Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import gradio as gr | |
import gemini_gradio | |
import openai_gradio | |
import anthropic_gradio | |
import sambanova_gradio | |
import xai_gradio | |
import hyperbolic_gradio | |
import perplexity_gradio | |
import mistral_gradio | |
import fireworks_gradio | |
import cerebras_gradio | |
import groq_gradio | |
import together_gradio | |
import nvidia_gradio | |
import dashscope_gradio | |
with gr.Blocks(fill_height=True) as demo: | |
with gr.Tab("Meta Llama"): | |
with gr.Row(): | |
llama_model = gr.Dropdown( | |
choices=[ | |
'Meta-Llama-3.2-1B-Instruct', # Llama 3.2 1B | |
'Meta-Llama-3.2-3B-Instruct', # Llama 3.2 3B | |
'Llama-3.2-11B-Vision-Instruct', # Llama 3.2 11B | |
'Llama-3.2-90B-Vision-Instruct', # Llama 3.2 90B | |
'Meta-Llama-3.1-8B-Instruct', # Llama 3.1 8B | |
'Meta-Llama-3.1-70B-Instruct', # Llama 3.1 70B | |
'Meta-Llama-3.1-405B-Instruct' # Llama 3.1 405B | |
], | |
value='Llama-3.2-90B-Vision-Instruct', # Default to the most advanced model | |
label="Select Llama Model", | |
interactive=True | |
) | |
llama_interface = gr.load( | |
name=llama_model.value, | |
src=sambanova_gradio.registry, | |
multimodal=True, | |
fill_height=True | |
) | |
def update_llama_model(new_model): | |
return gr.load( | |
name=new_model, | |
src=sambanova_gradio.registry, | |
multimodal=True, | |
fill_height=True | |
) | |
llama_model.change( | |
fn=update_llama_model, | |
inputs=[llama_model], | |
outputs=[llama_interface] | |
) | |
gr.Markdown("**Note:** You need to use a SambaNova API key from [SambaNova Cloud](https://cloud.sambanova.ai/).") | |
with gr.Tab("Gemini"): | |
with gr.Row(): | |
gemini_model = gr.Dropdown( | |
choices=[ | |
'gemini-1.5-flash', # Fast and versatile performance | |
'gemini-1.5-flash-8b', # High volume, lower intelligence tasks | |
'gemini-1.5-pro', # Complex reasoning tasks | |
'gemini-exp-1114' # Quality improvements | |
], | |
value='gemini-1.5-pro', # Default to the most advanced model | |
label="Select Gemini Model", | |
interactive=True | |
) | |
gemini_interface = gr.load( | |
name=gemini_model.value, | |
src=gemini_gradio.registry, | |
fill_height=True | |
) | |
def update_gemini_model(new_model): | |
return gr.load( | |
name=new_model, | |
src=gemini_gradio.registry, | |
fill_height=True | |
) | |
gemini_model.change( | |
fn=update_gemini_model, | |
inputs=[gemini_model], | |
outputs=[gemini_interface] | |
) | |
with gr.Tab("ChatGPT"): | |
with gr.Row(): | |
model_choice = gr.Dropdown( | |
choices=[ | |
'gpt-4o-2024-11-20', # Latest GPT-4o model | |
'gpt-4o', # Previous most advanced model | |
'gpt-4o-2024-08-06', # Latest snapshot | |
'gpt-4o-2024-05-13', # Original snapshot | |
'chatgpt-4o-latest', # Latest ChatGPT version | |
'gpt-4o-mini', # Small model | |
'gpt-4o-mini-2024-07-18', # Latest mini version | |
'o1-preview', # Reasoning model | |
'o1-preview-2024-09-12', # Latest o1 model snapshot | |
'o1-mini', # Faster reasoning model | |
'o1-mini-2024-09-12', # Latest o1-mini model snapshot | |
'gpt-4-turbo', # Latest GPT-4 Turbo model | |
'gpt-4-turbo-2024-04-09', # Latest GPT-4 Turbo snapshot | |
'gpt-4-turbo-preview', # GPT-4 Turbo preview model | |
'gpt-4-0125-preview', # GPT-4 Turbo preview model for laziness | |
'gpt-4-1106-preview', # Improved instruction following model | |
'gpt-4', # Standard GPT-4 model | |
'gpt-4-0613' # Snapshot of GPT-4 from June 2023 | |
], | |
value='gpt-4o-2024-11-20', # Updated default to latest model | |
label="Select Model", | |
interactive=True | |
) | |
chatgpt_interface = gr.load( | |
name=model_choice.value, | |
src=openai_gradio.registry, | |
fill_height=True | |
) | |
def update_model(new_model): | |
return gr.load( | |
name=new_model, | |
src=openai_gradio.registry, | |
fill_height=True | |
) | |
model_choice.change( | |
fn=update_model, | |
inputs=[model_choice], | |
outputs=[chatgpt_interface] | |
) | |
with gr.Tab("Claude"): | |
with gr.Row(): | |
claude_model = gr.Dropdown( | |
choices=[ | |
'claude-3-5-sonnet-20241022', # Latest Sonnet | |
'claude-3-5-haiku-20241022', # Latest Haiku | |
'claude-3-opus-20240229', # Opus | |
'claude-3-sonnet-20240229', # Previous Sonnet | |
'claude-3-haiku-20240307' # Previous Haiku | |
], | |
value='claude-3-5-sonnet-20241022', # Default to latest Sonnet | |
label="Select Model", | |
interactive=True | |
) | |
claude_interface = gr.load( | |
name=claude_model.value, | |
src=anthropic_gradio.registry, | |
accept_token=True, | |
fill_height=True | |
) | |
def update_claude_model(new_model): | |
return gr.load( | |
name=new_model, | |
src=anthropic_gradio.registry, | |
accept_token=True, | |
fill_height=True | |
) | |
claude_model.change( | |
fn=update_claude_model, | |
inputs=[claude_model], | |
outputs=[claude_interface] | |
) | |
with gr.Tab("Grok"): | |
with gr.Row(): | |
grok_model = gr.Dropdown( | |
choices=[ | |
'grok-beta', | |
'grok-vision-beta' | |
], | |
value='grok-vision-beta', | |
label="Select Grok Model", | |
interactive=True | |
) | |
grok_interface = gr.load( | |
name=grok_model.value, | |
src=xai_gradio.registry, | |
fill_height=True | |
) | |
def update_grok_model(new_model): | |
return gr.load( | |
name=new_model, | |
src=xai_gradio.registry, | |
fill_height=True | |
) | |
grok_model.change( | |
fn=update_grok_model, | |
inputs=[grok_model], | |
outputs=[grok_interface] | |
) | |
with gr.Tab("Hugging Face"): | |
with gr.Row(): | |
hf_model = gr.Dropdown( | |
choices=[ | |
# Latest Large Models | |
'Qwen/Qwen2.5-Coder-32B-Instruct', | |
'Qwen/Qwen2.5-72B-Instruct', | |
'meta-llama/Llama-3.1-70B-Instruct', | |
'mistralai/Mixtral-8x7B-Instruct-v0.1', | |
# Mid-size Models | |
'meta-llama/Llama-3.1-8B-Instruct', | |
'google/gemma-2-9b-it', | |
'mistralai/Mistral-7B-v0.1', | |
'meta-llama/Llama-2-7b-chat-hf', | |
# Smaller Models | |
'meta-llama/Llama-3.2-3B-Instruct', | |
'meta-llama/Llama-3.2-1B-Instruct', | |
'Qwen/Qwen2.5-1.5B-Instruct', | |
'microsoft/Phi-3.5-mini-instruct', | |
'HuggingFaceTB/SmolLM2-1.7B-Instruct', | |
'google/gemma-2-2b-it', | |
# Base Models | |
'meta-llama/Llama-3.2-3B', | |
'meta-llama/Llama-3.2-1B', | |
'openai-community/gpt2' | |
], | |
value='HuggingFaceTB/SmolLM2-1.7B-Instruct', # Default to a powerful model | |
label="Select Hugging Face Model", | |
interactive=True | |
) | |
hf_interface = gr.load( | |
name=hf_model.value, | |
src="models", # Use direct model loading from HF | |
fill_height=True | |
) | |
def update_hf_model(new_model): | |
return gr.load( | |
name=new_model, | |
src="models", | |
fill_height=True | |
) | |
hf_model.change( | |
fn=update_hf_model, | |
inputs=[hf_model], | |
outputs=[hf_interface] | |
) | |
gr.Markdown(""" | |
**Note:** These models are loaded directly from Hugging Face Hub. Some models may require authentication. | |
Models are organized by size: | |
- **Large Models**: 32B-72B parameters | |
- **Mid-size Models**: 7B-9B parameters | |
- **Smaller Models**: 1B-3B parameters | |
- **Base Models**: Original architectures | |
Visit [Hugging Face](https://huggingface.co/) to learn more about available models. | |
""") | |
with gr.Tab("Groq"): | |
with gr.Row(): | |
groq_model = gr.Dropdown( | |
choices=[ | |
'llama3-groq-8b-8192-tool-use-preview', | |
'llama3-groq-70b-8192-tool-use-preview', | |
'llama-3.2-1b-preview', | |
'llama-3.2-3b-preview', | |
'llama-3.2-11b-text-preview', | |
'llama-3.2-90b-text-preview', | |
'mixtral-8x7b-32768', | |
'gemma2-9b-it', | |
'gemma-7b-it' | |
], | |
value='llama3-groq-70b-8192-tool-use-preview', # Default to Groq's optimized model | |
label="Select Groq Model", | |
interactive=True | |
) | |
groq_interface = gr.load( | |
name=groq_model.value, | |
src=groq_gradio.registry, | |
fill_height=True | |
) | |
def update_groq_model(new_model): | |
return gr.load( | |
name=new_model, | |
src=groq_gradio.registry, | |
fill_height=True | |
) | |
groq_model.change( | |
fn=update_groq_model, | |
inputs=[groq_model], | |
outputs=[groq_interface] | |
) | |
gr.Markdown(""" | |
**Note:** You need a Groq API key to use these models. Get one at [Groq Cloud](https://console.groq.com/). | |
""") | |
with gr.Tab("Hyperbolic"): | |
with gr.Row(): | |
hyperbolic_model = gr.Dropdown( | |
choices=[ | |
# # Vision Models (TODO) | |
# 'Qwen/Qwen2-VL-72B-Instruct', # 32K context | |
# 'mistralai/Pixtral-12B-2409', # 32K context | |
# 'Qwen/Qwen2-VL-7B-Instruct', # 32K context | |
# Large Language Models | |
'Qwen/Qwen2.5-Coder-32B-Instruct', # 131K context | |
'meta-llama/Llama-3.2-3B-Instruct', # 131K context | |
'meta-llama/Meta-Llama-3.1-8B-Instruct', # 131k context | |
'meta-llama/Meta-Llama-3.1-70B-Instruct', # 32K context | |
'meta-llama/Meta-Llama-3-70B-Instruct', # 8K context | |
'NousResearch/Hermes-3-Llama-3.1-70B', # 12K context | |
'Qwen/Qwen2.5-72B-Instruct', # 32K context | |
'deepseek-ai/DeepSeek-V2.5', # 8K context | |
'meta-llama/Meta-Llama-3.1-405B-Instruct', # 8K context | |
], | |
value='Qwen/Qwen2.5-Coder-32B-Instruct', | |
label="Select Hyperbolic Model", | |
interactive=True | |
) | |
hyperbolic_interface = gr.load( | |
name=hyperbolic_model.value, | |
src=hyperbolic_gradio.registry, | |
fill_height=True | |
) | |
def update_hyperbolic_model(new_model): | |
return gr.load( | |
name=new_model, | |
src=hyperbolic_gradio.registry, | |
fill_height=True | |
) | |
hyperbolic_model.change( | |
fn=update_hyperbolic_model, | |
inputs=[hyperbolic_model], | |
outputs=[hyperbolic_interface] | |
) | |
gr.Markdown(""" | |
<div> | |
<img src="https://storage.googleapis.com/public-arena-asset/hyperbolic_logo.png" alt="Hyperbolic Logo" style="height: 50px; margin-right: 10px;"> | |
</div> | |
**Note:** This model is supported by Hyperbolic. Build your AI apps at [Hyperbolic](https://app.hyperbolic.xyz/). | |
""") | |
with gr.Tab("Qwen"): | |
with gr.Row(): | |
qwen_model = gr.Dropdown( | |
choices=[ | |
# Proprietary Qwen Models | |
'qwen-turbo-latest', | |
'qwen-turbo', | |
'qwen-plus', | |
'qwen-max', | |
# Open Source Qwen Models | |
'qwen1.5-110b-chat', | |
'qwen1.5-72b-chat', | |
'qwen1.5-32b-chat', | |
'qwen1.5-14b-chat', | |
'qwen1.5-7b-chat' | |
], | |
value='qwen-turbo-latest', # Default to the latest turbo model | |
label="Select Qwen Model", | |
interactive=True | |
) | |
qwen_interface = gr.load( | |
name=qwen_model.value, | |
src=dashscope_gradio.registry, | |
fill_height=True | |
) | |
def update_qwen_model(new_model): | |
return gr.load( | |
name=new_model, | |
src=dashscope_gradio.registry, | |
fill_height=True | |
) | |
qwen_model.change( | |
fn=update_qwen_model, | |
inputs=[qwen_model], | |
outputs=[qwen_interface] | |
) | |
gr.Markdown(""" | |
**Note:** You need a DashScope API key to use these models. Get one at [DashScope](https://dashscope.aliyun.com/). | |
Models available in two categories: | |
- **Proprietary Models**: | |
- Qwen Turbo: Fast responses for general tasks | |
- Qwen Plus: Balanced performance and quality | |
- Qwen Max: Highest quality responses | |
- **Open Source Models**: | |
- Available in various sizes from 7B to 110B parameters | |
- Based on the Qwen 1.5 architecture | |
""") | |
with gr.Tab("Perplexity"): | |
with gr.Row(): | |
perplexity_model = gr.Dropdown( | |
choices=[ | |
# Sonar Models (Online) | |
'llama-3.1-sonar-small-128k-online', # 8B params | |
'llama-3.1-sonar-large-128k-online', # 70B params | |
'llama-3.1-sonar-huge-128k-online', # 405B params | |
# Sonar Models (Chat) | |
'llama-3.1-sonar-small-128k-chat', # 8B params | |
'llama-3.1-sonar-large-128k-chat', # 70B params | |
# Open Source Models | |
'llama-3.1-8b-instruct', # 8B params | |
'llama-3.1-70b-instruct' # 70B params | |
], | |
value='llama-3.1-sonar-large-128k-online', # Default to large online model | |
label="Select Perplexity Model", | |
interactive=True | |
) | |
perplexity_interface = gr.load( | |
name=perplexity_model.value, | |
src=perplexity_gradio.registry, | |
accept_token=True, | |
fill_height=True | |
) | |
def update_perplexity_model(new_model): | |
return gr.load( | |
name=new_model, | |
src=perplexity_gradio.registry, | |
accept_token=True, | |
fill_height=True | |
) | |
perplexity_model.change( | |
fn=update_perplexity_model, | |
inputs=[perplexity_model], | |
outputs=[perplexity_interface] | |
) | |
gr.Markdown(""" | |
**Note:** Models are grouped into three categories: | |
- **Sonar Online Models**: Include search capabilities (beta access required) | |
- **Sonar Chat Models**: Standard chat models | |
- **Open Source Models**: Based on Hugging Face implementations | |
For access to Online LLMs features, please fill out the [beta access form](https://perplexity.typeform.com/apiaccessform?typeform-source=docs.perplexity.ai). | |
""") | |
with gr.Tab("DeepSeek-V2.5"): | |
gr.load( | |
name='deepseek-ai/DeepSeek-V2.5', | |
src=hyperbolic_gradio.registry, | |
fill_height=True | |
) | |
gr.Markdown(""" | |
<div> | |
<img src="https://storage.googleapis.com/public-arena-asset/hyperbolic_logo.png" alt="Hyperbolic Logo" style="height: 50px; margin-right: 10px;"> | |
</div> | |
**Note:** This model is supported by Hyperbolic. Build your AI apps at [Hyperbolic](https://app.hyperbolic.xyz/). | |
""") | |
with gr.Tab("Mistral"): | |
with gr.Row(): | |
mistral_model = gr.Dropdown( | |
choices=[ | |
# Premier Models | |
'mistral-large-latest', # Top-tier reasoning model (128k) | |
'pixtral-large-latest', # Frontier-class multimodal model (128k) | |
'ministral-3b-latest', # Best edge model (128k) | |
'ministral-8b-latest', # High performance edge model (128k) | |
'mistral-small-latest', # Enterprise-grade small model (32k) | |
'codestral-latest', # Code-specialized model (32k) | |
'mistral-embed', # Semantic text representation (8k) | |
'mistral-moderation-latest', # Content moderation service (8k) | |
# Free Models | |
'pixtral-12b-2409', # Free 12B multimodal model (128k) | |
'open-mistral-nemo', # Multilingual model (128k) | |
'open-codestral-mamba' # Mamba-based coding model (256k) | |
], | |
value='pixtral-large-latest', # pixtral for vision | |
label="Select Mistral Model", | |
interactive=True | |
) | |
mistral_interface = gr.load( | |
name=mistral_model.value, | |
src=mistral_gradio.registry, | |
fill_height=True | |
) | |
def update_mistral_model(new_model): | |
return gr.load( | |
name=new_model, | |
src=mistral_gradio.registry, | |
fill_height=True | |
) | |
mistral_model.change( | |
fn=update_mistral_model, | |
inputs=[mistral_model], | |
outputs=[mistral_interface], | |
) | |
gr.Markdown(""" | |
**Note:** You need a Mistral API key to use these models. Get one at [Mistral AI Platform](https://console.mistral.ai/). | |
Models are grouped into two categories: | |
- **Premier Models**: Require a paid API key | |
- **Free Models**: Available with free API keys | |
Each model has different context window sizes (from 8k to 256k tokens) and specialized capabilities. | |
""") | |
with gr.Tab("Fireworks"): | |
with gr.Row(): | |
fireworks_model = gr.Dropdown( | |
choices=[ | |
'f1-preview', # Latest F1 preview model | |
'f1-mini-preview', # Smaller, faster model | |
], | |
value='f1-preview', # Default to preview model | |
label="Select Fireworks Model", | |
interactive=True | |
) | |
fireworks_interface = gr.load( | |
name=fireworks_model.value, | |
src=fireworks_gradio.registry, | |
fill_height=True | |
) | |
def update_fireworks_model(new_model): | |
return gr.load( | |
name=new_model, | |
src=fireworks_gradio.registry, | |
fill_height=True | |
) | |
fireworks_model.change( | |
fn=update_fireworks_model, | |
inputs=[fireworks_model], | |
outputs=[fireworks_interface] | |
) | |
gr.Markdown(""" | |
**Note:** You need a Fireworks AI API key to use these models. Get one at [Fireworks AI](https://app.fireworks.ai/). | |
""") | |
with gr.Tab("Cerebras"): | |
with gr.Row(): | |
cerebras_model = gr.Dropdown( | |
choices=[ | |
'llama3.1-8b', | |
'llama3.1-70b', | |
'llama3.1-405b' | |
], | |
value='llama3.1-70b', # Default to mid-size model | |
label="Select Cerebras Model", | |
interactive=True | |
) | |
cerebras_interface = gr.load( | |
name=cerebras_model.value, | |
src=cerebras_gradio.registry, | |
accept_token=True, # Added token acceptance | |
fill_height=True | |
) | |
def update_cerebras_model(new_model): | |
return gr.load( | |
name=new_model, | |
src=cerebras_gradio.registry, | |
accept_token=True, # Added token acceptance | |
fill_height=True | |
) | |
cerebras_model.change( | |
fn=update_cerebras_model, | |
inputs=[cerebras_model], | |
outputs=[cerebras_interface] | |
) | |
with gr.Tab("Together"): | |
with gr.Row(): | |
together_model = gr.Dropdown( | |
choices=[ | |
# Vision Models | |
'meta-llama/Llama-Vision-Free', # 131k context (Free) | |
'meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo', # 131k context | |
'meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo', # 131k context | |
# Meta Llama 3.x Models | |
'meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo', # 131k context | |
'meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo', # 131k context | |
'meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo', # 130k context | |
'meta-llama/Meta-Llama-3-8B-Instruct-Turbo', # 8k context | |
'meta-llama/Meta-Llama-3-70B-Instruct-Turbo', # 8k context | |
'meta-llama/Llama-3.2-3B-Instruct-Turbo', # 131k context | |
'meta-llama/Meta-Llama-3-8B-Instruct-Lite', # 8k context, INT4 | |
'meta-llama/Meta-Llama-3-70B-Instruct-Lite', # 8k context, INT4 | |
'meta-llama/Llama-3-8b-chat-hf', # 8k context | |
'meta-llama/Llama-3-70b-chat-hf', # 8k context | |
# Other Large Models | |
'nvidia/Llama-3.1-Nemotron-70B-Instruct-HF', # 32k context | |
'Qwen/Qwen2.5-Coder-32B-Instruct', # 32k context | |
'microsoft/WizardLM-2-8x22B', # 65k context | |
'google/gemma-2-27b-it', # 8k context | |
'google/gemma-2-9b-it', # 8k context | |
'databricks/dbrx-instruct', # 32k context | |
# Mixtral Models | |
'mistralai/Mixtral-8x7B-Instruct-v0.1', # 32k context | |
'mistralai/Mixtral-8x22B-Instruct-v0.1', # 65k context | |
# Qwen Models | |
'Qwen/Qwen2.5-7B-Instruct-Turbo', # 32k context | |
'Qwen/Qwen2.5-72B-Instruct-Turbo', # 32k context | |
'Qwen/Qwen2-72B-Instruct', # 32k context | |
# Other Models | |
'deepseek-ai/deepseek-llm-67b-chat', # 4k context | |
'google/gemma-2b-it', # 8k context | |
'Gryphe/MythoMax-L2-13b', # 4k context | |
'meta-llama/Llama-2-13b-chat-hf', # 4k context | |
'mistralai/Mistral-7B-Instruct-v0.1', # 8k context | |
'mistralai/Mistral-7B-Instruct-v0.2', # 32k context | |
'mistralai/Mistral-7B-Instruct-v0.3', # 32k context | |
'NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO', # 32k context | |
'togethercomputer/StripedHyena-Nous-7B', # 32k context | |
'upstage/SOLAR-10.7B-Instruct-v1.0' # 4k context | |
], | |
value='meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo', # Default to recommended vision model | |
label="Select Together Model", | |
interactive=True | |
) | |
together_interface = gr.load( | |
name=together_model.value, | |
src=together_gradio.registry, | |
multimodal=True, | |
fill_height=True | |
) | |
def update_together_model(new_model): | |
return gr.load( | |
name=new_model, | |
src=together_gradio.registry, | |
multimodal=True, | |
fill_height=True | |
) | |
together_model.change( | |
fn=update_together_model, | |
inputs=[together_model], | |
outputs=[together_interface] | |
) | |
gr.Markdown(""" | |
**Note:** You need a Together AI API key to use these models. Get one at [Together AI](https://www.together.ai/). | |
""") | |
with gr.Tab("NVIDIA"): | |
with gr.Row(): | |
nvidia_model = gr.Dropdown( | |
choices=[ | |
# NVIDIA Models | |
'nvidia/llama3-chatqa-1.5-70b', | |
'nvidia/llama3-chatqa-1.5-8b', | |
'nvidia-nemotron-4-340b-instruct', | |
# Meta Models | |
'meta/llama-3.1-70b-instruct', # Added Llama 3.1 70B | |
'meta/codellama-70b', | |
'meta/llama2-70b', | |
'meta/llama3-8b', | |
'meta/llama3-70b', | |
# Mistral Models | |
'mistralai/codestral-22b-instruct-v0.1', | |
'mistralai/mathstral-7b-v0.1', | |
'mistralai/mistral-large-2-instruct', | |
'mistralai/mistral-7b-instruct', | |
'mistralai/mistral-7b-instruct-v0.3', | |
'mistralai/mixtral-8x7b-instruct', | |
'mistralai/mixtral-8x22b-instruct', | |
'mistralai/mistral-large', | |
# Google Models | |
'google/gemma-2b', | |
'google/gemma-7b', | |
'google/gemma-2-2b-it', | |
'google/gemma-2-9b-it', | |
'google/gemma-2-27b-it', | |
'google/codegemma-1.1-7b', | |
'google/codegemma-7b', | |
'google/recurrentgemma-2b', | |
'google/shieldgemma-9b', | |
# Microsoft Phi-3 Models | |
'microsoft/phi-3-medium-128k-instruct', | |
'microsoft/phi-3-medium-4k-instruct', | |
'microsoft/phi-3-mini-128k-instruct', | |
'microsoft/phi-3-mini-4k-instruct', | |
'microsoft/phi-3-small-128k-instruct', | |
'microsoft/phi-3-small-8k-instruct', | |
# Other Models | |
'qwen/qwen2-7b-instruct', | |
'databricks/dbrx-instruct', | |
'deepseek-ai/deepseek-coder-6.7b-instruct', | |
'upstage/solar-10.7b-instruct', | |
'snowflake/arctic' | |
], | |
value='meta/llama-3.1-70b-instruct', # Changed default to Llama 3.1 70B | |
label="Select NVIDIA Model", | |
interactive=True | |
) | |
nvidia_interface = gr.load( | |
name=nvidia_model.value, | |
src=nvidia_gradio.registry, | |
accept_token=True, | |
fill_height=True | |
) | |
def update_nvidia_model(new_model): | |
return gr.load( | |
name=new_model, | |
src=nvidia_gradio.registry, | |
accept_token=True, | |
fill_height=True | |
) | |
nvidia_model.change( | |
fn=update_nvidia_model, | |
inputs=[nvidia_model], | |
outputs=[nvidia_interface] | |
) | |
gr.Markdown(""" | |
**Note:** You need an NVIDIA AI Foundation API key to use these models. Get one at [NVIDIA AI Foundation](https://www.nvidia.com/en-us/ai-data-science/foundation-models/). | |
Models are organized by provider: | |
- **NVIDIA**: Native models including Llama3-ChatQA and Nemotron | |
- **Meta**: Llama family models | |
- **Mistral**: Various Mistral and Mixtral models | |
- **Google**: Gemma family models | |
- **Microsoft**: Phi-3 series | |
- And other providers including Qwen, Databricks, DeepSeek, etc. | |
""") | |
demo.launch(ssr_mode=False) | |