Spaces:
Running
Running
File size: 19,644 Bytes
3fa39ec 02f5e5f 3fa39ec 02f5e5f 3fa39ec 05ae2f5 3fa39ec 05ae2f5 3fa39ec 6e13745 f89dbaa 3fa39ec 3f5d15b 3fa39ec 6e13745 3fa39ec 7b04de8 05ae2f5 3fa39ec 3f5d15b 3fa39ec 3f5d15b 3fa39ec 3f5d15b d6699fb 3fa39ec d6699fb 3fa39ec d6699fb 3f5d15b 3fa39ec 3f5d15b 3fa39ec d6699fb 3fa39ec 3f5d15b 3fa39ec 02f5e5f 3fa39ec 3f5d15b 3fa39ec 3f5d15b 3fa39ec 3f5d15b 3fa39ec d6699fb 3f5d15b d6699fb 3f5d15b d6699fb 3fa39ec 71d1038 f697caa 71d1038 f697caa 71d1038 f697caa 71d1038 f697caa 71d1038 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
import requests
from transformers import pipeline
from sentence_transformers import SentenceTransformer, util
import logging
import ast
import hashlib
from typing import List, Dict, Tuple
import aiohttp
from pydantic import BaseModel, SecretStr
import json
# Enable detailed logging
logging.basicConfig(level=logging.INFO)
# Hugging Face Inference Client
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# Load a pre-trained model for sentence similarity
similarity_model = SentenceTransformer('all-mpnet-base-v2')
class GitHubConfig(BaseModel):
username: str
repository: str
api_token: SecretStr
class GitHubIntegration:
def __init__(self, config: GitHubConfig):
self.config = config
self.headers = {
"Authorization": f"Bearer {self.config.api_token.get_secret_value()}",
"Accept": "application/vnd.github.v3+json"
}
self.url = "https://api.github.com"
async def fetch_issues(self) -> List[Dict]:
cache_key = hashlib.md5(f"{self.config.username}/{self.config.repository}".encode()).hexdigest()
if cached := self._load_cache(cache_key):
return cached
url = f"{self.url}/repos/{self.config.username}/{self.config.repository}/issues"
try:
async with aiohttp.ClientSession() as session:
async with session.get(url, headers=self.headers) as response:
response.raise_for_status()
issues = await response.json()
self._save_cache(cache_key, issues)
return issues
except Exception as e:
logger.error(f"GitHub API error: {str(e)}")
raise
def _load_cache(self, key: str) -> List[Dict] | None:
# Implement your cache loading logic here
# Example: using a file-based cache
cache_file = f"cache_{key}.json"
if os.path.exists(cache_file):
with open(cache_file, "r") as f:
return json.load(f)
return None
def _save_cache(self, key: str, data: List[Dict]):
# Implement your cache saving logic here
# Example: using a file-based cache
cache_file = f"cache_{key}.json"
with open(cache_file, "w") as f:
json.dump(data, f)
### Function to analyze issues and provide solutions
def analyze_issues(issue_text: str, model_name: str, severity: str = None, programming_language: str = None) -> str:
"""
Analyze issues and provide solutions.
Args:
issue_text (str): The issue text.
model_name (str): The model name.
severity (str, optional): The severity of the issue. Defaults to None.
programming_language (str, optional): The programming language. Defaults to None.
Returns:
str: The analyzed issue and solution.
"""
logging.info("Analyzing issue: {} with model: {}".format(issue_text, model_name))
prompt = """Issue: {}
Severity: {}
Programming Language: {}
Please provide a comprehensive resolution in the following format:
## Problem Summary:
(Concise summary of the issue)
## Root Cause Analysis:
(Possible reasons for the issue)
## Solution Options:
1. **Option 1:** (Description)
- Pros: (Advantages)
- Cons: (Disadvantages)
2. **Option 2:** (Description)
- Pros: (Advantages)
- Cons: (Disadvantages)
## Recommended Solution:
(The best solution with justification)
## Implementation Steps:
1. (Step 1)
2. (Step 2)
3. (Step 3)
## Verification Steps:
1. (Step 1)
2. (Step 2)
""".format(issue_text, severity, programming_language)
try:
nlp = pipeline("text-generation", model=model_name, max_length=1000) # Increase max_length
logging.info("Pipeline created with model: {}".format(model_name))
result = nlp(prompt)
logging.info("Model output: {}".format(result))
return result[0]['generated_text']
except Exception as e:
logging.error("Error analyzing issue with model {}: {}".format(model_name, e))
return "Error analyzing issue with model {}: {}".format(model_name, e)
### Function to find related issues
def find_related_issues(issue_text: str, issues: list) -> list:
"""
Find related issues.
Args:
issue_text (str): The issue text.
issues (list): The list of issues.
Returns:
list: The list of related issues.
"""
logging.info("Finding related issues for: {}".format(issue_text))
issue_embedding = similarity_model.encode(issue_text)
related_issues = []
for issue in issues:
title_embedding = similarity_model.encode(issue['title'])
similarity = util.cos_sim(issue_embedding, title_embedding)[0][0]
related_issues.append((issue, similarity))
related_issues = sorted(related_issues, key=lambda x: x[1], reverse=True)
logging.info("Found related issues: {}".format(related_issues))
return related_issues[:3] # Return top 3 most similar issues
### Function to handle chat responsesasync
async def respond(
command: str,
history: List[Tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
github_api_token: str,
github_username: str,
github_repository: str,
selected_model: str,
severity: str,
programming_language: str,
*args
) -> str:
github_api_token_local = github_api_token
issues_local = []
github_client_local = None
messages = [{"role": "system", "content": system_message}]
logging.info("System message: {}".format(system_message))
for user_msg, assistant_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
logging.info("User message: {}".format(user_msg))
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
logging.info("Assistant message: {}".format(assistant_msg))
logging.info("Command received: {}".format(command))
try:
command, *args = command.split(' ', 1)
args = args[0] if args else ''
except ValueError:
yield "❌ Invalid command format. Use /help for instructions"
if command == "/github":
try:
if not args:
if github_client:
yield f"ℹ️ Current GitHub connection: {github_client.config.username}/{github_client.config.repository}"
else:
yield "ℹ️ Not connected to GitHub"
parts = args.split(maxsplit=2) # Allow spaces in token
if len(parts) < 3:
raise ValueError("Format: /github <username> <repo> <token>")
github_client = GitHubIntegration(GitHubConfig(
username=parts[0],
repository=parts[1],
api_token=SecretStr(parts[2])
))
issues = await github_client.fetch_issues() # Fetch issues after successful connection
yield "✅ GitHub configured successfully"
except Exception as e:
github_client = None
yield f"❌ Error: {str(e)}"
elif command == "/help":
help_message = """Available commands:
- `/github <username> <repo> <token>`: Connect to a GitHub repository.
- `/help`: Show this help message.
- `/generate_code [code description]`: Generate code based on the description.
- `/explain_concept [concept]`: Explain a concept.
- `/write_documentation [topic]`: Write documentation for a given topic.
- `/translate_code [code] to [target language]`: Translate code to another language.
- `/analyze [issue number]`: Analyze a GitHub issue.
- `/list_issues`: List all issues in the connected repository.
"""
yield help_message
elif command.isdigit() and issues:
try:
issue_number = int(command) - 1
issue = issues[issue_number]
issue_text = issue['title'] + "\n\n" + issue['body']
resolution = analyze_issues(issue_text, selected_model, severity, programming_language)
related_issues = find_related_issues(issue_text, issues)
related_issue_text = "\n".join(
["- {} (Similarity: {:.2f})".format(issue['title'], similarity) for issue, similarity in related_issues]
)
yield "Resolution for Issue '{}':\n{}\n\nRelated Issues:\n{}".format(issue['title'], resolution, related_issue_text)
except Exception as e:
logging.error("Error analyzing issue: {}".format(e))
yield "Error analyzing issue: {}".format(e)
elif command.startswith("/generate_code"):
code_description = command.replace("/generate_code", "").strip()
if not code_description:
yield "Please provide a description of the code you want to generate."
else:
prompt = "Generate code for the following: {}\nProgramming Language: {}".format(code_description, programming_language)
try:
generated_code = analyze_issues(prompt, selected_model)
code_output = "<pre>{}</pre>".format(generated_code)
yield code_output
except Exception as e:
logging.error("Error generating code: {}".format(e))
yield "Error generating code: {}".format(e)
elif command.startswith("/explain_concept"):
concept = command.replace("/explain_concept", "").strip()
if not concept:
yield "Please provide a concept to explain."
else:
prompt = "Explain the concept of {} in detail.".format(concept)
try:
explanation = analyze_issues(prompt, selected_model)
yield "<pre>{}</pre>".format(explanation)
except Exception as e:
logging.error("Error explaining concept: {}".format(e))
yield "Error explaining concept: {}".format(e)
elif command.startswith("/write_documentation"):
topic = command.replace("/write_documentation", "").strip()
if not topic:
yield "Please provide a topic for documentation."
else:
prompt = "Write documentation for the topic: {}".format(topic)
try:
documentation = analyze_issues(prompt, selected_model)
yield "<pre>{}</pre>".format(documentation)
except Exception as e:
logging.error("Error writing documentation: {}".format(e))
yield "Error writing documentation: {}".format(e)
elif command.startswith("/translate_code"):
try:
code, _, target_language = command.replace("/translate_code", "").strip().partition(" to ")
if not code or not target_language:
yield "Please provide code and target language in the format: `/translate_code [code] to [target language]`"
else:
prompt = f"Translate the following code to {target_language}:\n```\n{code}\n```"
try:
translated_code = analyze_issues(prompt, selected_model)
yield "<pre>{}</pre>".format(translated_code)
except Exception as e:
logging.error("Error translating code: {}".format(e))
yield "Error translating code: {}".format(e)
except Exception as e:
logging.error("Error parsing translate_code command: {}".format(e))
yield "Error parsing translate_code command: {}".format(e)
elif command.startswith("/analyze"):
try:
if not github_client:
yield "❌ You need to connect to a GitHub repository first using `/github <username> <repo> <token>`."
issue_number = int(command.replace("/analyze", "").strip()) - 1
if 0 <= issue_number < len(issues):
issue = issues[issue_number]
issue_text = issue['title'] + "\n\n" + issue['body']
resolution = analyze_issues(issue_text, selected_model, severity, programming_language)
related_issues = find_related_issues(issue_text, issues)
related_issue_text = "\n".join(
["- {} (Similarity: {:.2f})".format(issue['title'], similarity) for issue, similarity in related_issues]
)
yield "Resolution for Issue '{}':\n{}\n\nRelated Issues:\n{}".format(issue['title'], resolution, related_issue_text)
else:
yield "❌ Invalid issue number. Please enter a valid issue number from the list."
except Exception as e:
logging.error("Error analyzing issue: {}".format(e))
yield "Error analyzing issue: {}".format(e)
elif command == "/list_issues":
try:
if not github_client:
yield "❌ You need to connect to a GitHub repository first using `/github <username> <repo> <token>`."
if issues:
issue_list = "\n".join(
[f"- {issue['title']} (Issue #{issue['number']})" for issue in issues]
)
yield f"Issues in {github_client.config.username}/{github_client.config.repository}:\n{issue_list}"
else:
yield "❌ No issues found in the connected repository."
except Exception as e:
logging.error("Error listing issues: {}".format(e))
yield "Error listing issues: {}".format(e)
else:
yield "I'm not sure what you mean. Try using `/help` for a list of available commands."
def create_gradio_interface():
import gradio as gr
import asyncio
def process_command(
command: str,
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
github_token: str,
github_username: str,
github_repo: str,
model: str,
severity: str,
programming_language: str
):
try:
# Convert the synchronous call to async
import asyncio
return asyncio.run(respond(
command=command,
history=[],
system_message=system_message,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
github_api_token=github_token,
github_username=github_username,
github_repository=github_repo,
selected_model=model,
severity=severity,
programming_language=programming_language
))
except Exception as e:
return f"Error: {str(e)}"
def respond(
command: str,
history: list,
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
github_api_token: str,
github_username: str,
github_repository: str,
selected_model: str,
severity: str,
programming_language: str
):
# Simulate a response
return f"Response to '{command}'"
def create_gradio_interface():
with gr.Blocks(title="AI Assistant") as demo:
gr.Markdown("""
# AI Assistant
Ask me anything, or use commands to interact with GitHub.
Available commands:
- `/github <username> <repo> <token>`: Connect to GitHub
- `/help`: Show help
- `/generate_code`: Generate code
- `/analyze`: Analyze issues
- `/list_issues`: List repository issues
""")
with gr.Row():
with gr.Column():
command_input = gr.Textbox(
label="Command",
placeholder="Enter command (e.g., /help)",
lines=2
)
system_message = gr.Textbox(
label="System Message",
value="You are a helpful AI assistant.",
lines=2
)
with gr.Column():
github_token = gr.Textbox(
label="GitHub Token",
type="password",
placeholder="Enter GitHub token"
)
github_username = gr.Textbox(
label="GitHub Username",
placeholder="Enter GitHub username"
)
github_repo = gr.Textbox(
label="GitHub Repository",
placeholder="Enter repository name"
)
with gr.Row():
with gr.Column():
model = gr.Dropdown(
label="Model",
choices=["zephyr-7b-beta"],
value="zephyr-7b-beta"
)
severity = gr.Dropdown(
label="Severity",
choices=["Low", "Medium", "High"],
value="Medium"
)
programming_language = gr.Dropdown(
label="Programming Language",
choices=["Python", "JavaScript", "Java", "C++", "C#"],
value="Python"
)
with gr.Column():
max_tokens = gr.Slider(
label="Max Tokens",
minimum=50,
maximum=1000,
value=500,
step=50
)
temperature = gr.Slider(
label="Temperature",
minimum=0.1,
maximum=1.0,
value=0.7,
step=0.1
)
top_p = gr.Slider(
label="Top-p",
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.1
)
submit_btn = gr.Button("Submit")
response_output = gr.Textbox(
label="Response",
lines=10,
placeholder="Response will appear here..."
)
# Handle submit button click
submit_btn.click(
fn=process_command,
inputs=[
command_input,
system_message,
max_tokens,
temperature,
top_p,
github_token,
github_username,
github_repo,
model,
severity,
programming_language
],
outputs=response_output
)
# Add example commands
gr.Examples(
examples=[
["/help", "You are a helpful AI assistant.", 500, 0.7, 0.9, "", "", "", "zephyr-7b-beta", "Medium", "Python"],
["/github octocat hello-world YOUR_TOKEN", "You are a helpful AI assistant.", 500, 0.7, 0.9, "", "", "", "zephyr-7b-beta", "Medium", "Python"],
["/generate_code Create a FastAPI REST API", "You are a helpful AI assistant.", 500, 0.7, 0.9, "", "", "", "zephyr-7b-beta", "Medium", "Python"],
],
inputs=[
command_input,
system_message,
max_tokens,
temperature,
top_p,
github_token,
github_username,
github_repo,
model,
severity,
programming_language
]
)
return demo
# Launch the interface
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
) |