Spaces:
Runtime error
Runtime error
abhishekrajpurohit
commited on
Upload 9 files
Browse files- config/__pycache__/language_mapping.cpython-312.pyc +0 -0
- config/language_mapping.py +154 -0
- models/__pycache__/tts.cpython-312.pyc +0 -0
- models/tts.py +50 -0
- utils/.DS_Store +0 -0
- utils/__pycache__/audio_utils.cpython-312.pyc +0 -0
- utils/__pycache__/input_validation.cpython-312.pyc +0 -0
- utils/audio_utils.py +31 -0
- utils/input_validation.py +7 -0
config/__pycache__/language_mapping.cpython-312.pyc
ADDED
Binary file (5.62 kB). View file
|
|
config/language_mapping.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
LANGUAGE_VOICE_MAPPING = {
|
2 |
+
"Assamese": ["Amit", "Sita"],
|
3 |
+
"Bengali": ["Arjun", "Aditi"],
|
4 |
+
"Bodo": ["Bikram", "Maya"],
|
5 |
+
"Chhattisgarhi": ["Bhanu", "Champa"],
|
6 |
+
"Dogri": ["Karan"],
|
7 |
+
"English": ["Thoma", "Mary"],
|
8 |
+
"Gujarati": ["Yash", "Neha"],
|
9 |
+
"Hindi": ["Rohit", "Divya"],
|
10 |
+
"Kannada": ["Suresh", "Anu"],
|
11 |
+
"Malayalam": ["Anjali", "Harish"],
|
12 |
+
"Manipuri": ["Laishram", "Ranjit"],
|
13 |
+
"Marathi": ["Sanjay", "Sunita"],
|
14 |
+
"Nepali": ["Amrita"],
|
15 |
+
"Odia": ["Manas", "Debjani"],
|
16 |
+
"Punjabi": ["Divjot", "Gurpreet"],
|
17 |
+
"Sanskrit": ["Aryan"],
|
18 |
+
"Tamil": ["Jaya", "Kavitha"],
|
19 |
+
"Telugu": ["Prakash", "Lalitha"]
|
20 |
+
}
|
21 |
+
|
22 |
+
# Voice characteristics for each speaker
|
23 |
+
VOICE_CHARACTERISTICS = {
|
24 |
+
"Amit": "slightly deep and resonant",
|
25 |
+
"Sita": "clear and well-paced",
|
26 |
+
"Arjun": "moderate and clear",
|
27 |
+
"Aditi": "high-pitched and expressive",
|
28 |
+
"Bikram": "higher-pitched and energetic",
|
29 |
+
"Maya": "balanced and pleasant",
|
30 |
+
"Bhanu": "warm and measured",
|
31 |
+
"Champa": "clear and gentle",
|
32 |
+
"Karan": "high-pitched and engaging",
|
33 |
+
"Thoma": "clear and well-articulated",
|
34 |
+
"Mary": "pleasant and measured",
|
35 |
+
"Yash": "warm and balanced",
|
36 |
+
"Neha": "clear and dynamic",
|
37 |
+
"Rohit": "moderate and expressive",
|
38 |
+
"Divya": "pleasant and well-paced",
|
39 |
+
"Suresh": "clear and precise",
|
40 |
+
"Anu": "warm and melodious",
|
41 |
+
"Anjali": "high-pitched and pleasant",
|
42 |
+
"Harish": "deep and measured",
|
43 |
+
"Laishram": "balanced and smooth",
|
44 |
+
"Ranjit": "clear and authoritative",
|
45 |
+
"Sanjay": "deep and authoritative",
|
46 |
+
"Sunita": "high-pitched and pleasant",
|
47 |
+
"Amrita": "high-pitched and gentle",
|
48 |
+
"Manas": "moderate and measured",
|
49 |
+
"Debjani": "clear and pleasant",
|
50 |
+
"Divjot": "clear and dynamic",
|
51 |
+
"Gurpreet": "warm and balanced",
|
52 |
+
"Aryan": "resonant and measured",
|
53 |
+
"Jaya": "high-pitched and melodious",
|
54 |
+
"Kavitha": "clear and expressive",
|
55 |
+
"Prakash": "clear and well-paced",
|
56 |
+
"Lalitha": "pleasant and melodious"
|
57 |
+
}
|
58 |
+
|
59 |
+
# Emotion descriptions
|
60 |
+
EMOTION_DESC = {
|
61 |
+
"Neutral": "maintaining a balanced and natural tone",
|
62 |
+
"Happy": "with a warm and positive energy",
|
63 |
+
"Sad": "with a gentle and somber tone",
|
64 |
+
"Angry": "with intense and strong delivery",
|
65 |
+
"Highly Expressive": "with dynamic and vibrant emotional delivery",
|
66 |
+
"Monotone": "with minimal tonal variation"
|
67 |
+
}
|
68 |
+
|
69 |
+
# Speed descriptions
|
70 |
+
SPEED_DESC = {
|
71 |
+
"Very Slow": "at an extremely measured pace",
|
72 |
+
"Slow": "at a measured, deliberate pace",
|
73 |
+
"Normal": "at a natural, comfortable pace",
|
74 |
+
"Fast": "at a swift, dynamic pace",
|
75 |
+
"Very Fast": "at a rapid, accelerated pace"
|
76 |
+
}
|
77 |
+
|
78 |
+
# Pitch modifiers
|
79 |
+
PITCH_DESC = {
|
80 |
+
"Very Low": "in an extremely deep register",
|
81 |
+
"Low": "in a deeper register",
|
82 |
+
"Medium": "in a natural pitch range",
|
83 |
+
"High": "in a higher register",
|
84 |
+
"Very High": "in an extremely high register"
|
85 |
+
}
|
86 |
+
|
87 |
+
BACKGROUND_NOISE_DESC = {
|
88 |
+
"None": "with absolutely no background noise",
|
89 |
+
"Minimal": "with minimal background noise",
|
90 |
+
"Moderate": "with moderate ambient noise",
|
91 |
+
"Noticeable": "with noticeable background sounds"
|
92 |
+
}
|
93 |
+
|
94 |
+
REVERBERATION_DESC = {
|
95 |
+
"Very Close": "in an extremely intimate setting",
|
96 |
+
"Close": "in a close-sounding environment",
|
97 |
+
"Moderate": "in a moderately spacious environment",
|
98 |
+
"Distant": "in a spacious, reverberant setting",
|
99 |
+
"Very Distant": "in a very large, echoing space"
|
100 |
+
}
|
101 |
+
|
102 |
+
QUALITY_DESC = {
|
103 |
+
"Basic": "in basic audio quality",
|
104 |
+
"Good": "in good audio quality",
|
105 |
+
"High": "in high audio quality",
|
106 |
+
"Studio": "in professional studio quality"
|
107 |
+
}
|
108 |
+
|
109 |
+
def construct_description(
|
110 |
+
speaker,
|
111 |
+
language,
|
112 |
+
emotion="Neutral",
|
113 |
+
speed="Normal",
|
114 |
+
pitch="Medium",
|
115 |
+
background_noise="Minimal",
|
116 |
+
reverberation="Close",
|
117 |
+
quality="High"
|
118 |
+
):
|
119 |
+
"""
|
120 |
+
Constructs a comprehensive description for the TTS model based on all available parameters.
|
121 |
+
|
122 |
+
Args:
|
123 |
+
speaker (str): The name of the speaker
|
124 |
+
language (str): The language being spoken
|
125 |
+
emotion (str): The emotional tone
|
126 |
+
speed (str): The speaking speed
|
127 |
+
pitch (str): The pitch level
|
128 |
+
background_noise (str): Level of background noise
|
129 |
+
reverberation (str): Distance/space effect
|
130 |
+
quality (str): Audio quality level
|
131 |
+
|
132 |
+
Returns:
|
133 |
+
str: A detailed description for the TTS model
|
134 |
+
"""
|
135 |
+
description = (
|
136 |
+
f"{speaker} speaks in {language} {VOICE_CHARACTERISTICS.get(speaker, 'with clear articulation')} "
|
137 |
+
f"{PITCH_DESC[pitch]}, {EMOTION_DESC[emotion]} {SPEED_DESC[speed]}. "
|
138 |
+
f"The recording is {REVERBERATION_DESC[reverberation]}, {BACKGROUND_NOISE_DESC[background_noise]}, "
|
139 |
+
f"captured {QUALITY_DESC[quality]}."
|
140 |
+
)
|
141 |
+
|
142 |
+
return description
|
143 |
+
|
144 |
+
def get_speakers_for_language(language):
|
145 |
+
"""
|
146 |
+
Get the list of recommended speakers for a given language.
|
147 |
+
|
148 |
+
Args:
|
149 |
+
language (str): The language to get speakers for
|
150 |
+
|
151 |
+
Returns:
|
152 |
+
list: List of recommended speakers for the language
|
153 |
+
"""
|
154 |
+
return LANGUAGE_VOICE_MAPPING.get(language, [])
|
models/__pycache__/tts.cpython-312.pyc
ADDED
Binary file (2.86 kB). View file
|
|
models/tts.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from parler_tts import ParlerTTSForConditionalGeneration
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
import soundfile as sf
|
5 |
+
|
6 |
+
class TTSModel:
|
7 |
+
def __init__(self):
|
8 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
+
self.model_name = "ai4bharat/indic-parler-tts"
|
10 |
+
|
11 |
+
# Print cache directory and model files
|
12 |
+
print(f"Loading model on device: {self.device}")
|
13 |
+
|
14 |
+
# Initialize model and tokenizers exactly as in the documentation
|
15 |
+
self.model = ParlerTTSForConditionalGeneration.from_pretrained(self.model_name).to(self.device)
|
16 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
17 |
+
self.description_tokenizer = AutoTokenizer.from_pretrained(self.model.config.text_encoder._name_or_path)
|
18 |
+
|
19 |
+
print("Model loaded successfully")
|
20 |
+
|
21 |
+
def generate_audio(self, text, description):
|
22 |
+
try:
|
23 |
+
# Tokenize exactly as shown in the documentation
|
24 |
+
description_inputs = self.description_tokenizer(
|
25 |
+
description,
|
26 |
+
return_tensors="pt"
|
27 |
+
).to(self.device)
|
28 |
+
|
29 |
+
prompt_inputs = self.tokenizer(
|
30 |
+
text,
|
31 |
+
return_tensors="pt"
|
32 |
+
).to(self.device)
|
33 |
+
|
34 |
+
# Generate audio
|
35 |
+
with torch.no_grad():
|
36 |
+
generation = self.model.generate(
|
37 |
+
input_ids=description_inputs.input_ids,
|
38 |
+
attention_mask=description_inputs.attention_mask,
|
39 |
+
prompt_input_ids=prompt_inputs.input_ids,
|
40 |
+
prompt_attention_mask=prompt_inputs.attention_mask
|
41 |
+
)
|
42 |
+
|
43 |
+
# Convert to numpy array
|
44 |
+
audio_array = generation.cpu().numpy().squeeze()
|
45 |
+
|
46 |
+
return audio_array
|
47 |
+
|
48 |
+
except Exception as e:
|
49 |
+
print(f"Error in speech generation: {str(e)}")
|
50 |
+
raise
|
utils/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
utils/__pycache__/audio_utils.cpython-312.pyc
ADDED
Binary file (1.84 kB). View file
|
|
utils/__pycache__/input_validation.cpython-312.pyc
ADDED
Binary file (606 Bytes). View file
|
|
utils/audio_utils.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import soundfile as sf
|
3 |
+
import hashlib
|
4 |
+
|
5 |
+
def ensure_dir(directory):
|
6 |
+
"""Ensure that a directory exists"""
|
7 |
+
if not os.path.exists(directory):
|
8 |
+
os.makedirs(directory)
|
9 |
+
|
10 |
+
def get_audio_filename(text, language, speaker, emotion, speed, pitch, background_noise, reverberation, quality):
|
11 |
+
"""Generate a unique filename based on input parameters"""
|
12 |
+
# Create a string containing all parameters
|
13 |
+
params = f"{text}{language}{speaker}{emotion}{speed}{pitch}{background_noise}{reverberation}{quality}"
|
14 |
+
# Create a hash of the parameters
|
15 |
+
filename = hashlib.md5(params.encode()).hexdigest()
|
16 |
+
return filename
|
17 |
+
|
18 |
+
def save_audio(audio_array, filename, sampling_rate=22050):
|
19 |
+
"""Save audio array to a file"""
|
20 |
+
ensure_dir("static/audio")
|
21 |
+
filepath = f"static/audio/{filename}.wav"
|
22 |
+
sf.write(filepath, audio_array, sampling_rate)
|
23 |
+
return filepath
|
24 |
+
|
25 |
+
def get_cached_audio(text, language, speaker, emotion, speed, pitch, background_noise, reverberation, quality):
|
26 |
+
"""Get cached audio if it exists"""
|
27 |
+
filename = get_audio_filename(text, language, speaker, emotion, speed, pitch, background_noise, reverberation, quality)
|
28 |
+
filepath = f"static/audio/{filename}.wav"
|
29 |
+
if os.path.exists(filepath):
|
30 |
+
return filepath
|
31 |
+
return None
|
utils/input_validation.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from config.language_mapping import LANGUAGE_VOICE_MAPPING
|
2 |
+
|
3 |
+
def validate_input(text, language):
|
4 |
+
if not text.strip():
|
5 |
+
raise ValueError("Input text cannot be empty.")
|
6 |
+
if language not in LANGUAGE_VOICE_MAPPING:
|
7 |
+
raise ValueError(f"Language {language} is not supported.")
|