adaface-animate / adaface /adaface_wrapper.py
adaface-neurips
Allow dynamically changing base model style type, support anime style, upgrade adaface model
a29cf91
raw
history blame
21.5 kB
import torch
import torch.nn as nn
from transformers import CLIPTextModel
from diffusers import (
StableDiffusionPipeline,
StableDiffusionImg2ImgPipeline,
StableDiffusion3Pipeline,
#FluxPipeline,
DDIMScheduler,
AutoencoderKL,
)
from diffusers.loaders.single_file_utils import convert_ldm_unet_checkpoint
from adaface.util import UNetEnsemble
from adaface.face_id_to_ada_prompt import create_id2ada_prompt_encoder
from safetensors.torch import load_file as safetensors_load_file
import re, os
import numpy as np
class AdaFaceWrapper(nn.Module):
def __init__(self, pipeline_name, base_model_path, adaface_encoder_types,
adaface_ckpt_paths, adaface_encoder_cfg_scales=None,
enabled_encoders=None,
subject_string='z', num_inference_steps=50, negative_prompt=None,
use_840k_vae=False, use_ds_text_encoder=False,
main_unet_filepath=None, unet_types=None, extra_unet_dirpaths=None, unet_weights=None,
device='cuda', is_training=False):
'''
pipeline_name: "text2img", "img2img", "text2img3", "flux", or None.
If None, it's used only as a face encoder, and the unet and vae are
removed from the pipeline to release RAM.
'''
super().__init__()
self.pipeline_name = pipeline_name
self.base_model_path = base_model_path
self.adaface_encoder_types = adaface_encoder_types
self.adaface_ckpt_paths = adaface_ckpt_paths
self.adaface_encoder_cfg_scales = adaface_encoder_cfg_scales
self.enabled_encoders = enabled_encoders
self.subject_string = subject_string
self.num_inference_steps = num_inference_steps
self.use_840k_vae = use_840k_vae
self.use_ds_text_encoder = use_ds_text_encoder
self.main_unet_filepath = main_unet_filepath
self.unet_types = unet_types
self.extra_unet_dirpaths = extra_unet_dirpaths
self.unet_weights = unet_weights
self.device = device
self.is_training = is_training
if negative_prompt is None:
self.negative_prompt = \
"flaws in the eyes, flaws in the face, lowres, non-HDRi, low quality, worst quality, artifacts, noise, text, watermark, glitch, " \
"mutated, ugly, disfigured, hands, partially rendered objects, partially rendered eyes, deformed eyeballs, cross-eyed, blurry, " \
"mutation, duplicate, out of frame, cropped, mutilated, bad anatomy, deformed, bad proportions, " \
"nude, naked, nsfw, topless, bare breasts"
else:
self.negative_prompt = negative_prompt
self.initialize_pipeline()
# During inference, we never use static image suffix embeddings.
# So num_id_vecs is the length of the returned adaface embeddings for each encoder.
self.encoders_num_id_vecs = self.id2ada_prompt_encoder.encoders_num_id_vecs
self.extend_tokenizer_and_text_encoder()
def initialize_pipeline(self):
self.id2ada_prompt_encoder = create_id2ada_prompt_encoder(self.adaface_encoder_types,
self.adaface_ckpt_paths,
self.adaface_encoder_cfg_scales,
self.enabled_encoders)
self.id2ada_prompt_encoder.to(self.device)
print(f"adaface_encoder_cfg_scales: {self.adaface_encoder_cfg_scales}")
if self.use_840k_vae:
# The 840000-step vae model is slightly better in face details than the original vae model.
# https://huggingface.co/stabilityai/sd-vae-ft-mse-original
vae = AutoencoderKL.from_single_file("models/diffusers/sd-vae-ft-mse-original/vae-ft-mse-840000-ema-pruned.ckpt",
torch_dtype=torch.float16)
else:
vae = None
if self.use_ds_text_encoder:
# The dreamshaper v7 finetuned text encoder follows the prompt slightly better than the original text encoder.
# https://huggingface.co/Lykon/DreamShaper/tree/main/text_encoder
text_encoder = CLIPTextModel.from_pretrained("models/diffusers/ds_text_encoder",
torch_dtype=torch.float16)
else:
text_encoder = None
remove_unet = False
if self.pipeline_name == "img2img":
PipelineClass = StableDiffusionImg2ImgPipeline
elif self.pipeline_name == "text2img":
PipelineClass = StableDiffusionPipeline
elif self.pipeline_name == "text2img3":
PipelineClass = StableDiffusion3Pipeline
#elif self.pipeline_name == "flux":
# PipelineClass = FluxPipeline
# pipeline_name is None means only use this instance to generate adaface embeddings, not to generate images.
elif self.pipeline_name is None:
PipelineClass = StableDiffusionPipeline
remove_unet = True
else:
raise ValueError(f"Unknown pipeline name: {self.pipeline_name}")
if self.base_model_path is None:
base_model_path_dict = {
'text2img': 'models/sd15-dste8-vae.safetensors',
'text2img3': 'stabilityai/stable-diffusion-3-medium-diffusers',
'flux': 'black-forest-labs/FLUX.1-schnell',
}
self.base_model_path = base_model_path_dict[self.pipeline_name]
if os.path.isfile(self.base_model_path):
pipeline = PipelineClass.from_single_file(
self.base_model_path,
torch_dtype=torch.float16
)
else:
pipeline = PipelineClass.from_pretrained(
self.base_model_path,
torch_dtype=torch.float16,
safety_checker=None
)
if self.main_unet_filepath is not None:
print(f"Replacing the UNet with the UNet from {self.main_unet_filepath}.")
ret = pipeline.unet.load_state_dict(self.load_unet_from_file(self.main_unet_filepath, device='cpu'))
if len(ret.missing_keys) > 0:
print(f"Missing keys: {ret.missing_keys}")
if len(ret.unexpected_keys) > 0:
print(f"Unexpected keys: {ret.unexpected_keys}")
if (self.unet_types is not None and len(self.unet_types) > 0) \
or (self.extra_unet_dirpaths is not None and len(self.extra_unet_dirpaths) > 0):
unet_ensemble = UNetEnsemble([pipeline.unet], self.unet_types, self.extra_unet_dirpaths, self.unet_weights,
device=self.device, torch_dtype=torch.float16)
pipeline.unet = unet_ensemble
print(f"Loaded pipeline from {self.base_model_path}.")
if self.use_840k_vae:
pipeline.vae = vae
print("Replaced the VAE with the 840k-step VAE.")
if self.use_ds_text_encoder:
pipeline.text_encoder = text_encoder
print("Replaced the text encoder with the DreamShaper text encoder.")
if remove_unet:
# Remove unet and vae to release RAM. Only keep tokenizer and text_encoder.
pipeline.unet = None
pipeline.vae = None
print("Removed UNet and VAE from the pipeline.")
if self.pipeline_name not in ["text2img3", "flux"]:
noise_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
pipeline.scheduler = noise_scheduler
# Otherwise, pipeline.scheduler == FlowMatchEulerDiscreteScheduler
self.pipeline = pipeline.to(self.device)
def load_unet_from_file(self, unet_path, device=None):
if os.path.isfile(unet_path):
if unet_path.endswith(".safetensors"):
unet_state_dict = safetensors_load_file(unet_path, device=device)
else:
unet_state_dict = torch.load(unet_path, map_location=device)
key0 = list(unet_state_dict.keys())[0]
if key0.startswith("model.diffusion_model"):
key_prefix = ""
is_ldm_unet = True
elif key0.startswith("diffusion_model"):
key_prefix = "model."
is_ldm_unet = True
else:
is_ldm_unet = False
if is_ldm_unet:
unet_state_dict2 = {}
for key, value in unet_state_dict.items():
key2 = key_prefix + key
unet_state_dict2[key2] = value
print(f"LDM UNet detected. Convert to diffusers")
ldm_unet_config = { 'layers_per_block': 2 }
unet_state_dict = convert_ldm_unet_checkpoint(unet_state_dict2, ldm_unet_config)
else:
raise ValueError(f"UNet path {unet_path} is not a file.")
return unet_state_dict
def extend_tokenizer_and_text_encoder(self):
if np.sum(self.encoders_num_id_vecs) < 1:
raise ValueError(f"encoders_num_id_vecs has to be larger or equal to 1, but is {self.encoders_num_id_vecs}")
tokenizer = self.pipeline.tokenizer
# If adaface_encoder_types is ["arc2face", "consistentID"], then total_num_id_vecs = 20.
# We add z_0_0, z_0_1, z_0_2, ..., z_0_15, z_1_0, z_1_1, z_1_2, z_1_3 to the tokenizer.
self.all_placeholder_tokens = []
self.placeholder_tokens_strs = []
for i in range(len(self.adaface_encoder_types)):
placeholder_tokens = []
for j in range(self.encoders_num_id_vecs[i]):
placeholder_tokens.append(f"{self.subject_string}_{i}_{j}")
placeholder_tokens_str = " ".join(placeholder_tokens)
self.all_placeholder_tokens.extend(placeholder_tokens)
self.placeholder_tokens_strs.append(placeholder_tokens_str)
self.all_placeholder_tokens_str = " ".join(self.placeholder_tokens_strs)
# Add the new tokens to the tokenizer.
num_added_tokens = tokenizer.add_tokens(self.all_placeholder_tokens)
if num_added_tokens != np.sum(self.encoders_num_id_vecs):
raise ValueError(
f"The tokenizer already contains some of the tokens {self.all_placeholder_tokens_str}. Please pass a different"
" `subject_string` that is not already in the tokenizer.")
print(f"Added {num_added_tokens} tokens ({self.all_placeholder_tokens_str}) to the tokenizer.")
# placeholder_token_ids: [49408, ..., 49423].
self.placeholder_token_ids = tokenizer.convert_tokens_to_ids(self.all_placeholder_tokens)
#print("New tokens:", self.placeholder_token_ids)
# Resize the token embeddings as we are adding new special tokens to the tokenizer
old_weight_shape = self.pipeline.text_encoder.get_input_embeddings().weight.shape
self.pipeline.text_encoder.resize_token_embeddings(len(tokenizer))
new_weight = self.pipeline.text_encoder.get_input_embeddings().weight
print(f"Resized text encoder token embeddings from {old_weight_shape} to {new_weight.shape} on {new_weight.device}.")
# Extend pipeline.text_encoder with the adaface subject emeddings.
# subj_embs: [16, 768].
def update_text_encoder_subj_embeddings(self, subj_embs):
# Initialise the newly added placeholder token with the embeddings of the initializer token
# token_embeds: [49412, 768]
token_embeds = self.pipeline.text_encoder.get_input_embeddings().weight.data
with torch.no_grad():
for i, token_id in enumerate(self.placeholder_token_ids):
token_embeds[token_id] = subj_embs[i]
print(f"Updated {len(self.placeholder_token_ids)} tokens ({self.all_placeholder_tokens_str}) in the text encoder.")
def update_prompt(self, prompt, placeholder_tokens_pos='postpend'):
if prompt is None:
prompt = ""
# Delete the subject_string from the prompt.
re.sub(r'\b(a|an|the)\s+' + self.subject_string + r'\b,?', "", prompt)
re.sub(r'\b' + self.subject_string + r'\b,?', "", prompt)
# Prevously, arc2face ada prompts work better if they are prepended to the prompt,
# and consistentID ada prompts work better if they are appended to the prompt.
# When we do joint training, seems both work better if they are appended to the prompt.
# Therefore we simply appended all placeholder_tokens_str's to the prompt.
# NOTE: Prepending them hurts compositional prompts.
if placeholder_tokens_pos == 'prepend':
prompt = self.all_placeholder_tokens_str + " " + prompt
elif placeholder_tokens_pos == 'postpend':
prompt = prompt + " " + self.all_placeholder_tokens_str
return prompt
# avg_at_stage: 'id_emb', 'img_prompt_emb', or None.
# avg_at_stage == ada_prompt_emb usually produces the worst results.
# id_emb is slightly better than img_prompt_emb, but sometimes img_prompt_emb is better.
def prepare_adaface_embeddings(self, image_paths, face_id_embs=None,
avg_at_stage='id_emb', # id_emb, img_prompt_emb, ada_prompt_emb, or None.
perturb_at_stage=None, # id_emb, img_prompt_emb, or None.
perturb_std=0, update_text_encoder=True):
all_adaface_subj_embs = \
self.id2ada_prompt_encoder.generate_adaface_embeddings(\
image_paths, face_id_embs=face_id_embs,
img_prompt_embs=None,
avg_at_stage=avg_at_stage,
perturb_at_stage=perturb_at_stage,
perturb_std=perturb_std,
enable_static_img_suffix_embs=False)
if all_adaface_subj_embs is None:
return None
# [1, 1, 16, 768] -> [16, 768]
all_adaface_subj_embs = all_adaface_subj_embs.squeeze(0).squeeze(0)
if update_text_encoder:
self.update_text_encoder_subj_embeddings(all_adaface_subj_embs)
return all_adaface_subj_embs
def encode_prompt(self, prompt, negative_prompt=None,
placeholder_tokens_pos='postpend',
device=None, verbose=False):
if negative_prompt is None:
negative_prompt = self.negative_prompt
if device is None:
device = self.device
prompt = self.update_prompt(prompt, placeholder_tokens_pos=placeholder_tokens_pos)
if verbose:
print(f"Subject prompt: {prompt}")
# For some unknown reason, the text_encoder is still on CPU after self.pipeline.to(self.device).
# So we manually move it to GPU here.
self.pipeline.text_encoder.to(device)
# pooled_prompt_embeds_, negative_pooled_prompt_embeds_ are used by text2img3 and flux.
pooled_prompt_embeds_, negative_pooled_prompt_embeds_ = None, None
# Compatible with older versions of diffusers.
if not hasattr(self.pipeline, "encode_prompt"):
# prompt_embeds_, negative_prompt_embeds_: [77, 768] -> [1, 77, 768].
prompt_embeds_, negative_prompt_embeds_ = \
self.pipeline._encode_prompt(prompt, device=device, num_images_per_prompt=1,
do_classifier_free_guidance=True, negative_prompt=negative_prompt)
prompt_embeds_ = prompt_embeds_.unsqueeze(0)
negative_prompt_embeds_ = negative_prompt_embeds_.unsqueeze(0)
else:
if self.pipeline_name in ["text2img3", "flux"]:
# prompt_embeds_, negative_prompt_embeds_: [1, 333, 4096]
# pooled_prompt_embeds_, negative_pooled_prompt_embeds_: [1, 2048]
# CLIP Text Encoder prompt uses a maximum sequence length of 77.
# T5 Text Encoder prompt uses a maximum sequence length of 256.
# 333 = 256 + 77.
prompt_t5 = prompt + "".join([", "] * 256)
if self.pipeline_name == "text2img3":
prompt_embeds_, negative_prompt_embeds_, \
pooled_prompt_embeds_, negative_pooled_prompt_embeds_ = \
self.pipeline.encode_prompt(prompt, prompt, prompt_t5, device=device,
num_images_per_prompt=1,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt)
elif self.pipeline_name == "flux":
# prompt_embeds_: [1, 512, 4096]
# pooled_prompt_embeds_: [1, 768]
prompt_embeds_, pooled_prompt_embeds_, text_ids = \
self.pipeline.encode_prompt(prompt, prompt_t5, device=device,
num_images_per_prompt=1)
negative_prompt_embeds_ = negative_pooled_prompt_embeds_ = None
else:
breakpoint()
else:
# prompt_embeds_, negative_prompt_embeds_: [1, 77, 768]
prompt_embeds_, negative_prompt_embeds_ = \
self.pipeline.encode_prompt(prompt, device=device,
num_images_per_prompt=1,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt)
return prompt_embeds_, negative_prompt_embeds_, pooled_prompt_embeds_, negative_pooled_prompt_embeds_
# ref_img_strength is used only in the img2img pipeline.
def forward(self, noise, prompt, negative_prompt=None,
placeholder_tokens_pos='postpend',
guidance_scale=6.0, out_image_count=4,
ref_img_strength=0.8, generator=None, verbose=False):
noise = noise.to(device=self.device, dtype=torch.float16)
if negative_prompt is None:
negative_prompt = self.negative_prompt
# prompt_embeds_, negative_prompt_embeds_: [1, 77, 768]
prompt_embeds_, negative_prompt_embeds_, pooled_prompt_embeds_, \
negative_pooled_prompt_embeds_ = \
self.encode_prompt(prompt, negative_prompt,
placeholder_tokens_pos=placeholder_tokens_pos,
device=self.device, verbose=verbose)
# Repeat the prompt embeddings for all images in the batch.
prompt_embeds_ = prompt_embeds_.repeat(out_image_count, 1, 1)
if negative_prompt_embeds_ is not None:
negative_prompt_embeds_ = negative_prompt_embeds_.repeat(out_image_count, 1, 1)
if self.pipeline_name == "text2img3":
pooled_prompt_embeds_ = pooled_prompt_embeds_.repeat(out_image_count, 1)
negative_pooled_prompt_embeds_ = negative_pooled_prompt_embeds_.repeat(out_image_count, 1)
# noise: [BS, 4, 64, 64]
# When the pipeline is text2img, strength is ignored.
images = self.pipeline(prompt_embeds=prompt_embeds_,
negative_prompt_embeds=negative_prompt_embeds_,
pooled_prompt_embeds=pooled_prompt_embeds_,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds_,
num_inference_steps=self.num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
generator=generator).images
elif self.pipeline_name == "flux":
images = self.pipeline(prompt_embeds=prompt_embeds_,
pooled_prompt_embeds=pooled_prompt_embeds_,
num_inference_steps=4,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
generator=generator).images
else:
# When the pipeline is text2img, noise: [BS, 4, 64, 64], and strength is ignored.
# When the pipeline is img2img, noise is an initiali image of [BS, 3, 512, 512],
# whose pixels are normalized to [0, 1].
images = self.pipeline(image=noise,
prompt_embeds=prompt_embeds_,
negative_prompt_embeds=negative_prompt_embeds_,
num_inference_steps=self.num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
strength=ref_img_strength,
generator=generator).images
# images: [BS, 3, 512, 512]
return images