_length, frame_step) # gcd=Greatest Common Divisor
subframe_step = frame_step // subframe_length
subframes_per_frame = frame_length // subframe_length
output_size = frame_step * (frames - 1) + frame_length
output_subframes = output_size // subframe_length
subframe_signal = signal.view(*outer_dimensions, -1, subframe_length)
frame = torch.arange(0, output_subframes).unfold(0, subframes_per_frame, subframe_step)
frame = signal.new_tensor(frame).long().cuda() # signal may in GPU or CPU
frame = frame.contiguous().view(-1)
result = signal.new_zeros(*outer_dimensions, output_subframes, subframe_length)
result.index_add_(-2, frame, subframe_signal)
result = result.view(*outer_dimensions, -1)
return result
class av_mossformer_tmp(nn.Module):
def __init__(self, args):
super(av_mossformer_tmp, self).__init__()
args.causal=0
self.sep_network = avMossformer(args)
self.v_front_end = VisualFrontend(args)
def forward(self, mixture, ref):
ref = self.v_front_end(ref.unsqueeze(1)).transpose(1,2)
return self.sep_network(mixture, ref)
class VisualConv1D(nn.Module):
def __init__(self, V=256, H=512):
super(VisualConv1D, self).__init__()
relu_0 = nn.ReLU()
norm_0 = GlobalLayerNorm(V)
conv1x1 = nn.Conv1d(V, H, 1, bias=False)
relu = nn.ReLU()
norm_1 = GlobalLayerNorm(H)
dsconv = nn.Conv1d(H, H, 3, stride=1, padding=1,dilation=1, groups=H, bias=False)
prelu = nn.PReLU()
norm_2 = GlobalLayerNorm(H)
pw_conv = nn.Conv1d(H, V, 1, bias=False)
self.net = nn.Sequential(relu_0, norm_0, conv1x1, relu, norm_1 ,dsconv, prelu, norm_2, pw_conv)
def forward(self, x):
out = self.net(x)
return out + x
class GlobalLayerNorm(nn.Module):
"""Global Layer Normalization (gLN)"""
def __init__(self, channel_size):
super(GlobalLayerNorm, self).__init__()
self.gamma = nn.Parameter(torch.Tensor(1, channel_size, 1)) # [1, N, 1]
self.beta = nn.Parameter(torch.Tensor(1, channel_size,1 )) # [1, N, 1]
self.reset_parameters()
def reset_parameters(self):
self.gamma.data.fill_(1)
self.beta.data.zero_()
def forward(self, y):
"""
Args:
y: [M, N, K], M is batch size, N is channel size, K is length
Returns:
gLN_y: [M, N, K]
"""
# TODO: in torch 1.0, torch.mean() support dim list
mean = y.mean(dim=1, keepdim=True).mean(dim=2, keepdim=True) #[M, 1, 1]
var = (torch.pow(y-mean, 2)).mean(dim=1, keepdim=True).mean(dim=2, keepdim=True)
gLN_y = self.gamma * (y - mean) / torch.pow(var + EPS, 0.5) + self.beta
return gLN_y