|
### GPU |
|
|
|
GPU via CUDA is supported via Hugging Face type models and LLaMa.cpp models. |
|
|
|
#### GPU (CUDA) |
|
|
|
For help installing cuda toolkit, see [CUDA Toolkit](INSTALL.md#installing-cuda-toolkit) |
|
|
|
```bash |
|
git clone https://github.com/h2oai/h2ogpt.git |
|
cd h2ogpt |
|
pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cu117 |
|
python generate.py --base_model=h2oai/h2ogpt-oig-oasst1-512-6_9b --load_8bit=True |
|
``` |
|
Then point browser at http://0.0.0.0:7860 (linux) or http://localhost:7860 (windows/mac) or the public live URL printed by the server (disable shared link with `--share=False`). For 4-bit or 8-bit support, older GPUs may require older bitsandbytes installed as `pip uninstall bitsandbytes -y ; pip install bitsandbytes==0.38.1`. For production uses, we recommend at least the 12B model, ran as: |
|
``` |
|
python generate.py --base_model=h2oai/h2ogpt-oasst1-512-12b --load_8bit=True |
|
``` |
|
and one can use `--h2ocolors=False` to get soft blue-gray colors instead of H2O.ai colors. [Here](FAQ.md#what-envs-can-i-pass-to-control-h2ogpt) is a list of environment variables that can control some things in `generate.py`. |
|
|
|
Note if you download the model yourself and point `--base_model` to that location, you'll need to specify the prompt_type as well by running: |
|
``` |
|
python generate.py --base_model=<user path> --load_8bit=True --prompt_type=human_bot |
|
``` |
|
for some user path `<user path>` and the `prompt_type` must match the model or a new version created in `prompter.py` or added in UI/CLI via `prompt_dict`. |
|
|
|
For quickly using a private document collection for Q/A, place documents (PDFs, text, etc.) into a folder called `user_path` and run |
|
```bash |
|
pip install -r reqs_optional/requirements_optional_langchain.txt |
|
python -m nltk.downloader all # for supporting unstructured package |
|
python generate.py --base_model=h2oai/h2ogpt-oig-oasst1-512-6_9b --load_8bit=True --langchain_mode=UserData --user_path=user_path |
|
``` |
|
For more ways to ingest on CLI and control see [LangChain Readme](README_LangChain.md). For example, for improved pdf handling via pymupdf (GPL) and support for docx, ppt, OCR, and ArXiV run: |
|
```bash |
|
sudo apt-get install -y libmagic-dev poppler-utils tesseract-ocr tesseract-ocr libreoffice |
|
pip install -r reqs_optional/requirements_optional_langchain.gpllike.txt |
|
``` |
|
|
|
For 4-bit support, the latest dev versions of transformers, accelerate, and peft are required, which can be installed by running: |
|
```bash |
|
pip uninstall peft transformers accelerate -y |
|
pip install -r reqs_optional/requirements_optional_4bit.txt |
|
``` |
|
where uninstall is required in case, e.g., peft was installed from GitHub previously. Then when running generate pass `--load_4bit=True`, which is only supported for certain [architectures](https://github.com/huggingface/peft#models-support-matrix) like GPT-NeoX-20B, GPT-J, LLaMa, etc. |
|
|
|
Any other instruct-tuned base models can be used, including non-h2oGPT ones. [Larger models require more GPU memory](FAQ.md#larger-models-require-more-gpu-memory). |
|
|
|
#### GPU with LLaMa |
|
|
|
* Install langchain, and GPT4All, and python LLaMa dependencies: |
|
```bash |
|
pip install -r reqs_optional/requirements_optional_langchain.txt |
|
pip install -r reqs_optional/requirements_optional_gpt4all.txt |
|
``` |
|
then compile llama-cpp-python with CUDA support: |
|
```bash |
|
conda install -c "nvidia/label/cuda-12.1.1" cuda-toolkit # maybe optional |
|
pip uninstall -y llama-cpp-python |
|
export LLAMA_CUBLAS=1 |
|
export CMAKE_ARGS=-DLLAMA_CUBLAS=on |
|
export FORCE_CMAKE=1 |
|
export CUDA_HOME=$HOME/miniconda3/envs/h2ogpt |
|
CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 pip install llama-cpp-python==0.1.68 --no-cache-dir --verbose |
|
``` |
|
and uncomment `# n_gpu_layers=20` in `.env_gpt4all`, one can try also `40` instead of `20`. If one sees `/usr/bin/nvcc` mentioned in errors, that file needs to be removed as would likely conflict with version installed for conda. Then run: |
|
```bash |
|
python generate.py --base_model='llama' --prompt_type=wizard2 --score_model=None --langchain_mode='UserData' --user_path=user_path |
|
``` |
|
when loading you should see something like: |
|
```text |
|
Using Model llama |
|
Prep: persist_directory=db_dir_UserData exists, user_path=user_path passed, adding any changed or new documents |
|
load INSTRUCTOR_Transformer |
|
max_seq_length 512 |
|
0it [00:00, ?it/s] |
|
0it [00:00, ?it/s] |
|
Loaded 0 sources for potentially adding to UserData |
|
ggml_init_cublas: found 2 CUDA devices: |
|
Device 0: NVIDIA GeForce RTX 3090 Ti |
|
Device 1: NVIDIA GeForce RTX 2080 |
|
llama.cpp: loading model from WizardLM-7B-uncensored.ggmlv3.q8_0.bin |
|
llama_model_load_internal: format = ggjt v3 (latest) |
|
llama_model_load_internal: n_vocab = 32001 |
|
llama_model_load_internal: n_ctx = 1792 |
|
llama_model_load_internal: n_embd = 4096 |
|
llama_model_load_internal: n_mult = 256 |
|
llama_model_load_internal: n_head = 32 |
|
llama_model_load_internal: n_layer = 32 |
|
llama_model_load_internal: n_rot = 128 |
|
llama_model_load_internal: ftype = 7 (mostly Q8_0) |
|
llama_model_load_internal: n_ff = 11008 |
|
llama_model_load_internal: model size = 7B |
|
llama_model_load_internal: ggml ctx size = 0.08 MB |
|
llama_model_load_internal: using CUDA for GPU acceleration |
|
ggml_cuda_set_main_device: using device 0 (NVIDIA GeForce RTX 3090 Ti) as main device |
|
llama_model_load_internal: mem required = 4518.85 MB (+ 1026.00 MB per state) |
|
llama_model_load_internal: allocating batch_size x (512 kB + n_ctx x 128 B) = 368 MB VRAM for the scratch buffer |
|
llama_model_load_internal: offloading 20 repeating layers to GPU |
|
llama_model_load_internal: offloaded 20/35 layers to GPU |
|
llama_model_load_internal: total VRAM used: 4470 MB |
|
llama_new_context_with_model: kv self size = 896.00 MB |
|
AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | VSX = 0 | |
|
Model {'base_model': 'llama', 'tokenizer_base_model': '', 'lora_weights': '', 'inference_server': '', 'prompt_type': 'wizard2', 'prompt_dict': {'promptA': 'Below is an instruction that describes a task. Write a response that appropriately completes the request.', 'promptB': 'Below is an instruction that describes a task. Write a response that appropriately completes the request.', 'PreInstruct': '\n### Instruction:\n', 'PreInput': None, 'PreResponse': '\n### Response:\n', 'terminate_response': ['\n### Response:\n'], 'chat_sep': '\n', 'chat_turn_sep': '\n', 'humanstr': '\n### Instruction:\n', 'botstr': '\n### Response:\n', 'generates_leading_space': False}} |
|
Running on local URL: http://0.0.0.0:7860 |
|
Running on public URL: https://1ccb24d03273a3d085.gradio.live |
|
``` |
|
and GPU usage when using. Note that once `llama-cpp-python` is compiled to support CUDA, it no longer works for CPU mode, |
|
so one would have to reinstall it without the above options to recovers CPU mode or have a separate h2oGPT env for CPU mode. |
|
|