File size: 8,857 Bytes
8e8cd3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio

import math

from .mossformer.utils.one_path_flash_fsmn import Dual_Path_Model, SBFLASHBlock_DualA
from models.av_mossformer2_tse.visual_frontend import VisualFrontend

EPS = 1e-8

class avMossformer(nn.Module):
    def __init__(self, args):
        super(avMossformer, self).__init__()
        
        N, L, = args.network_audio.encoder_out_nchannels, args.network_audio.encoder_kernel_size

        self.encoder = Encoder(L, N)
        self.separator = Separator(args)
        self.decoder = Decoder(args, N, L)

        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_normal_(p)

    def forward(self, mixture, visual):
        """
        Args:
            mixture: [M, T], M is batch size, T is #samples
        Returns:
            est_source: [M, C, T]
        """
        mixture_w = self.encoder(mixture)
        est_mask = self.separator(mixture_w, visual)
        est_source = self.decoder(mixture_w, est_mask)

        # T changed after conv1d in encoder, fix it here
        T_origin = mixture.size(-1)
        T_conv = est_source.size(-1)
        est_source = F.pad(est_source, (0, T_origin - T_conv))
        return est_source

class Encoder(nn.Module):
    def __init__(self, L, N):
        super(Encoder, self).__init__()
        self.L, self.N = L, N
        self.conv1d_U = nn.Conv1d(1, N, kernel_size=L, stride=L // 2, bias=False)

    def forward(self, mixture):
        """
        Args:
            mixture: [M, T], M is batch size, T is #samples
        Returns:
            mixture_w: [M, N, K], where K = (T-L)/(L/2)+1 = 2T/L-1
        """
        mixture = torch.unsqueeze(mixture, 1)  # [M, 1, T]
        mixture_w = F.relu(self.conv1d_U(mixture))  # [M, N, K]
        return mixture_w


class Decoder(nn.Module):
    def __init__(self, args, N, L):
        super(Decoder, self).__init__()
        self.N, self.L, self.args = N, L, args
        self.basis_signals = nn.Linear(N, L, bias=False)

    def forward(self, mixture_w, est_mask):
        """
        Args:
            mixture_w: [M, N, K]
            est_mask: [M, C, N, K]
        Returns:
            est_source: [M, C, T]
        """
        est_source = mixture_w * est_mask
        est_source = torch.transpose(est_source, 2, 1) # [M,  K, N]
        est_source = self.basis_signals(est_source)  # [M,  K, L]
        est_source = overlap_and_add(est_source, self.L//2) # M x C x T
        return est_source




class Separator(nn.Module):
    def __init__(self, args):
        super(Separator, self).__init__()

        self.layer_norm = nn.GroupNorm(1, args.network_audio.encoder_out_nchannels, eps=1e-8)
        self.bottleneck_conv1x1 = nn.Conv1d(args.network_audio.encoder_out_nchannels, args.network_audio.encoder_out_nchannels, 1, bias=False)

        # mossformer 2
        intra_model = SBFLASHBlock_DualA(
            num_layers=args.network_audio.intra_numlayers,
            d_model=args.network_audio.encoder_out_nchannels,
            nhead=args.network_audio.intra_nhead,
            d_ffn=args.network_audio.intra_dffn,
            dropout=args.network_audio.intra_dropout,
            use_positional_encoding=args.network_audio.intra_use_positional,
            norm_before=args.network_audio.intra_norm_before
        )

        self.masknet = Dual_Path_Model(
            in_channels=args.network_audio.encoder_out_nchannels,
            out_channels=args.network_audio.encoder_out_nchannels,
            intra_model=intra_model,
            num_layers=args.network_audio.masknet_numlayers,
            norm=args.network_audio.masknet_norm,
            K=args.network_audio.masknet_chunksize,
            num_spks=args.network_audio.masknet_numspks,
            skip_around_intra=args.network_audio.masknet_extraskipconnection,
            linear_layer_after_inter_intra=args.network_audio.masknet_useextralinearlayer
        )

        # reference
        # visual
        stacks = []
        for x in range(5):
            stacks +=[VisualConv1D(V=256, H=512)]
        self.visual_conv = nn.Sequential(*stacks)
        self.v_ds = nn.Conv1d(512, 256, 1, bias=False)
        self.av_conv = nn.Conv1d(args.network_audio.encoder_out_nchannels+args.network_reference.emb_size, args.network_audio.encoder_out_nchannels, 1, bias=True)


    def forward(self, x, visual):
        """
        Keep this API same with TasNet
        Args:
            mixture_w: [M, N, K], M is batch size
        returns:
            est_mask: [M, C, N, K]
        """
        M, N, D = x.size()

        x = self.layer_norm(x)
        x = self.bottleneck_conv1x1(x)


        visual = visual.transpose(1,2)
        visual = self.v_ds(visual)
        visual = self.visual_conv(visual)
        visual = F.interpolate(visual, (D), mode='linear')
        
        x = torch.cat((x, visual),1)
        x  = self.av_conv(x)

        x = self.masknet(x)

        x = x.squeeze(0)

        return x



def overlap_and_add(signal, frame_step):
    """Reconstructs a signal from a framed representation.

    Adds potentially overlapping frames of a signal with shape
    `[..., frames, frame_length]`, offsetting subsequent frames by `frame_step`.
    The resulting tensor has shape `[..., output_size]` where

        output_size = (frames - 1) * frame_step + frame_length

    Args:
        signal: A [..., frames, frame_length] Tensor. All dimensions may be unknown, and rank must be at least 2.
        frame_step: An integer denoting overlap offsets. Must be less than or equal to frame_length.

    Returns:
        A Tensor with shape [..., output_size] containing the overlap-added frames of signal's inner-most two dimensions.
        output_size = (frames - 1) * frame_step + frame_length

    Based on https://github.com/tensorflow/tensorflow/blob/r1.12/tensorflow/contrib/signal/python/ops/reconstruction_ops.py
    """
    outer_dimensions = signal.size()[:-2]
    frames, frame_length = signal.size()[-2:]

    subframe_length = math.gcd(frame_length, frame_step)  # gcd=Greatest Common Divisor
    subframe_step = frame_step // subframe_length
    subframes_per_frame = frame_length // subframe_length
    output_size = frame_step * (frames - 1) + frame_length
    output_subframes = output_size // subframe_length

    subframe_signal = signal.view(*outer_dimensions, -1, subframe_length)

    frame = torch.arange(0, output_subframes).unfold(0, subframes_per_frame, subframe_step)
    frame = signal.new_tensor(frame).long().cuda()  # signal may in GPU or CPU
    frame = frame.contiguous().view(-1)

    result = signal.new_zeros(*outer_dimensions, output_subframes, subframe_length)
    result.index_add_(-2, frame, subframe_signal)
    result = result.view(*outer_dimensions, -1)
    return result


class av_mossformer_tmp(nn.Module):
    def __init__(self, args):
        super(av_mossformer_tmp, self).__init__()
        args.causal=0
        self.sep_network = avMossformer(args)
        self.v_front_end = VisualFrontend(args)

    def forward(self, mixture, ref):
        ref = self.v_front_end(ref.unsqueeze(1)).transpose(1,2)
        return self.sep_network(mixture, ref)



class VisualConv1D(nn.Module):
    def __init__(self, V=256, H=512):
        super(VisualConv1D, self).__init__()
        relu_0 = nn.ReLU()
        norm_0 = GlobalLayerNorm(V)
        conv1x1 = nn.Conv1d(V, H, 1, bias=False)
        relu = nn.ReLU()
        norm_1 = GlobalLayerNorm(H)
        dsconv = nn.Conv1d(H, H, 3, stride=1, padding=1,dilation=1, groups=H, bias=False)
        prelu = nn.PReLU()
        norm_2 = GlobalLayerNorm(H)
        pw_conv = nn.Conv1d(H, V, 1, bias=False)
        self.net = nn.Sequential(relu_0, norm_0, conv1x1, relu, norm_1 ,dsconv, prelu, norm_2, pw_conv)

    def forward(self, x):
        out = self.net(x)
        return out + x

class GlobalLayerNorm(nn.Module):
    """Global Layer Normalization (gLN)"""
    def __init__(self, channel_size):
        super(GlobalLayerNorm, self).__init__()
        self.gamma = nn.Parameter(torch.Tensor(1, channel_size, 1))  # [1, N, 1]
        self.beta = nn.Parameter(torch.Tensor(1, channel_size,1 ))  # [1, N, 1]
        self.reset_parameters()

    def reset_parameters(self):
        self.gamma.data.fill_(1)
        self.beta.data.zero_()

    def forward(self, y):
        """
        Args:
            y: [M, N, K], M is batch size, N is channel size, K is length
        Returns:
            gLN_y: [M, N, K]
        """
        # TODO: in torch 1.0, torch.mean() support dim list
        mean = y.mean(dim=1, keepdim=True).mean(dim=2, keepdim=True) #[M, 1, 1]
        var = (torch.pow(y-mean, 2)).mean(dim=1, keepdim=True).mean(dim=2, keepdim=True)
        gLN_y = self.gamma * (y - mean) / torch.pow(var + EPS, 0.5) + self.beta
        return gLN_y