import torch import torch.nn as nn from transformers import CLIPTextModel from diffusers import ( StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, StableDiffusion3Pipeline, #FluxPipeline, DDIMScheduler, AutoencoderKL, ) from diffusers.loaders.single_file_utils import convert_ldm_unet_checkpoint from adaface.util import UNetEnsemble from adaface.face_id_to_ada_prompt import create_id2ada_prompt_encoder from safetensors.torch import load_file as safetensors_load_file import re, os import numpy as np class AdaFaceWrapper(nn.Module): def __init__(self, pipeline_name, base_model_path, adaface_encoder_types, adaface_ckpt_paths, adaface_encoder_cfg_scales=None, enabled_encoders=None, subject_string='z', num_inference_steps=50, negative_prompt=None, use_840k_vae=False, use_ds_text_encoder=False, main_unet_filepath=None, unet_types=None, extra_unet_dirpaths=None, unet_weights=None, device='cuda', is_training=False): ''' pipeline_name: "text2img", "img2img", "text2img3", "flux", or None. If None, it's used only as a face encoder, and the unet and vae are removed from the pipeline to release RAM. ''' super().__init__() self.pipeline_name = pipeline_name self.base_model_path = base_model_path self.adaface_encoder_types = adaface_encoder_types self.adaface_ckpt_paths = adaface_ckpt_paths self.adaface_encoder_cfg_scales = adaface_encoder_cfg_scales self.enabled_encoders = enabled_encoders self.subject_string = subject_string self.num_inference_steps = num_inference_steps self.use_840k_vae = use_840k_vae self.use_ds_text_encoder = use_ds_text_encoder self.main_unet_filepath = main_unet_filepath self.unet_types = unet_types self.extra_unet_dirpaths = extra_unet_dirpaths self.unet_weights = unet_weights self.device = device self.is_training = is_training if negative_prompt is None: self.negative_prompt = \ "flaws in the eyes, flaws in the face, lowres, non-HDRi, low quality, worst quality, artifacts, noise, text, watermark, glitch, " \ "mutated, ugly, disfigured, hands, partially rendered objects, partially rendered eyes, deformed eyeballs, cross-eyed, blurry, " \ "mutation, duplicate, out of frame, cropped, mutilated, bad anatomy, deformed, bad proportions, " \ "nude, naked, nsfw, topless, bare breasts" else: self.negative_prompt = negative_prompt self.initialize_pipeline() # During inference, we never use static image suffix embeddings. # So num_id_vecs is the length of the returned adaface embeddings for each encoder. self.encoders_num_id_vecs = self.id2ada_prompt_encoder.encoders_num_id_vecs self.extend_tokenizer_and_text_encoder() def initialize_pipeline(self): self.id2ada_prompt_encoder = create_id2ada_prompt_encoder(self.adaface_encoder_types, self.adaface_ckpt_paths, self.adaface_encoder_cfg_scales, self.enabled_encoders) self.id2ada_prompt_encoder.to(self.device) print(f"adaface_encoder_cfg_scales: {self.adaface_encoder_cfg_scales}") if self.use_840k_vae: # The 840000-step vae model is slightly better in face details than the original vae model. # https://huggingface.co/stabilityai/sd-vae-ft-mse-original vae = AutoencoderKL.from_single_file("models/diffusers/sd-vae-ft-mse-original/vae-ft-mse-840000-ema-pruned.ckpt", torch_dtype=torch.float16) else: vae = None if self.use_ds_text_encoder: # The dreamshaper v7 finetuned text encoder follows the prompt slightly better than the original text encoder. # https://huggingface.co/Lykon/DreamShaper/tree/main/text_encoder text_encoder = CLIPTextModel.from_pretrained("models/diffusers/ds_text_encoder", torch_dtype=torch.float16) else: text_encoder = None remove_unet = False if self.pipeline_name == "img2img": PipelineClass = StableDiffusionImg2ImgPipeline elif self.pipeline_name == "text2img": PipelineClass = StableDiffusionPipeline elif self.pipeline_name == "text2img3": PipelineClass = StableDiffusion3Pipeline #elif self.pipeline_name == "flux": # PipelineClass = FluxPipeline # pipeline_name is None means only use this instance to generate adaface embeddings, not to generate images. elif self.pipeline_name is None: PipelineClass = StableDiffusionPipeline remove_unet = True else: raise ValueError(f"Unknown pipeline name: {self.pipeline_name}") if self.base_model_path is None: base_model_path_dict = { 'text2img': 'models/sd15-dste8-vae.safetensors', 'text2img3': 'stabilityai/stable-diffusion-3-medium-diffusers', 'flux': 'black-forest-labs/FLUX.1-schnell', } self.base_model_path = base_model_path_dict[self.pipeline_name] if os.path.isfile(self.base_model_path): pipeline = PipelineClass.from_single_file( self.base_model_path, torch_dtype=torch.float16 ) else: pipeline = PipelineClass.from_pretrained( self.base_model_path, torch_dtype=torch.float16, safety_checker=None ) if self.main_unet_filepath is not None: print(f"Replacing the UNet with the UNet from {self.main_unet_filepath}.") ret = pipeline.unet.load_state_dict(self.load_unet_from_file(self.main_unet_filepath, device='cpu')) if len(ret.missing_keys) > 0: print(f"Missing keys: {ret.missing_keys}") if len(ret.unexpected_keys) > 0: print(f"Unexpected keys: {ret.unexpected_keys}") if (self.unet_types is not None and len(self.unet_types) > 0) \ or (self.extra_unet_dirpaths is not None and len(self.extra_unet_dirpaths) > 0): unet_ensemble = UNetEnsemble([pipeline.unet], self.unet_types, self.extra_unet_dirpaths, self.unet_weights, device=self.device, torch_dtype=torch.float16) pipeline.unet = unet_ensemble print(f"Loaded pipeline from {self.base_model_path}.") if self.use_840k_vae: pipeline.vae = vae print("Replaced the VAE with the 840k-step VAE.") if self.use_ds_text_encoder: pipeline.text_encoder = text_encoder print("Replaced the text encoder with the DreamShaper text encoder.") if remove_unet: # Remove unet and vae to release RAM. Only keep tokenizer and text_encoder. pipeline.unet = None pipeline.vae = None print("Removed UNet and VAE from the pipeline.") if self.pipeline_name not in ["text2img3", "flux"]: noise_scheduler = DDIMScheduler( num_train_timesteps=1000, beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) pipeline.scheduler = noise_scheduler # Otherwise, pipeline.scheduler == FlowMatchEulerDiscreteScheduler self.pipeline = pipeline.to(self.device) def load_unet_from_file(self, unet_path, device=None): if os.path.isfile(unet_path): if unet_path.endswith(".safetensors"): unet_state_dict = safetensors_load_file(unet_path, device=device) else: unet_state_dict = torch.load(unet_path, map_location=device) key0 = list(unet_state_dict.keys())[0] if key0.startswith("model.diffusion_model"): key_prefix = "" is_ldm_unet = True elif key0.startswith("diffusion_model"): key_prefix = "model." is_ldm_unet = True else: is_ldm_unet = False if is_ldm_unet: unet_state_dict2 = {} for key, value in unet_state_dict.items(): key2 = key_prefix + key unet_state_dict2[key2] = value print(f"LDM UNet detected. Convert to diffusers") ldm_unet_config = { 'layers_per_block': 2 } unet_state_dict = convert_ldm_unet_checkpoint(unet_state_dict2, ldm_unet_config) else: raise ValueError(f"UNet path {unet_path} is not a file.") return unet_state_dict def extend_tokenizer_and_text_encoder(self): if np.sum(self.encoders_num_id_vecs) < 1: raise ValueError(f"encoders_num_id_vecs has to be larger or equal to 1, but is {self.encoders_num_id_vecs}") tokenizer = self.pipeline.tokenizer # If adaface_encoder_types is ["arc2face", "consistentID"], then total_num_id_vecs = 20. # We add z_0_0, z_0_1, z_0_2, ..., z_0_15, z_1_0, z_1_1, z_1_2, z_1_3 to the tokenizer. self.all_placeholder_tokens = [] self.placeholder_tokens_strs = [] for i in range(len(self.adaface_encoder_types)): placeholder_tokens = [] for j in range(self.encoders_num_id_vecs[i]): placeholder_tokens.append(f"{self.subject_string}_{i}_{j}") placeholder_tokens_str = " ".join(placeholder_tokens) self.all_placeholder_tokens.extend(placeholder_tokens) self.placeholder_tokens_strs.append(placeholder_tokens_str) self.all_placeholder_tokens_str = " ".join(self.placeholder_tokens_strs) # Add the new tokens to the tokenizer. num_added_tokens = tokenizer.add_tokens(self.all_placeholder_tokens) if num_added_tokens != np.sum(self.encoders_num_id_vecs): raise ValueError( f"The tokenizer already contains some of the tokens {self.all_placeholder_tokens_str}. Please pass a different" " `subject_string` that is not already in the tokenizer.") print(f"Added {num_added_tokens} tokens ({self.all_placeholder_tokens_str}) to the tokenizer.") # placeholder_token_ids: [49408, ..., 49423]. self.placeholder_token_ids = tokenizer.convert_tokens_to_ids(self.all_placeholder_tokens) #print("New tokens:", self.placeholder_token_ids) # Resize the token embeddings as we are adding new special tokens to the tokenizer old_weight_shape = self.pipeline.text_encoder.get_input_embeddings().weight.shape self.pipeline.text_encoder.resize_token_embeddings(len(tokenizer)) new_weight = self.pipeline.text_encoder.get_input_embeddings().weight print(f"Resized text encoder token embeddings from {old_weight_shape} to {new_weight.shape} on {new_weight.device}.") # Extend pipeline.text_encoder with the adaface subject emeddings. # subj_embs: [16, 768]. def update_text_encoder_subj_embeddings(self, subj_embs): # Initialise the newly added placeholder token with the embeddings of the initializer token # token_embeds: [49412, 768] token_embeds = self.pipeline.text_encoder.get_input_embeddings().weight.data with torch.no_grad(): for i, token_id in enumerate(self.placeholder_token_ids): token_embeds[token_id] = subj_embs[i] print(f"Updated {len(self.placeholder_token_ids)} tokens ({self.all_placeholder_tokens_str}) in the text encoder.") def update_prompt(self, prompt, placeholder_tokens_pos='postpend'): if prompt is None: prompt = "" # Delete the subject_string from the prompt. re.sub(r'\b(a|an|the)\s+' + self.subject_string + r'\b,?', "", prompt) re.sub(r'\b' + self.subject_string + r'\b,?', "", prompt) # Prevously, arc2face ada prompts work better if they are prepended to the prompt, # and consistentID ada prompts work better if they are appended to the prompt. # When we do joint training, seems both work better if they are appended to the prompt. # Therefore we simply appended all placeholder_tokens_str's to the prompt. # NOTE: Prepending them hurts compositional prompts. if placeholder_tokens_pos == 'prepend': prompt = self.all_placeholder_tokens_str + " " + prompt elif placeholder_tokens_pos == 'postpend': prompt = prompt + " " + self.all_placeholder_tokens_str return prompt # avg_at_stage: 'id_emb', 'img_prompt_emb', or None. # avg_at_stage == ada_prompt_emb usually produces the worst results. # id_emb is slightly better than img_prompt_emb, but sometimes img_prompt_emb is better. def prepare_adaface_embeddings(self, image_paths, face_id_embs=None, avg_at_stage='id_emb', # id_emb, img_prompt_emb, ada_prompt_emb, or None. perturb_at_stage=None, # id_emb, img_prompt_emb, or None. perturb_std=0, update_text_encoder=True): all_adaface_subj_embs = \ self.id2ada_prompt_encoder.generate_adaface_embeddings(\ image_paths, face_id_embs=face_id_embs, img_prompt_embs=None, avg_at_stage=avg_at_stage, perturb_at_stage=perturb_at_stage, perturb_std=perturb_std, enable_static_img_suffix_embs=False) if all_adaface_subj_embs is None: return None # [1, 1, 16, 768] -> [16, 768] all_adaface_subj_embs = all_adaface_subj_embs.squeeze(0).squeeze(0) if update_text_encoder: self.update_text_encoder_subj_embeddings(all_adaface_subj_embs) return all_adaface_subj_embs def encode_prompt(self, prompt, negative_prompt=None, placeholder_tokens_pos='postpend', device=None, verbose=False): if negative_prompt is None: negative_prompt = self.negative_prompt if device is None: device = self.device prompt = self.update_prompt(prompt, placeholder_tokens_pos=placeholder_tokens_pos) if verbose: print(f"Subject prompt: {prompt}") # For some unknown reason, the text_encoder is still on CPU after self.pipeline.to(self.device). # So we manually move it to GPU here. self.pipeline.text_encoder.to(device) # pooled_prompt_embeds_, negative_pooled_prompt_embeds_ are used by text2img3 and flux. pooled_prompt_embeds_, negative_pooled_prompt_embeds_ = None, None # Compatible with older versions of diffusers. if not hasattr(self.pipeline, "encode_prompt"): # prompt_embeds_, negative_prompt_embeds_: [77, 768] -> [1, 77, 768]. prompt_embeds_, negative_prompt_embeds_ = \ self.pipeline._encode_prompt(prompt, device=device, num_images_per_prompt=1, do_classifier_free_guidance=True, negative_prompt=negative_prompt) prompt_embeds_ = prompt_embeds_.unsqueeze(0) negative_prompt_embeds_ = negative_prompt_embeds_.unsqueeze(0) else: if self.pipeline_name in ["text2img3", "flux"]: # prompt_embeds_, negative_prompt_embeds_: [1, 333, 4096] # pooled_prompt_embeds_, negative_pooled_prompt_embeds_: [1, 2048] # CLIP Text Encoder prompt uses a maximum sequence length of 77. # T5 Text Encoder prompt uses a maximum sequence length of 256. # 333 = 256 + 77. prompt_t5 = prompt + "".join([", "] * 256) if self.pipeline_name == "text2img3": prompt_embeds_, negative_prompt_embeds_, \ pooled_prompt_embeds_, negative_pooled_prompt_embeds_ = \ self.pipeline.encode_prompt(prompt, prompt, prompt_t5, device=device, num_images_per_prompt=1, do_classifier_free_guidance=True, negative_prompt=negative_prompt) elif self.pipeline_name == "flux": # prompt_embeds_: [1, 512, 4096] # pooled_prompt_embeds_: [1, 768] prompt_embeds_, pooled_prompt_embeds_, text_ids = \ self.pipeline.encode_prompt(prompt, prompt_t5, device=device, num_images_per_prompt=1) negative_prompt_embeds_ = negative_pooled_prompt_embeds_ = None else: breakpoint() else: # prompt_embeds_, negative_prompt_embeds_: [1, 77, 768] prompt_embeds_, negative_prompt_embeds_ = \ self.pipeline.encode_prompt(prompt, device=device, num_images_per_prompt=1, do_classifier_free_guidance=True, negative_prompt=negative_prompt) return prompt_embeds_, negative_prompt_embeds_, pooled_prompt_embeds_, negative_pooled_prompt_embeds_ # ref_img_strength is used only in the img2img pipeline. def forward(self, noise, prompt, negative_prompt=None, placeholder_tokens_pos='postpend', guidance_scale=6.0, out_image_count=4, ref_img_strength=0.8, generator=None, verbose=False): noise = noise.to(device=self.device, dtype=torch.float16) if negative_prompt is None: negative_prompt = self.negative_prompt # prompt_embeds_, negative_prompt_embeds_: [1, 77, 768] prompt_embeds_, negative_prompt_embeds_, pooled_prompt_embeds_, \ negative_pooled_prompt_embeds_ = \ self.encode_prompt(prompt, negative_prompt, placeholder_tokens_pos=placeholder_tokens_pos, device=self.device, verbose=verbose) # Repeat the prompt embeddings for all images in the batch. prompt_embeds_ = prompt_embeds_.repeat(out_image_count, 1, 1) if negative_prompt_embeds_ is not None: negative_prompt_embeds_ = negative_prompt_embeds_.repeat(out_image_count, 1, 1) if self.pipeline_name == "text2img3": pooled_prompt_embeds_ = pooled_prompt_embeds_.repeat(out_image_count, 1) negative_pooled_prompt_embeds_ = negative_pooled_prompt_embeds_.repeat(out_image_count, 1) # noise: [BS, 4, 64, 64] # When the pipeline is text2img, strength is ignored. images = self.pipeline(prompt_embeds=prompt_embeds_, negative_prompt_embeds=negative_prompt_embeds_, pooled_prompt_embeds=pooled_prompt_embeds_, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds_, num_inference_steps=self.num_inference_steps, guidance_scale=guidance_scale, num_images_per_prompt=1, generator=generator).images elif self.pipeline_name == "flux": images = self.pipeline(prompt_embeds=prompt_embeds_, pooled_prompt_embeds=pooled_prompt_embeds_, num_inference_steps=4, guidance_scale=guidance_scale, num_images_per_prompt=1, generator=generator).images else: # When the pipeline is text2img, noise: [BS, 4, 64, 64], and strength is ignored. # When the pipeline is img2img, noise is an initiali image of [BS, 3, 512, 512], # whose pixels are normalized to [0, 1]. images = self.pipeline(image=noise, prompt_embeds=prompt_embeds_, negative_prompt_embeds=negative_prompt_embeds_, num_inference_steps=self.num_inference_steps, guidance_scale=guidance_scale, num_images_per_prompt=1, strength=ref_img_strength, generator=generator).images # images: [BS, 3, 512, 512] return images