Spaces:
Running on CPU Upgrade

File size: 30,344 Bytes
b3b66bf
 
c919a10
53c7098
6aaa79e
59c62cc
b9f9a46
684bece
2b36c3d
809397a
88bbb22
957783c
8173b7d
a0ec21d
b767358
684bece
53c7098
c919a10
90a0c6e
793e72e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04ce89c
793e72e
 
 
 
 
 
 
 
 
 
 
 
 
af4bac7
0f3449e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c919a10
17829dc
0f3449e
 
 
04ce89c
0f3449e
 
17829dc
0f3449e
 
 
 
 
 
c919a10
af4bac7
81d02d1
 
f599584
04c5e9f
 
 
 
f599584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04c5e9f
828cfdc
 
81d02d1
828cfdc
 
81d02d1
 
17829dc
c919a10
828cfdc
 
04ce89c
828cfdc
 
17829dc
828cfdc
 
 
 
 
 
 
53c7098
81d02d1
 
f599584
 
 
 
 
 
 
 
828cfdc
 
81d02d1
828cfdc
 
81d02d1
 
2af566a
17829dc
53c7098
828cfdc
 
04ce89c
828cfdc
 
2af566a
17829dc
828cfdc
 
 
 
 
 
 
59c62cc
7adbeef
 
 
 
 
 
e8d64f2
7adbeef
 
 
 
 
 
2af566a
17829dc
59c62cc
7adbeef
 
04ce89c
7adbeef
 
 
 
 
 
 
 
 
 
fa93ad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
957783c
 
 
 
14de3cc
 
 
957783c
14de3cc
 
642c55c
 
 
957783c
14de3cc
957783c
 
 
 
 
 
 
 
 
 
 
04ce89c
957783c
 
 
 
 
 
 
 
 
 
 
 
 
 
3289c64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04ce89c
3289c64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d878ab1
 
 
 
b767358
 
 
 
 
 
 
 
 
 
 
d878ab1
b767358
d878ab1
 
 
 
 
 
b767358
17829dc
f6a6c6d
d878ab1
 
04ce89c
d878ab1
b767358
d878ab1
 
 
 
 
 
 
 
 
65cde5f
b767358
 
 
 
 
 
 
 
 
 
65cde5f
684bece
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2af566a
17829dc
684bece
 
 
04ce89c
684bece
 
2af566a
17829dc
684bece
 
 
 
 
 
 
 
 
 
 
 
 
 
f6a6c6d
684bece
57b3cde
 
 
 
 
 
65cde5f
 
 
 
 
1b07906
65cde5f
2b36c3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fee4d90
2b36c3d
 
 
 
 
 
 
 
 
 
 
04ce89c
2b36c3d
 
 
fee4d90
2b36c3d
 
 
 
ff5756a
2b36c3d
 
 
 
 
 
 
 
 
 
 
809397a
 
 
 
1050e5a
 
809397a
1050e5a
809397a
 
 
 
 
 
 
 
 
 
 
04ce89c
809397a
 
 
 
 
 
 
 
 
 
 
 
 
 
88bbb22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04ce89c
88bbb22
 
 
 
 
5a2865e
 
 
 
 
 
8173b7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ae4543
8173b7d
 
 
 
04ce89c
8173b7d
 
1ae4543
8173b7d
 
 
 
 
 
 
 
 
 
 
 
a0ec21d
 
 
 
 
 
 
 
 
5def98d
a0ec21d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5def98d
a0ec21d
 
 
 
 
 
 
5def98d
a0ec21d
 
 
 
04ce89c
a0ec21d
 
5def98d
a0ec21d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c919a10
8c87ef1
c919a10
b3b66bf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
import gradio as gr
import gemini_gradio
import openai_gradio
import anthropic_gradio
import sambanova_gradio
import xai_gradio
import hyperbolic_gradio
import perplexity_gradio
import mistral_gradio
import fireworks_gradio
import cerebras_gradio
import groq_gradio
import together_gradio
import nvidia_gradio
import dashscope_gradio



with gr.Blocks(fill_height=True) as demo:
    with gr.Tab("Meta Llama"):
        with gr.Row():
            llama_model = gr.Dropdown(
                choices=[
                    'Meta-Llama-3.2-1B-Instruct',   # Llama 3.2 1B
                    'Meta-Llama-3.2-3B-Instruct',   # Llama 3.2 3B
                    'Llama-3.2-11B-Vision-Instruct',  # Llama 3.2 11B
                    'Llama-3.2-90B-Vision-Instruct',  # Llama 3.2 90B
                    'Meta-Llama-3.1-8B-Instruct',    # Llama 3.1 8B
                    'Meta-Llama-3.1-70B-Instruct',   # Llama 3.1 70B
                    'Meta-Llama-3.1-405B-Instruct'   # Llama 3.1 405B
                ],
                value='Llama-3.2-90B-Vision-Instruct',  # Default to the most advanced model
                label="Select Llama Model",
                interactive=True
            )
        
        llama_interface = gr.load(
            name=llama_model.value,
            src=sambanova_gradio.registry,
            multimodal=True,
            fill_height=True
        )
        
        def update_llama_model(new_model):
            return gr.load(
                name=new_model,
                src=sambanova_gradio.registry,
                multimodal=True,
                fill_height=True
            )
        
        llama_model.change(
            fn=update_llama_model,
            inputs=[llama_model],
            outputs=[llama_interface]
        )
        
        gr.Markdown("**Note:** You need to use a SambaNova API key from [SambaNova Cloud](https://cloud.sambanova.ai/).")
    with gr.Tab("Gemini"):
        with gr.Row():
            gemini_model = gr.Dropdown(
                choices=[
                    'gemini-1.5-flash',        # Fast and versatile performance
                    'gemini-1.5-flash-8b',     # High volume, lower intelligence tasks
                    'gemini-1.5-pro',           # Complex reasoning tasks
                    'gemini-exp-1114'          # Quality improvements
                ],
                value='gemini-1.5-pro',      # Default to the most advanced model
                label="Select Gemini Model",
                interactive=True
            )
        
        gemini_interface = gr.load(
            name=gemini_model.value,
            src=gemini_gradio.registry,
            fill_height=True
        )
        
        def update_gemini_model(new_model):
            return gr.load(
                name=new_model,
                src=gemini_gradio.registry,
                fill_height=True
            )
        
        gemini_model.change(
            fn=update_gemini_model,
            inputs=[gemini_model],
            outputs=[gemini_interface]
        )
    with gr.Tab("ChatGPT"):
        with gr.Row():
            model_choice = gr.Dropdown(
                choices=[
                    'gpt-4o-2024-11-20',              # Latest GPT-4o model
                    'gpt-4o',                         # Previous most advanced model
                    'gpt-4o-2024-08-06',              # Latest snapshot
                    'gpt-4o-2024-05-13',              # Original snapshot
                    'chatgpt-4o-latest',          # Latest ChatGPT version
                    'gpt-4o-mini',                # Small model
                    'gpt-4o-mini-2024-07-18',     # Latest mini version
                    'o1-preview',                 # Reasoning model
                    'o1-preview-2024-09-12',      # Latest o1 model snapshot
                    'o1-mini',                    # Faster reasoning model
                    'o1-mini-2024-09-12',         # Latest o1-mini model snapshot
                    'gpt-4-turbo',                # Latest GPT-4 Turbo model
                    'gpt-4-turbo-2024-04-09',     # Latest GPT-4 Turbo snapshot
                    'gpt-4-turbo-preview',         # GPT-4 Turbo preview model
                    'gpt-4-0125-preview',         # GPT-4 Turbo preview model for laziness
                    'gpt-4-1106-preview',         # Improved instruction following model
                    'gpt-4',                      # Standard GPT-4 model
                    'gpt-4-0613'                  # Snapshot of GPT-4 from June 2023
                ],
                value='gpt-4o-2024-11-20',           # Updated default to latest model
                label="Select Model",
                interactive=True
            )
            
        chatgpt_interface = gr.load(
            name=model_choice.value,
            src=openai_gradio.registry,
            fill_height=True
        )
        
        def update_model(new_model):
            return gr.load(
                name=new_model,
                src=openai_gradio.registry,
                fill_height=True
            )
        
        model_choice.change(
            fn=update_model,
            inputs=[model_choice],
            outputs=[chatgpt_interface]
        )
    with gr.Tab("Claude"):
        with gr.Row():
            claude_model = gr.Dropdown(
                choices=[
                    'claude-3-5-sonnet-20241022',  # Latest Sonnet
                    'claude-3-5-haiku-20241022',   # Latest Haiku
                    'claude-3-opus-20240229',       # Opus
                    'claude-3-sonnet-20240229',     # Previous Sonnet
                    'claude-3-haiku-20240307'       # Previous Haiku
                ],
                value='claude-3-5-sonnet-20241022',  # Default to latest Sonnet
                label="Select Model",
                interactive=True
            )
            
        claude_interface = gr.load(
            name=claude_model.value,
            src=anthropic_gradio.registry,
            accept_token=True,
            fill_height=True
        )
        
        def update_claude_model(new_model):
            return gr.load(
                name=new_model,
                src=anthropic_gradio.registry,
                accept_token=True,
                fill_height=True
            )
        
        claude_model.change(
            fn=update_claude_model,
            inputs=[claude_model],
            outputs=[claude_interface]
        )
    with gr.Tab("Grok"):
        with gr.Row():
            grok_model = gr.Dropdown(
                choices=[
                    'grok-beta',
                    'grok-vision-beta'
                ],
                value='grok-vision-beta',
                label="Select Grok Model",
                interactive=True
            )
            
        grok_interface = gr.load(
            name=grok_model.value,
            src=xai_gradio.registry,
            fill_height=True
        )
        
        def update_grok_model(new_model):
            return gr.load(
                name=new_model,
                src=xai_gradio.registry,
                fill_height=True
            )
        
        grok_model.change(
            fn=update_grok_model,
            inputs=[grok_model],
            outputs=[grok_interface]
        )
    with gr.Tab("Hugging Face"):
        with gr.Row():
            hf_model = gr.Dropdown(
                choices=[
                    # Latest Large Models
                    'Qwen/Qwen2.5-Coder-32B-Instruct',
                    'Qwen/Qwen2.5-72B-Instruct',
                    'meta-llama/Llama-3.1-70B-Instruct',
                    'mistralai/Mixtral-8x7B-Instruct-v0.1',
                    # Mid-size Models
                    'meta-llama/Llama-3.1-8B-Instruct',
                    'google/gemma-2-9b-it',
                    'mistralai/Mistral-7B-v0.1',
                    'meta-llama/Llama-2-7b-chat-hf',
                    # Smaller Models
                    'meta-llama/Llama-3.2-3B-Instruct',
                    'meta-llama/Llama-3.2-1B-Instruct',
                    'Qwen/Qwen2.5-1.5B-Instruct',
                    'microsoft/Phi-3.5-mini-instruct',
                    'HuggingFaceTB/SmolLM2-1.7B-Instruct',
                    'google/gemma-2-2b-it',
                    # Base Models
                    'meta-llama/Llama-3.2-3B',
                    'meta-llama/Llama-3.2-1B',
                    'openai-community/gpt2'
                ],
                value='HuggingFaceTB/SmolLM2-1.7B-Instruct',  # Default to a powerful model
                label="Select Hugging Face Model",
                interactive=True
            )
            
        hf_interface = gr.load(
            name=hf_model.value,
            src="models",  # Use direct model loading from HF
            fill_height=True
        )
        
        def update_hf_model(new_model):
            return gr.load(
                name=new_model,
                src="models",
                fill_height=True
            )
        
        hf_model.change(
            fn=update_hf_model,
            inputs=[hf_model],
            outputs=[hf_interface]
        )
        
        gr.Markdown("""
        **Note:** These models are loaded directly from Hugging Face Hub. Some models may require authentication.
        
        Models are organized by size:
        - **Large Models**: 32B-72B parameters
        - **Mid-size Models**: 7B-9B parameters
        - **Smaller Models**: 1B-3B parameters
        - **Base Models**: Original architectures
        
        Visit [Hugging Face](https://huggingface.co/) to learn more about available models.
        """)
    with gr.Tab("Groq"):
        with gr.Row():
            groq_model = gr.Dropdown(
                choices=[
                    'llama3-groq-8b-8192-tool-use-preview',
                    'llama3-groq-70b-8192-tool-use-preview',
                    'llama-3.2-1b-preview',
                    'llama-3.2-3b-preview',
                    'llama-3.2-11b-text-preview',
                    'llama-3.2-90b-text-preview',
                    'mixtral-8x7b-32768',
                    'gemma2-9b-it',
                    'gemma-7b-it'
                ],
                value='llama3-groq-70b-8192-tool-use-preview',  # Default to Groq's optimized model
                label="Select Groq Model",
                interactive=True
            )
            
        groq_interface = gr.load(
            name=groq_model.value,
            src=groq_gradio.registry,
            fill_height=True
        )
        
        def update_groq_model(new_model):
            return gr.load(
                name=new_model,
                src=groq_gradio.registry,
                fill_height=True
            )
        
        groq_model.change(
            fn=update_groq_model,
            inputs=[groq_model],
            outputs=[groq_interface]
        )
        
        gr.Markdown("""
        **Note:** You need a Groq API key to use these models. Get one at [Groq Cloud](https://console.groq.com/).
        """)
    with gr.Tab("Hyperbolic"):
        with gr.Row():
            hyperbolic_model = gr.Dropdown(
                choices=[
                    # # Vision Models (TODO)
                    # 'Qwen/Qwen2-VL-72B-Instruct',                       # 32K context
                    # 'mistralai/Pixtral-12B-2409',                       # 32K context
                    # 'Qwen/Qwen2-VL-7B-Instruct',                        # 32K context
                    # Large Language Models
                    'Qwen/Qwen2.5-Coder-32B-Instruct',                  # 131K context
                    'meta-llama/Llama-3.2-3B-Instruct',                 # 131K context
                    'meta-llama/Meta-Llama-3.1-8B-Instruct',            # 131k context
                    'meta-llama/Meta-Llama-3.1-70B-Instruct',           # 32K context
                    'meta-llama/Meta-Llama-3-70B-Instruct',             # 8K context
                    'NousResearch/Hermes-3-Llama-3.1-70B',              # 12K context
                    'Qwen/Qwen2.5-72B-Instruct',                        # 32K context
                    'deepseek-ai/DeepSeek-V2.5',                        # 8K context
                    'meta-llama/Meta-Llama-3.1-405B-Instruct',          # 8K context
                ],
                value='Qwen/Qwen2.5-Coder-32B-Instruct',
                label="Select Hyperbolic Model",
                interactive=True
            )
            
        hyperbolic_interface = gr.load(
            name=hyperbolic_model.value,
            src=hyperbolic_gradio.registry,
            fill_height=True
        )
        
        def update_hyperbolic_model(new_model):
            return gr.load(
                name=new_model,
                src=hyperbolic_gradio.registry,
                fill_height=True
            )
        
        hyperbolic_model.change(
            fn=update_hyperbolic_model,
            inputs=[hyperbolic_model],
            outputs=[hyperbolic_interface]
        )
        
        gr.Markdown("""
        <div>
            <img src="https://storage.googleapis.com/public-arena-asset/hyperbolic_logo.png" alt="Hyperbolic Logo" style="height: 50px; margin-right: 10px;">
        </div>    
                    
        **Note:** This model is supported by Hyperbolic. Build your AI apps at [Hyperbolic](https://app.hyperbolic.xyz/).
        """)
    with gr.Tab("Qwen"):
        with gr.Row():
            qwen_model = gr.Dropdown(
                choices=[
                    # Proprietary Qwen Models
                    'qwen-turbo-latest',
                    'qwen-turbo',
                    'qwen-plus',
                    'qwen-max',
                    # Open Source Qwen Models
                    'qwen1.5-110b-chat',
                    'qwen1.5-72b-chat',
                    'qwen1.5-32b-chat',
                    'qwen1.5-14b-chat',
                    'qwen1.5-7b-chat'
                ],
                value='qwen-turbo-latest',  # Default to the latest turbo model
                label="Select Qwen Model",
                interactive=True
            )
            
        qwen_interface = gr.load(
            name=qwen_model.value,
            src=dashscope_gradio.registry,
            fill_height=True
        )
        
        def update_qwen_model(new_model):
            return gr.load(
                name=new_model,
                src=dashscope_gradio.registry,
                fill_height=True
            )
        
        qwen_model.change(
            fn=update_qwen_model,
            inputs=[qwen_model],
            outputs=[qwen_interface]
        )
        
        gr.Markdown("""
        **Note:** You need a DashScope API key to use these models. Get one at [DashScope](https://dashscope.aliyun.com/).
        
        Models available in two categories:
        - **Proprietary Models**:
          - Qwen Turbo: Fast responses for general tasks
          - Qwen Plus: Balanced performance and quality
          - Qwen Max: Highest quality responses
        - **Open Source Models**:
          - Available in various sizes from 7B to 110B parameters
          - Based on the Qwen 1.5 architecture
        """)
    with gr.Tab("Perplexity"):
        with gr.Row():
            perplexity_model = gr.Dropdown(
                choices=[
                    # Sonar Models (Online)
                    'llama-3.1-sonar-small-128k-online',    # 8B params
                    'llama-3.1-sonar-large-128k-online',    # 70B params
                    'llama-3.1-sonar-huge-128k-online',     # 405B params
                    # Sonar Models (Chat)
                    'llama-3.1-sonar-small-128k-chat',      # 8B params
                    'llama-3.1-sonar-large-128k-chat',      # 70B params
                    # Open Source Models
                    'llama-3.1-8b-instruct',                # 8B params
                    'llama-3.1-70b-instruct'                # 70B params
                ],
                value='llama-3.1-sonar-large-128k-online',  # Default to large online model
                label="Select Perplexity Model",
                interactive=True
            )
        
        perplexity_interface = gr.load(
            name=perplexity_model.value,
            src=perplexity_gradio.registry,
            accept_token=True,
            fill_height=True
        )
        
        def update_perplexity_model(new_model):
            return gr.load(
                name=new_model,
                src=perplexity_gradio.registry,
                accept_token=True,
                fill_height=True
            )
        
        perplexity_model.change(
            fn=update_perplexity_model,
            inputs=[perplexity_model],
            outputs=[perplexity_interface]
        )
        
        gr.Markdown("""
        **Note:** Models are grouped into three categories:
        - **Sonar Online Models**: Include search capabilities (beta access required)
        - **Sonar Chat Models**: Standard chat models
        - **Open Source Models**: Based on Hugging Face implementations
        
        For access to Online LLMs features, please fill out the [beta access form](https://perplexity.typeform.com/apiaccessform?typeform-source=docs.perplexity.ai).
        """)
    with gr.Tab("DeepSeek-V2.5"):
        gr.load(
            name='deepseek-ai/DeepSeek-V2.5',
            src=hyperbolic_gradio.registry,
            fill_height=True
        )
        gr.Markdown("""
        <div>
            <img src="https://storage.googleapis.com/public-arena-asset/hyperbolic_logo.png" alt="Hyperbolic Logo" style="height: 50px; margin-right: 10px;">
        </div>    
                    
        **Note:** This model is supported by Hyperbolic. Build your AI apps at [Hyperbolic](https://app.hyperbolic.xyz/).
        """)
    with gr.Tab("Mistral"):
        with gr.Row():
            mistral_model = gr.Dropdown(
                choices=[
                    # Premier Models
                    'mistral-large-latest',          # Top-tier reasoning model (128k)
                    'pixtral-large-latest',          # Frontier-class multimodal model (128k)
                    'ministral-3b-latest',           # Best edge model (128k)
                    'ministral-8b-latest',           # High performance edge model (128k)
                    'mistral-small-latest',          # Enterprise-grade small model (32k)
                    'codestral-latest',              # Code-specialized model (32k)
                    'mistral-embed',                 # Semantic text representation (8k)
                    'mistral-moderation-latest',     # Content moderation service (8k)
                    # Free Models
                    'pixtral-12b-2409',             # Free 12B multimodal model (128k)
                    'open-mistral-nemo',             # Multilingual model (128k)
                    'open-codestral-mamba'           # Mamba-based coding model (256k)
                ],
                value='pixtral-large-latest',    # pixtral for vision
                label="Select Mistral Model",
                interactive=True
            )
            
        mistral_interface = gr.load(
            name=mistral_model.value,
            src=mistral_gradio.registry,
            fill_height=True
        )
        
        def update_mistral_model(new_model):
            return gr.load(
                name=new_model,
                src=mistral_gradio.registry,
                fill_height=True
            )
        
        mistral_model.change(
            fn=update_mistral_model,
            inputs=[mistral_model],
            outputs=[mistral_interface],
        )
        
        gr.Markdown("""
        **Note:** You need a Mistral API key to use these models. Get one at [Mistral AI Platform](https://console.mistral.ai/).
        
        Models are grouped into two categories:
        - **Premier Models**: Require a paid API key
        - **Free Models**: Available with free API keys
        
        Each model has different context window sizes (from 8k to 256k tokens) and specialized capabilities.
        """)
    with gr.Tab("Fireworks"):
        with gr.Row():
            fireworks_model = gr.Dropdown(
                choices=[
                    'f1-preview',              # Latest F1 preview model
                    'f1-mini-preview',         # Smaller, faster model
                ],
                value='f1-preview',            # Default to preview model
                label="Select Fireworks Model",
                interactive=True
            )
            
        fireworks_interface = gr.load(
            name=fireworks_model.value,
            src=fireworks_gradio.registry,
            fill_height=True
        )
        
        def update_fireworks_model(new_model):
            return gr.load(
                name=new_model,
                src=fireworks_gradio.registry,
                fill_height=True
            )
        
        fireworks_model.change(
            fn=update_fireworks_model,
            inputs=[fireworks_model],
            outputs=[fireworks_interface]
        )
        
        gr.Markdown("""
        **Note:** You need a Fireworks AI API key to use these models. Get one at [Fireworks AI](https://app.fireworks.ai/).
        """)
    with gr.Tab("Cerebras"):
        with gr.Row():
            cerebras_model = gr.Dropdown(
                choices=[
                    'llama3.1-8b',
                    'llama3.1-70b',
                    'llama3.1-405b'
                ],
                value='llama3.1-70b',  # Default to mid-size model
                label="Select Cerebras Model",
                interactive=True
            )
            
        cerebras_interface = gr.load(
            name=cerebras_model.value,
            src=cerebras_gradio.registry,
            accept_token=True,  # Added token acceptance
            fill_height=True
        )
        
        def update_cerebras_model(new_model):
            return gr.load(
                name=new_model,
                src=cerebras_gradio.registry,
                accept_token=True,  # Added token acceptance
                fill_height=True
            )
        
        cerebras_model.change(
            fn=update_cerebras_model,
            inputs=[cerebras_model],
            outputs=[cerebras_interface]
        )
    with gr.Tab("Together"):
        with gr.Row():
            together_model = gr.Dropdown(
                choices=[
                    # Vision Models
                    'meta-llama/Llama-Vision-Free',                     # 131k context (Free)
                    'meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo',  # 131k context
                    'meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo',  # 131k context
                    # Meta Llama 3.x Models
                    'meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo',      # 131k context
                    'meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo',     # 131k context
                    'meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo',    # 130k context
                    'meta-llama/Meta-Llama-3-8B-Instruct-Turbo',        # 8k context
                    'meta-llama/Meta-Llama-3-70B-Instruct-Turbo',       # 8k context
                    'meta-llama/Llama-3.2-3B-Instruct-Turbo',          # 131k context
                    'meta-llama/Meta-Llama-3-8B-Instruct-Lite',         # 8k context, INT4
                    'meta-llama/Meta-Llama-3-70B-Instruct-Lite',        # 8k context, INT4
                    'meta-llama/Llama-3-8b-chat-hf',                    # 8k context
                    'meta-llama/Llama-3-70b-chat-hf',                   # 8k context
                    # Other Large Models
                    'nvidia/Llama-3.1-Nemotron-70B-Instruct-HF',        # 32k context
                    'Qwen/Qwen2.5-Coder-32B-Instruct',                  # 32k context
                    'microsoft/WizardLM-2-8x22B',                       # 65k context
                    'google/gemma-2-27b-it',                            # 8k context
                    'google/gemma-2-9b-it',                             # 8k context
                    'databricks/dbrx-instruct',                         # 32k context
                    # Mixtral Models
                    'mistralai/Mixtral-8x7B-Instruct-v0.1',            # 32k context
                    'mistralai/Mixtral-8x22B-Instruct-v0.1',           # 65k context
                    # Qwen Models
                    'Qwen/Qwen2.5-7B-Instruct-Turbo',                  # 32k context
                    'Qwen/Qwen2.5-72B-Instruct-Turbo',                 # 32k context
                    'Qwen/Qwen2-72B-Instruct',                         # 32k context
                    # Other Models
                    'deepseek-ai/deepseek-llm-67b-chat',               # 4k context
                    'google/gemma-2b-it',                              # 8k context
                    'Gryphe/MythoMax-L2-13b',                          # 4k context
                    'meta-llama/Llama-2-13b-chat-hf',                  # 4k context
                    'mistralai/Mistral-7B-Instruct-v0.1',              # 8k context
                    'mistralai/Mistral-7B-Instruct-v0.2',              # 32k context
                    'mistralai/Mistral-7B-Instruct-v0.3',              # 32k context
                    'NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO',     # 32k context
                    'togethercomputer/StripedHyena-Nous-7B',           # 32k context
                    'upstage/SOLAR-10.7B-Instruct-v1.0'                # 4k context
                ],
                value='meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo',  # Default to recommended vision model
                label="Select Together Model",
                interactive=True
            )
            
        together_interface = gr.load(
            name=together_model.value,
            src=together_gradio.registry,
            multimodal=True,
            fill_height=True
        )
        
        def update_together_model(new_model):
            return gr.load(
                name=new_model,
                src=together_gradio.registry,
                multimodal=True,
                fill_height=True
            )
        
        together_model.change(
            fn=update_together_model,
            inputs=[together_model],
            outputs=[together_interface]
        )
        
        gr.Markdown("""
        **Note:** You need a Together AI API key to use these models. Get one at [Together AI](https://www.together.ai/).
        """)
    with gr.Tab("NVIDIA"):
        with gr.Row():
            nvidia_model = gr.Dropdown(
                choices=[
                    # NVIDIA Models
                    'nvidia/llama3-chatqa-1.5-70b',
                    'nvidia/llama3-chatqa-1.5-8b',
                    'nvidia-nemotron-4-340b-instruct',
                    # Meta Models
                    'meta/llama-3.1-70b-instruct',    # Added Llama 3.1 70B
                    'meta/codellama-70b',
                    'meta/llama2-70b',
                    'meta/llama3-8b',
                    'meta/llama3-70b',
                    # Mistral Models
                    'mistralai/codestral-22b-instruct-v0.1',
                    'mistralai/mathstral-7b-v0.1',
                    'mistralai/mistral-large-2-instruct',
                    'mistralai/mistral-7b-instruct',
                    'mistralai/mistral-7b-instruct-v0.3',
                    'mistralai/mixtral-8x7b-instruct',
                    'mistralai/mixtral-8x22b-instruct',
                    'mistralai/mistral-large',
                    # Google Models
                    'google/gemma-2b',
                    'google/gemma-7b',
                    'google/gemma-2-2b-it',
                    'google/gemma-2-9b-it',
                    'google/gemma-2-27b-it',
                    'google/codegemma-1.1-7b',
                    'google/codegemma-7b',
                    'google/recurrentgemma-2b',
                    'google/shieldgemma-9b',
                    # Microsoft Phi-3 Models
                    'microsoft/phi-3-medium-128k-instruct',
                    'microsoft/phi-3-medium-4k-instruct',
                    'microsoft/phi-3-mini-128k-instruct',
                    'microsoft/phi-3-mini-4k-instruct',
                    'microsoft/phi-3-small-128k-instruct',
                    'microsoft/phi-3-small-8k-instruct',
                    # Other Models
                    'qwen/qwen2-7b-instruct',
                    'databricks/dbrx-instruct',
                    'deepseek-ai/deepseek-coder-6.7b-instruct',
                    'upstage/solar-10.7b-instruct',
                    'snowflake/arctic'
                ],
                value='meta/llama-3.1-70b-instruct',  # Changed default to Llama 3.1 70B
                label="Select NVIDIA Model",
                interactive=True
            )
            
        nvidia_interface = gr.load(
            name=nvidia_model.value,
            src=nvidia_gradio.registry,
            accept_token=True,
            fill_height=True
        )
        
        def update_nvidia_model(new_model):
            return gr.load(
                name=new_model,
                src=nvidia_gradio.registry,
                accept_token=True,
                fill_height=True
            )
        
        nvidia_model.change(
            fn=update_nvidia_model,
            inputs=[nvidia_model],
            outputs=[nvidia_interface]
        )
        
        gr.Markdown("""
        **Note:** You need an NVIDIA AI Foundation API key to use these models. Get one at [NVIDIA AI Foundation](https://www.nvidia.com/en-us/ai-data-science/foundation-models/).
        
        Models are organized by provider:
        - **NVIDIA**: Native models including Llama3-ChatQA and Nemotron
        - **Meta**: Llama family models
        - **Mistral**: Various Mistral and Mixtral models
        - **Google**: Gemma family models
        - **Microsoft**: Phi-3 series
        - And other providers including Qwen, Databricks, DeepSeek, etc.
        """)

demo.launch(ssr_mode=False)