abhishekrajpurohit commited on
Commit
195bb33
·
verified ·
1 Parent(s): 6a36238

Upload 39 files

Browse files
Files changed (39) hide show
  1. app.py +202 -0
  2. audio_utils.py +31 -0
  3. input_validation.py +7 -0
  4. language_mapping.py +154 -0
  5. parler-tts/.gitignore +173 -0
  6. parler-tts/INFERENCE.md +264 -0
  7. parler-tts/LICENSE +201 -0
  8. parler-tts/Makefile +9 -0
  9. parler-tts/README.md +201 -0
  10. parler-tts/helpers/gradio_demo/app.py +105 -0
  11. parler-tts/helpers/model_init_scripts/init_dummy_model.py +69 -0
  12. parler-tts/helpers/model_init_scripts/init_dummy_model_with_encodec.py +67 -0
  13. parler-tts/helpers/model_init_scripts/init_large_model.py +68 -0
  14. parler-tts/helpers/model_init_scripts/init_model_600M.py +68 -0
  15. parler-tts/helpers/push_to_hub_scripts/push_dac_to_hub.py +26 -0
  16. parler-tts/helpers/push_to_hub_scripts/push_trained_parler_tts_to_hub.py +13 -0
  17. parler-tts/helpers/training_configs/librispeech_tts_r_300M_dummy.json +72 -0
  18. parler-tts/helpers/training_configs/starting_point_0.01.json +74 -0
  19. parler-tts/helpers/training_configs/starting_point_v1.json +76 -0
  20. parler-tts/helpers/training_configs/starting_point_v1_large.json +77 -0
  21. parler-tts/parler_tts/__init__.py +25 -0
  22. parler-tts/parler_tts/configuration_parler_tts.py +291 -0
  23. parler-tts/parler_tts/dac_wrapper/__init__.py +2 -0
  24. parler-tts/parler_tts/dac_wrapper/configuration_dac.py +27 -0
  25. parler-tts/parler_tts/dac_wrapper/modeling_dac.py +164 -0
  26. parler-tts/parler_tts/logits_processors.py +54 -0
  27. parler-tts/parler_tts/modeling_parler_tts.py +0 -0
  28. parler-tts/parler_tts/streamer.py +147 -0
  29. parler-tts/pyproject.toml +17 -0
  30. parler-tts/setup.py +69 -0
  31. parler-tts/training/README.md +212 -0
  32. parler-tts/training/__init__.py +0 -0
  33. parler-tts/training/arguments.py +375 -0
  34. parler-tts/training/data.py +311 -0
  35. parler-tts/training/eval.py +142 -0
  36. parler-tts/training/run_parler_tts_training.py +1249 -0
  37. parler-tts/training/utils.py +203 -0
  38. requirements.txt +5 -0
  39. tts.py +50 -0
app.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from models.tts import TTSModel
3
+ from utils.audio_utils import save_audio, get_cached_audio, get_audio_filename
4
+ from utils.input_validation import validate_input
5
+ from config.language_mapping import (
6
+ LANGUAGE_VOICE_MAPPING,
7
+ construct_description,
8
+ EMOTION_DESC,
9
+ SPEED_DESC,
10
+ PITCH_DESC,
11
+ BACKGROUND_NOISE_DESC,
12
+ REVERBERATION_DESC,
13
+ QUALITY_DESC,
14
+ get_speakers_for_language
15
+ )
16
+
17
+ def generate_speech(
18
+ text,
19
+ language,
20
+ speaker,
21
+ emotion="Neutral",
22
+ speed="Normal",
23
+ pitch="Medium",
24
+ background_noise="Minimal",
25
+ reverberation="Close",
26
+ quality="High"
27
+ ):
28
+ try:
29
+ # Validate inputs
30
+ validate_input(text, language)
31
+
32
+ # Check if audio is already cached
33
+ cached_audio = get_cached_audio(
34
+ text, language, speaker, emotion, speed,
35
+ pitch, background_noise, reverberation, quality
36
+ )
37
+
38
+ if cached_audio:
39
+ return cached_audio
40
+
41
+ # Get the description using the imported constructor
42
+ description = construct_description(
43
+ speaker,
44
+ language,
45
+ emotion,
46
+ speed,
47
+ pitch,
48
+ background_noise,
49
+ reverberation,
50
+ quality
51
+ )
52
+
53
+ # Generate audio
54
+ tts_model = TTSModel()
55
+ audio_array = tts_model.generate_audio(text, description)
56
+
57
+ # Save the generated audio
58
+ filename = get_audio_filename(
59
+ text, language, speaker, emotion, speed,
60
+ pitch, background_noise, reverberation, quality
61
+ )
62
+ filepath = save_audio(audio_array, filename)
63
+
64
+ return filepath
65
+
66
+ except Exception as e:
67
+ raise gr.Error(str(e))
68
+
69
+ # Create Gradio interface
70
+ with gr.Blocks(title="Indic Text-to-Speech") as demo:
71
+ gr.Markdown("# Indian Local Text-to-Speech Synthesizer")
72
+ gr.Markdown("Generate natural speech in multiple Indian languages using AI4Bharat's model")
73
+
74
+ with gr.Row():
75
+ with gr.Column():
76
+ text_input = gr.Textbox(
77
+ label="Text to speak",
78
+ placeholder="Enter the text you want to convert to speech...",
79
+ lines=3
80
+ )
81
+
82
+ with gr.Row():
83
+ language_input = gr.Dropdown(
84
+ choices=sorted(list(LANGUAGE_VOICE_MAPPING.keys())),
85
+ label="Language",
86
+ value="English"
87
+ )
88
+ speaker_input = gr.Dropdown(
89
+ choices=LANGUAGE_VOICE_MAPPING["English"], # Default choices
90
+ label="Speaker",
91
+ value=LANGUAGE_VOICE_MAPPING["English"][0] # Default value
92
+ )
93
+
94
+ with gr.Row():
95
+ emotion_input = gr.Dropdown(
96
+ choices=list(EMOTION_DESC.keys()),
97
+ label="Expressivity",
98
+ value="Neutral"
99
+ )
100
+ speed_input = gr.Dropdown(
101
+ choices=list(SPEED_DESC.keys()),
102
+ label="Speaking Speed",
103
+ value="Normal"
104
+ )
105
+
106
+ with gr.Row():
107
+ pitch_input = gr.Dropdown(
108
+ choices=list(PITCH_DESC.keys()),
109
+ label="Pitch",
110
+ value="Medium"
111
+ )
112
+ background_input = gr.Dropdown(
113
+ choices=list(BACKGROUND_NOISE_DESC.keys()),
114
+ label="Background Noise",
115
+ value="Minimal"
116
+ )
117
+
118
+ with gr.Row():
119
+ reverb_input = gr.Dropdown(
120
+ choices=list(REVERBERATION_DESC.keys()),
121
+ label="Reverberation",
122
+ value="Close"
123
+ )
124
+ quality_input = gr.Dropdown(
125
+ choices=list(QUALITY_DESC.keys()),
126
+ label="Audio Quality",
127
+ value="High"
128
+ )
129
+
130
+ generate_btn = gr.Button("Generate Speech", variant="primary")
131
+
132
+ with gr.Column():
133
+ audio_output = gr.Audio(
134
+ label="Generated Speech",
135
+ type="numpy"
136
+ )
137
+
138
+ # Update speaker choices when language changes
139
+ def update_speakers(language):
140
+ speakers = get_speakers_for_language(language)
141
+ return gr.Dropdown(choices=speakers, value=speakers[0])
142
+
143
+ language_input.change(
144
+ fn=update_speakers,
145
+ inputs=[language_input],
146
+ outputs=[speaker_input]
147
+ )
148
+
149
+ # Connect the components
150
+ generate_btn.click(
151
+ fn=generate_speech,
152
+ inputs=[
153
+ text_input,
154
+ language_input,
155
+ speaker_input,
156
+ emotion_input,
157
+ speed_input,
158
+ pitch_input,
159
+ background_input,
160
+ reverb_input,
161
+ quality_input
162
+ ],
163
+ outputs=audio_output
164
+ )
165
+
166
+ # Pre-generate and cache example outputs
167
+ example_outputs = []
168
+ examples = [
169
+ ["Hello, how are you?", "English", "Thoma", "Happy", "Normal", "Medium", "Minimal", "Close", "High"],
170
+ ["नमस्ते, आप कैसे हैं?", "Hindi", "Rohit", "Neutral", "Normal", "Medium", "None", "Very Close", "Studio"],
171
+ ["ನಮಸ್ಕಾರ, ಹೇಗಿದ್ದೀರಾ?", "Kannada", "Suresh", "Highly Expressive", "Fast", "High", "Minimal", "Moderate", "High"],
172
+ ["How are you doing today?", "English", "Mary", "Monotone", "Slow", "Low", "Moderate", "Distant", "Good"],
173
+ ]
174
+
175
+ # Generate and cache example outputs at startup
176
+ for example in examples:
177
+ output = generate_speech(*example)
178
+ example_outputs.append(output)
179
+
180
+ # Add examples with cached outputs
181
+ gr.Examples(
182
+ examples=examples,
183
+ inputs=[
184
+ text_input,
185
+ language_input,
186
+ speaker_input,
187
+ emotion_input,
188
+ speed_input,
189
+ pitch_input,
190
+ background_input,
191
+ reverb_input,
192
+ quality_input
193
+ ],
194
+ outputs=audio_output,
195
+ fn=generate_speech,
196
+ cache_examples=True,
197
+ preprocess=False, # Don't preprocess inputs
198
+ postprocess=False # Don't postprocess outputs
199
+ )
200
+
201
+ if __name__ == "__main__":
202
+ demo.launch()
audio_utils.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import soundfile as sf
3
+ import hashlib
4
+
5
+ def ensure_dir(directory):
6
+ """Ensure that a directory exists"""
7
+ if not os.path.exists(directory):
8
+ os.makedirs(directory)
9
+
10
+ def get_audio_filename(text, language, speaker, emotion, speed, pitch, background_noise, reverberation, quality):
11
+ """Generate a unique filename based on input parameters"""
12
+ # Create a string containing all parameters
13
+ params = f"{text}{language}{speaker}{emotion}{speed}{pitch}{background_noise}{reverberation}{quality}"
14
+ # Create a hash of the parameters
15
+ filename = hashlib.md5(params.encode()).hexdigest()
16
+ return filename
17
+
18
+ def save_audio(audio_array, filename, sampling_rate=22050):
19
+ """Save audio array to a file"""
20
+ ensure_dir("static/audio")
21
+ filepath = f"static/audio/{filename}.wav"
22
+ sf.write(filepath, audio_array, sampling_rate)
23
+ return filepath
24
+
25
+ def get_cached_audio(text, language, speaker, emotion, speed, pitch, background_noise, reverberation, quality):
26
+ """Get cached audio if it exists"""
27
+ filename = get_audio_filename(text, language, speaker, emotion, speed, pitch, background_noise, reverberation, quality)
28
+ filepath = f"static/audio/{filename}.wav"
29
+ if os.path.exists(filepath):
30
+ return filepath
31
+ return None
input_validation.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ from config.language_mapping import LANGUAGE_VOICE_MAPPING
2
+
3
+ def validate_input(text, language):
4
+ if not text.strip():
5
+ raise ValueError("Input text cannot be empty.")
6
+ if language not in LANGUAGE_VOICE_MAPPING:
7
+ raise ValueError(f"Language {language} is not supported.")
language_mapping.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ LANGUAGE_VOICE_MAPPING = {
2
+ "Assamese": ["Amit", "Sita"],
3
+ "Bengali": ["Arjun", "Aditi"],
4
+ "Bodo": ["Bikram", "Maya"],
5
+ "Chhattisgarhi": ["Bhanu", "Champa"],
6
+ "Dogri": ["Karan"],
7
+ "English": ["Thoma", "Mary"],
8
+ "Gujarati": ["Yash", "Neha"],
9
+ "Hindi": ["Rohit", "Divya"],
10
+ "Kannada": ["Suresh", "Anu"],
11
+ "Malayalam": ["Anjali", "Harish"],
12
+ "Manipuri": ["Laishram", "Ranjit"],
13
+ "Marathi": ["Sanjay", "Sunita"],
14
+ "Nepali": ["Amrita"],
15
+ "Odia": ["Manas", "Debjani"],
16
+ "Punjabi": ["Divjot", "Gurpreet"],
17
+ "Sanskrit": ["Aryan"],
18
+ "Tamil": ["Jaya", "Kavitha"],
19
+ "Telugu": ["Prakash", "Lalitha"]
20
+ }
21
+
22
+ # Voice characteristics for each speaker
23
+ VOICE_CHARACTERISTICS = {
24
+ "Amit": "slightly deep and resonant",
25
+ "Sita": "clear and well-paced",
26
+ "Arjun": "moderate and clear",
27
+ "Aditi": "high-pitched and expressive",
28
+ "Bikram": "higher-pitched and energetic",
29
+ "Maya": "balanced and pleasant",
30
+ "Bhanu": "warm and measured",
31
+ "Champa": "clear and gentle",
32
+ "Karan": "high-pitched and engaging",
33
+ "Thoma": "clear and well-articulated",
34
+ "Mary": "pleasant and measured",
35
+ "Yash": "warm and balanced",
36
+ "Neha": "clear and dynamic",
37
+ "Rohit": "moderate and expressive",
38
+ "Divya": "pleasant and well-paced",
39
+ "Suresh": "clear and precise",
40
+ "Anu": "warm and melodious",
41
+ "Anjali": "high-pitched and pleasant",
42
+ "Harish": "deep and measured",
43
+ "Laishram": "balanced and smooth",
44
+ "Ranjit": "clear and authoritative",
45
+ "Sanjay": "deep and authoritative",
46
+ "Sunita": "high-pitched and pleasant",
47
+ "Amrita": "high-pitched and gentle",
48
+ "Manas": "moderate and measured",
49
+ "Debjani": "clear and pleasant",
50
+ "Divjot": "clear and dynamic",
51
+ "Gurpreet": "warm and balanced",
52
+ "Aryan": "resonant and measured",
53
+ "Jaya": "high-pitched and melodious",
54
+ "Kavitha": "clear and expressive",
55
+ "Prakash": "clear and well-paced",
56
+ "Lalitha": "pleasant and melodious"
57
+ }
58
+
59
+ # Emotion descriptions
60
+ EMOTION_DESC = {
61
+ "Neutral": "maintaining a balanced and natural tone",
62
+ "Happy": "with a warm and positive energy",
63
+ "Sad": "with a gentle and somber tone",
64
+ "Angry": "with intense and strong delivery",
65
+ "Highly Expressive": "with dynamic and vibrant emotional delivery",
66
+ "Monotone": "with minimal tonal variation"
67
+ }
68
+
69
+ # Speed descriptions
70
+ SPEED_DESC = {
71
+ "Very Slow": "at an extremely measured pace",
72
+ "Slow": "at a measured, deliberate pace",
73
+ "Normal": "at a natural, comfortable pace",
74
+ "Fast": "at a swift, dynamic pace",
75
+ "Very Fast": "at a rapid, accelerated pace"
76
+ }
77
+
78
+ # Pitch modifiers
79
+ PITCH_DESC = {
80
+ "Very Low": "in an extremely deep register",
81
+ "Low": "in a deeper register",
82
+ "Medium": "in a natural pitch range",
83
+ "High": "in a higher register",
84
+ "Very High": "in an extremely high register"
85
+ }
86
+
87
+ BACKGROUND_NOISE_DESC = {
88
+ "None": "with absolutely no background noise",
89
+ "Minimal": "with minimal background noise",
90
+ "Moderate": "with moderate ambient noise",
91
+ "Noticeable": "with noticeable background sounds"
92
+ }
93
+
94
+ REVERBERATION_DESC = {
95
+ "Very Close": "in an extremely intimate setting",
96
+ "Close": "in a close-sounding environment",
97
+ "Moderate": "in a moderately spacious environment",
98
+ "Distant": "in a spacious, reverberant setting",
99
+ "Very Distant": "in a very large, echoing space"
100
+ }
101
+
102
+ QUALITY_DESC = {
103
+ "Basic": "in basic audio quality",
104
+ "Good": "in good audio quality",
105
+ "High": "in high audio quality",
106
+ "Studio": "in professional studio quality"
107
+ }
108
+
109
+ def construct_description(
110
+ speaker,
111
+ language,
112
+ emotion="Neutral",
113
+ speed="Normal",
114
+ pitch="Medium",
115
+ background_noise="Minimal",
116
+ reverberation="Close",
117
+ quality="High"
118
+ ):
119
+ """
120
+ Constructs a comprehensive description for the TTS model based on all available parameters.
121
+
122
+ Args:
123
+ speaker (str): The name of the speaker
124
+ language (str): The language being spoken
125
+ emotion (str): The emotional tone
126
+ speed (str): The speaking speed
127
+ pitch (str): The pitch level
128
+ background_noise (str): Level of background noise
129
+ reverberation (str): Distance/space effect
130
+ quality (str): Audio quality level
131
+
132
+ Returns:
133
+ str: A detailed description for the TTS model
134
+ """
135
+ description = (
136
+ f"{speaker} speaks in {language} {VOICE_CHARACTERISTICS.get(speaker, 'with clear articulation')} "
137
+ f"{PITCH_DESC[pitch]}, {EMOTION_DESC[emotion]} {SPEED_DESC[speed]}. "
138
+ f"The recording is {REVERBERATION_DESC[reverberation]}, {BACKGROUND_NOISE_DESC[background_noise]}, "
139
+ f"captured {QUALITY_DESC[quality]}."
140
+ )
141
+
142
+ return description
143
+
144
+ def get_speakers_for_language(language):
145
+ """
146
+ Get the list of recommended speakers for a given language.
147
+
148
+ Args:
149
+ language (str): The language to get speakers for
150
+
151
+ Returns:
152
+ list: List of recommended speakers for the language
153
+ """
154
+ return LANGUAGE_VOICE_MAPPING.get(language, [])
parler-tts/.gitignore ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/huggingface/diffusers/blob/main/.gitignore
2
+
3
+ # Byte-compiled / optimized / DLL files
4
+ __pycache__/
5
+ *.py[cod]
6
+ *$py.class
7
+
8
+ # C extensions
9
+ *.so
10
+
11
+ # logs
12
+ logs/
13
+
14
+ # Distribution / packaging
15
+ .Python
16
+ build/
17
+ develop-eggs/
18
+ dist/
19
+ downloads/
20
+ eggs/
21
+ .eggs/
22
+ lib/
23
+ lib64/
24
+ parts/
25
+ sdist/
26
+ var/
27
+ wheels/
28
+ *.egg-info/
29
+ .installed.cfg
30
+ *.egg
31
+ MANIFEST
32
+
33
+ # PyInstaller
34
+ # Usually these files are written by a python script from a template
35
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
36
+ *.manifest
37
+ *.spec
38
+
39
+ # Installer logs
40
+ pip-log.txt
41
+ pip-delete-this-directory.txt
42
+
43
+ # Unit test / coverage reports
44
+ htmlcov/
45
+ .tox/
46
+ .nox/
47
+ .coverage
48
+ .coverage.*
49
+ .cache
50
+ nosetests.xml
51
+ coverage.xml
52
+ *.cover
53
+ .hypothesis/
54
+ .pytest_cache/
55
+
56
+ # Translations
57
+ *.mo
58
+ *.pot
59
+
60
+ # Django stuff:
61
+ *.log
62
+ local_settings.py
63
+ db.sqlite3
64
+
65
+ # Flask stuff:
66
+ instance/
67
+ .webassets-cache
68
+
69
+ # Scrapy stuff:
70
+ .scrapy
71
+
72
+ # Sphinx documentation
73
+ docs/_build/
74
+
75
+ # PyBuilder
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ .python-version
87
+
88
+ # celery beat schedule file
89
+ celerybeat-schedule
90
+
91
+ # SageMath parsed files
92
+ *.sage.py
93
+
94
+ # Environments
95
+ .env
96
+ .venv
97
+ env/
98
+ venv/
99
+ ENV/
100
+ env.bak/
101
+ venv.bak/
102
+
103
+ # Spyder project settings
104
+ .spyderproject
105
+ .spyproject
106
+
107
+ # Rope project settings
108
+ .ropeproject
109
+
110
+ # mkdocs documentation
111
+ /site
112
+
113
+ # mypy
114
+ .mypy_cache/
115
+ .dmypy.json
116
+ dmypy.json
117
+
118
+ # Pyre type checker
119
+ .pyre/
120
+
121
+ # vscode
122
+ .vs
123
+ .vscode
124
+
125
+ # Pycharm
126
+ .idea
127
+
128
+ # TF code
129
+ tensorflow_code
130
+
131
+ # Models
132
+ proc_data
133
+
134
+ # examples
135
+ runs
136
+ /runs_old
137
+ /wandb
138
+ /examples/runs
139
+ /examples/**/*.args
140
+ /examples/rag/sweep
141
+
142
+ # data
143
+ /data
144
+ serialization_dir
145
+
146
+ # emacs
147
+ *.*~
148
+ debug.env
149
+
150
+ # vim
151
+ .*.swp
152
+
153
+ #ctags
154
+ tags
155
+
156
+ # pre-commit
157
+ .pre-commit*
158
+
159
+ # .lock
160
+ *.lock
161
+
162
+ # DS_Store (MacOS)
163
+ .DS_Store
164
+ # RL pipelines may produce mp4 outputs
165
+ *.mp4
166
+
167
+ # dependencies
168
+ /transformers
169
+
170
+ # ruff
171
+ .ruff_cache
172
+
173
+ wandb
parler-tts/INFERENCE.md ADDED
@@ -0,0 +1,264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Inference tips
2
+
3
+ Parler-TTS benefits from a number of optimizations that can make the model up to 4x faster. Add to this the ability to stream audio as it's being generated, and you can achieve time-to-first audio in under 500ms on a modern GPU.
4
+
5
+ ## 📖 Quick Index
6
+ * [Efficient Attention Implementation](#efficient-attention-implementations)
7
+ * [Compilation](#compilation)
8
+ * [Streaming](#streaming)
9
+ * [Batch generation](#batch-generation)
10
+ * [Speaker Consistency](#speaker-consistency)
11
+
12
+ ## Efficient Attention implementations
13
+
14
+ Parler-TTS supports [SDPA](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention.html) and [Flash Attention 2](https://github.com/Dao-AILab/flash-attention).
15
+
16
+ SDPA is used by default and speeds up generation time by up to 1.4x compared with eager attention.
17
+
18
+ To switch between attention implementations, simply specify `attn_implementation=attn_implementation` when loading the checkpoints:
19
+
20
+ ```py
21
+ from parler_tts import ParlerTTSForConditionalGeneration
22
+
23
+ torch_device = "cuda:0" # use "mps" for Mac
24
+ torch_dtype = torch.bfloat16
25
+ model_name = "parler-tts/parler-tts-mini-v1"
26
+
27
+ attn_implementation = "eager" # "sdpa" or "flash_attention_2"
28
+
29
+ model = ParlerTTSForConditionalGeneration.from_pretrained(
30
+ model_name,
31
+ attn_implementation=attn_implementation
32
+ ).to(torch_device, dtype=torch_dtype)
33
+ ```
34
+
35
+ ## Compilation
36
+
37
+ [Compiling](https://pytorch.org/docs/stable/generated/torch.compile.html) the forward method of Parler can speed up generation time by up to 4.5x.
38
+
39
+ As an indication, `mode=default` brings a speed-up of 1.4 times compared to no compilation, while `mode="reduce-overhead"` brings much faster generation, at the cost of a longer compilation time and the need to generate twice to see the benefits of compilation.
40
+
41
+ ```py
42
+ import torch
43
+ from parler_tts import ParlerTTSForConditionalGeneration
44
+ from transformers import AutoTokenizer
45
+
46
+ torch_device = "cuda:0"
47
+ torch_dtype = torch.bfloat16
48
+ model_name = "parler-tts/parler-tts-mini-v1"
49
+
50
+ # need to set padding max length
51
+ max_length = 50
52
+
53
+ # load model and tokenizer
54
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
55
+ model = ParlerTTSForConditionalGeneration.from_pretrained(
56
+ model_name,
57
+ attn_implementation="eager"
58
+ ).to(torch_device, dtype=torch_dtype)
59
+
60
+ # compile the forward pass
61
+ compile_mode = "default" # chose "reduce-overhead" for 3 to 4x speed-up
62
+ model.generation_config.cache_implementation = "static"
63
+ model.forward = torch.compile(model.forward, mode=compile_mode)
64
+
65
+ # warmup
66
+ inputs = tokenizer("This is for compilation", return_tensors="pt", padding="max_length", max_length=max_length).to(torch_device)
67
+
68
+ model_kwargs = {**inputs, "prompt_input_ids": inputs.input_ids, "prompt_attention_mask": inputs.attention_mask, }
69
+
70
+ n_steps = 1 if compile_mode == "default" else 2
71
+ for _ in range(n_steps):
72
+ _ = model.generate(**model_kwargs)
73
+
74
+
75
+ # now you can benefit from compilation speed-ups
76
+ ...
77
+
78
+ ```
79
+
80
+
81
+ ## Streaming
82
+
83
+ ### How Does It Work?
84
+
85
+ Parler-TTS is an auto-regressive transformer-based model, meaning generates audio codes (tokens) in a causal fashion.
86
+
87
+ At each decoding step, the model generates a new set of audio codes, conditional on the text input and all previous audio codes. From the
88
+ frame rate of the [DAC model](https://huggingface.co/parler-tts/dac_44khZ_8kbps) used to decode the generated codes to audio waveform, each set of generated audio codes corresponds to 0.011 seconds. This means we require a total of 1720 decoding steps to generate 20 seconds of audio.
89
+
90
+ Rather than waiting for the entire audio sequence to be generated, which would require the full 1720 decoding steps, we can start playing the audio after a specified number of decoding steps have been reached, a techinque known as [*streaming*](https://huggingface.co/docs/transformers/main/en/generation_strategies#streaming).
91
+ For example, after 86 steps we have the first second of audio ready, and so can play this without waiting for the remaining decoding steps to be complete. As we continue to generate with the Parler-TTS model, we append new chunks of generated audio to our output waveform on-the-fly. After the full 1720 decoding steps, the generated audio is complete, and is composed of 20 chunks of audio, each corresponding to 86 tokens.
92
+ This method of playing incremental generations reduces the latency of the Parler-TTS model from the total time to generate 1720 tokens, to the time taken to play the first chunk of audio (86 tokens). This can result in significant improvements to perceived latency, particularly when the chunk size is chosen to be small. In practice, the chunk size should be tuned to your device: using a smaller chunk size will mean that the first chunk is ready faster, but should not be chosen so small that the model generates slower than the time it takes to play the audio.
93
+
94
+
95
+ ### How Can I Use It?
96
+
97
+ We've added [ParlerTTSStreamer](https://github.com/huggingface/parler-tts/blob/main/parler_tts/streamer.py) to the library. Don't hesitate to adapt it to your use-case.
98
+
99
+ Here's how to create a generator out of the streamer.
100
+
101
+ ```py
102
+ import torch
103
+ from parler_tts import ParlerTTSForConditionalGeneration, ParlerTTSStreamer
104
+ from transformers import AutoTokenizer
105
+ from threading import Thread
106
+
107
+ torch_device = "cuda:0" # Use "mps" for Mac
108
+ torch_dtype = torch.bfloat16
109
+ model_name = "parler-tts/parler-tts-mini-v1"
110
+
111
+ # need to set padding max length
112
+ max_length = 50
113
+
114
+ # load model and tokenizer
115
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
116
+ model = ParlerTTSForConditionalGeneration.from_pretrained(
117
+ model_name,
118
+ ).to(torch_device, dtype=torch_dtype)
119
+
120
+ sampling_rate = model.audio_encoder.config.sampling_rate
121
+ frame_rate = model.audio_encoder.config.frame_rate
122
+
123
+ def generate(text, description, play_steps_in_s=0.5):
124
+ play_steps = int(frame_rate * play_steps_in_s)
125
+ streamer = ParlerTTSStreamer(model, device=torch_device, play_steps=play_steps)
126
+ # tokenization
127
+ inputs = tokenizer(description, return_tensors="pt").to(torch_device)
128
+ prompt = tokenizer(text, return_tensors="pt").to(torch_device)
129
+ # create generation kwargs
130
+ generation_kwargs = dict(
131
+ input_ids=inputs.input_ids,
132
+ prompt_input_ids=prompt.input_ids,
133
+ attention_mask=inputs.attention_mask,
134
+ prompt_attention_mask=prompt.attention_mask,
135
+ streamer=streamer,
136
+ do_sample=True,
137
+ temperature=1.0,
138
+ min_new_tokens=10,
139
+ )
140
+ # initialize Thread
141
+ thread = Thread(target=model.generate, kwargs=generation_kwargs)
142
+ thread.start()
143
+ # iterate over chunks of audio
144
+ for new_audio in streamer:
145
+ if new_audio.shape[0] == 0:
146
+ break
147
+ print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 4)} seconds")
148
+ yield sampling_rate, new_audio
149
+
150
+
151
+ # now you can do
152
+ text = "This is a test of the streamer class"
153
+ description = "Jon's talking really fast."
154
+
155
+ chunk_size_in_s = 0.5
156
+
157
+ for (sampling_rate, audio_chunk) in generate(text, description, chunk_size_in_s):
158
+ # You can do everything that you need with the chunk now
159
+ # For example: stream it, save it, play it.
160
+ print(audio_chunk.shape)
161
+ ```
162
+
163
+ ## Batch generation
164
+
165
+ Batching means combining operations for multiple samples to bring the overall time spent generating the samples lower than generating sample per sample.
166
+
167
+ Here is a quick example of how you can use it:
168
+
169
+ ```py
170
+ from parler_tts import ParlerTTSForConditionalGeneration
171
+ from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
172
+ import scipy
173
+
174
+
175
+ repo_id = "parler-tts/parler-tts-mini-v1"
176
+
177
+ model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to("cuda")
178
+ tokenizer = AutoTokenizer.from_pretrained(repo_id, padding_side="left")
179
+ feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
180
+
181
+ input_text = ["Hey, how are you doing?", "I'm not sure how to feel about it."]
182
+ description = 2 * ["A male speaker with a monotone and high-pitched voice is delivering his speech at a really low speed in a confined environment."]
183
+
184
+ inputs = tokenizer(description, return_tensors="pt", padding=True).to("cuda")
185
+ prompt = tokenizer(input_text, return_tensors="pt", padding=True).to("cuda")
186
+
187
+ set_seed(0)
188
+ generation = model.generate(
189
+ input_ids=inputs.input_ids,
190
+ attention_mask=inputs.attention_mask,
191
+ prompt_input_ids=prompt.input_ids,
192
+ prompt_attention_mask=prompt.attention_mask,
193
+ do_sample=True,
194
+ return_dict_in_generate=True,
195
+ )
196
+
197
+ audio_1 = generation.sequences[0, :generation.audios_length[0]]
198
+ audio_2 = generation.sequences[1, :generation.audios_length[1]]
199
+
200
+ print(audio_1.shape, audio_2.shape)
201
+ scipy.io.wavfile.write("sample_out.wav", rate=feature_extractor.sampling_rate, data=audio_1.cpu().numpy().squeeze())
202
+ scipy.io.wavfile.write("sample_out_2.wav", rate=feature_extractor.sampling_rate, data=audio_2.cpu().numpy().squeeze())
203
+ ```
204
+
205
+ ## Speaker Consistency
206
+
207
+ The checkpoint was trained on 34 speakers. The full list of available speakers includes:
208
+ Laura, Gary, Jon, Lea, Karen, Rick, Brenda, David, Eileen, Jordan, Mike, Yann, Joy, James, Eric, Lauren, Rose, Will, Jason, Aaron, Naomie, Alisa, Patrick, Jerry, Tina, Jenna, Bill, Tom, Carol, Barbara, Rebecca, Anna, Bruce, and Emily.
209
+
210
+ However, the models performed better with certain speakers. Below are the top 20 speakers for each model variant, ranked by their average speaker similarity scores:
211
+
212
+ ### Large Model - Top 20 Speakers
213
+
214
+ | Speaker | Similarity Score |
215
+ |---------|------------------|
216
+ | Will | 0.906055 |
217
+ | Eric | 0.887598 |
218
+ | Laura | 0.877930 |
219
+ | Alisa | 0.877393 |
220
+ | Patrick | 0.873682 |
221
+ | Rose | 0.873047 |
222
+ | Jerry | 0.871582 |
223
+ | Jordan | 0.870703 |
224
+ | Lauren | 0.867432 |
225
+ | Jenna | 0.866455 |
226
+ | Karen | 0.866309 |
227
+ | Rick | 0.863135 |
228
+ | Bill | 0.862207 |
229
+ | James | 0.856934 |
230
+ | Yann | 0.856787 |
231
+ | Emily | 0.856543 |
232
+ | Anna | 0.848877 |
233
+ | Jon | 0.848828 |
234
+ | Brenda | 0.848291 |
235
+ | Barbara | 0.847998 |
236
+
237
+ ### Mini Model - Top 20 Speakers
238
+
239
+ | Speaker | Similarity Score |
240
+ |---------|------------------|
241
+ | Jon | 0.908301 |
242
+ | Lea | 0.904785 |
243
+ | Gary | 0.903516 |
244
+ | Jenna | 0.901807 |
245
+ | Mike | 0.885742 |
246
+ | Laura | 0.882666 |
247
+ | Lauren | 0.878320 |
248
+ | Eileen | 0.875635 |
249
+ | Alisa | 0.874219 |
250
+ | Karen | 0.872363 |
251
+ | Barbara | 0.871509 |
252
+ | Carol | 0.863623 |
253
+ | Emily | 0.854932 |
254
+ | Rose | 0.852246 |
255
+ | Will | 0.851074 |
256
+ | Patrick | 0.850977 |
257
+ | Eric | 0.845459 |
258
+ | Rick | 0.845020 |
259
+ | Anna | 0.844922 |
260
+ | Tina | 0.839160 |
261
+
262
+ The numbers represent the average speaker similarity between a random snippet of the person speaking and a randomly Parler-generated snippet. Higher scores indicate better model performance in maintaining voice consistency.
263
+
264
+ These scores are derived from [dataset for Mini](https://huggingface.co/datasets/ylacombe/parler-tts-mini-v1_speaker_similarity) and [dataset for Large](https://huggingface.co/datasets/ylacombe/parler-large-v1-og_speaker_similarity).
parler-tts/LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [2024] [The HuggingFace Inc. team]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
parler-tts/Makefile ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ check_dirs := .
2
+
3
+ quality:
4
+ black --check $(check_dirs)
5
+ ruff $(check_dirs)
6
+
7
+ style:
8
+ black $(check_dirs)
9
+ ruff $(check_dirs) --fix
parler-tts/README.md ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Parler-TTS
2
+
3
+ Parler-TTS is a lightweight text-to-speech (TTS) model that can generate high-quality, natural sounding speech in the style of a given speaker (gender, pitch, speaking style, etc). It is a reproduction of work from the paper [Natural language guidance of high-fidelity text-to-speech with synthetic annotations](https://www.text-description-to-speech.com) by Dan Lyth and Simon King, from Stability AI and Edinburgh University respectively.
4
+
5
+ Contrarily to other TTS models, Parler-TTS is a **fully open-source** release. All of the datasets, pre-processing, training code and weights are released publicly under permissive license, enabling the community to build on our work and develop their own powerful TTS models.
6
+
7
+ This repository contains the inference and training code for Parler-TTS. It is designed to accompany the [Data-Speech](https://github.com/huggingface/dataspeech) repository for dataset annotation.
8
+
9
+ > [!IMPORTANT]
10
+ > **08/08/2024:** We are proud to release two new Parler-TTS checkpoints:
11
+ > 1. [Parler-TTS Mini](https://huggingface.co/parler-tts/parler-tts-mini-v1), an 880M parameter model.
12
+ > 2. [Parler-TTS Large](https://huggingface.co/parler-tts/parler-tts-large-v1), a 2.3B parameter model.
13
+ >
14
+ > These checkpoints have been trained on 45k hours of audiobook data.
15
+ >
16
+ > In addition, the code is optimized for much faster generation: we've added SDPA and Flash Attention 2 compatibility, as well as the ability to compile the model.
17
+
18
+ ## 📖 Quick Index
19
+ * [Installation](#installation)
20
+ * [Usage](#usage)
21
+ - [🎲 Using a random voice](#-random-voice)
22
+ - [🎯 Using a specific speaker](#-using-a-specific-speaker)
23
+ * [Training](#training)
24
+ * [Demo](https://huggingface.co/spaces/parler-tts/parler_tts)
25
+ * [Model weights and datasets](https://huggingface.co/parler-tts)
26
+ * [Optimizing inference](#-optimizing-inference-speed)
27
+
28
+ ## Installation
29
+
30
+ Parler-TTS has light-weight dependencies and can be installed in one line:
31
+
32
+ ```sh
33
+ pip install git+https://github.com/huggingface/parler-tts.git
34
+ ```
35
+
36
+ Apple Silicon users will need to run a follow-up command to make use the nightly PyTorch (2.4) build for bfloat16 support:
37
+
38
+ ```sh
39
+ pip3 install --pre torch torchaudio --index-url https://download.pytorch.org/whl/nightly/cpu
40
+ ```
41
+
42
+ ## Usage
43
+
44
+ > [!TIP]
45
+ > You can directly try it out in an interactive demo [here](https://huggingface.co/spaces/parler-tts/parler_tts)!
46
+
47
+ Using Parler-TTS is as simple as "bonjour". Simply install the library once:
48
+
49
+ ```sh
50
+ pip install git+https://github.com/huggingface/parler-tts.git
51
+ ```
52
+
53
+ ### 🎲 Random voice
54
+
55
+
56
+ **Parler-TTS** has been trained to generate speech with features that can be controlled with a simple text prompt, for example:
57
+
58
+ ```py
59
+ import torch
60
+ from parler_tts import ParlerTTSForConditionalGeneration
61
+ from transformers import AutoTokenizer
62
+ import soundfile as sf
63
+
64
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
65
+
66
+ model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1").to(device)
67
+ tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1")
68
+
69
+ prompt = "Hey, how are you doing today?"
70
+ description = "A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up."
71
+
72
+ input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device)
73
+ prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
74
+
75
+ generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
76
+ audio_arr = generation.cpu().numpy().squeeze()
77
+ sf.write("parler_tts_out.wav", audio_arr, model.config.sampling_rate)
78
+ ```
79
+
80
+ ### 🎯 Using a specific speaker
81
+
82
+ To ensure speaker consistency across generations, this checkpoint was also trained on 34 speakers, characterized by name. The full list of available speakers includes:
83
+ Laura, Gary, Jon, Lea, Karen, Rick, Brenda, David, Eileen, Jordan, Mike, Yann, Joy, James, Eric, Lauren, Rose, Will, Jason, Aaron, Naomie, Alisa, Patrick, Jerry, Tina, Jenna, Bill, Tom, Carol, Barbara, Rebecca, Anna, Bruce, Emily.
84
+
85
+ To take advantage of this, simply adapt your text description to specify which speaker to use: `Jon's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise.`
86
+
87
+ You can replace "Jon" with any of the names from the list above to utilize different speaker characteristics. Each speaker has unique vocal qualities that can be leveraged to suit your specific needs. For more detailed information on speaker performance with voice consistency, please refer [inference guide](INFERENCE.md#speaker-consistency).
88
+
89
+ ```py
90
+ import torch
91
+ from parler_tts import ParlerTTSForConditionalGeneration
92
+ from transformers import AutoTokenizer
93
+ import soundfile as sf
94
+
95
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
96
+
97
+ model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1").to(device)
98
+ tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1")
99
+
100
+ prompt = "Hey, how are you doing today?"
101
+ description = "Jon's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise."
102
+
103
+ input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device)
104
+ prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
105
+
106
+ generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
107
+ audio_arr = generation.cpu().numpy().squeeze()
108
+ sf.write("parler_tts_out.wav", audio_arr, model.config.sampling_rate)
109
+ ```
110
+
111
+ **Tips**:
112
+ * Include the term "very clear audio" to generate the highest quality audio, and "very noisy audio" for high levels of background noise
113
+ * Punctuation can be used to control the prosody of the generations, e.g. use commas to add small breaks in speech
114
+ * The remaining speech features (gender, speaking rate, pitch and reverberation) can be controlled directly through the prompt
115
+
116
+ ### ✨ Optimizing Inference Speed
117
+
118
+ We've set up an [inference guide](INFERENCE.md) to make generation faster. Think SDPA, torch.compile and streaming!
119
+
120
+
121
+ https://github.com/huggingface/parler-tts/assets/52246514/251e2488-fe6e-42c1-81cd-814c5b7795b0
122
+
123
+ ## Training
124
+
125
+ <a target="_blank" href="https://github.com/ylacombe/scripts_and_notebooks/blob/main/Finetuning_Parler_TTS_v1_on_a_single_speaker_dataset.ipynb">
126
+ <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
127
+ </a>
128
+
129
+ The [training folder](/training/) contains all the information to train or fine-tune your own Parler-TTS model. It consists of:
130
+ - [1. An introduction to the Parler-TTS architecture](/training/README.md#1-architecture)
131
+ - [2. The first steps to get started](/training/README.md#2-getting-started)
132
+ - [3. A training guide](/training/README.md#3-training)
133
+
134
+ > [!IMPORTANT]
135
+ > **TL;DR:** After having followed the [installation steps](/training/README.md#requirements), you can reproduce the Parler-TTS Mini v1 training recipe with the following command line:
136
+
137
+ ```sh
138
+ accelerate launch ./training/run_parler_tts_training.py ./helpers/training_configs/starting_point_v1.json
139
+ ```
140
+
141
+ > [!IMPORTANT]
142
+ > You can also follow [this fine-tuning guide](https://github.com/ylacombe/scripts_and_notebooks/blob/main/Finetuning_Parler_TTS_v1_on_a_single_speaker_dataset.ipynb) on a mono-speaker dataset example.
143
+
144
+ ## Acknowledgements
145
+
146
+ This library builds on top of a number of open-source giants, to whom we'd like to extend our warmest thanks for providing these tools!
147
+
148
+ Special thanks to:
149
+ - Dan Lyth and Simon King, from Stability AI and Edinburgh University respectively, for publishing such a promising and clear research paper: [Natural language guidance of high-fidelity text-to-speech with synthetic annotations](https://arxiv.org/abs/2402.01912).
150
+ - the many libraries used, namely [🤗 datasets](https://huggingface.co/docs/datasets/v2.17.0/en/index), [🤗 accelerate](https://huggingface.co/docs/accelerate/en/index), [jiwer](https://github.com/jitsi/jiwer), [wandb](https://wandb.ai/), and [🤗 transformers](https://huggingface.co/docs/transformers/index).
151
+ - Descript for the [DAC codec model](https://github.com/descriptinc/descript-audio-codec)
152
+ - Hugging Face 🤗 for providing compute resources and time to explore!
153
+
154
+
155
+ ## Citation
156
+
157
+ If you found this repository useful, please consider citing this work and also the original Stability AI paper:
158
+
159
+ ```
160
+ @misc{lacombe-etal-2024-parler-tts,
161
+ author = {Yoach Lacombe and Vaibhav Srivastav and Sanchit Gandhi},
162
+ title = {Parler-TTS},
163
+ year = {2024},
164
+ publisher = {GitHub},
165
+ journal = {GitHub repository},
166
+ howpublished = {\url{https://github.com/huggingface/parler-tts}}
167
+ }
168
+ ```
169
+
170
+ ```
171
+ @misc{lyth2024natural,
172
+ title={Natural language guidance of high-fidelity text-to-speech with synthetic annotations},
173
+ author={Dan Lyth and Simon King},
174
+ year={2024},
175
+ eprint={2402.01912},
176
+ archivePrefix={arXiv},
177
+ primaryClass={cs.SD}
178
+ }
179
+ ```
180
+
181
+ ## Contribution
182
+
183
+ Contributions are welcome, as the project offers many possibilities for improvement and exploration.
184
+
185
+ Namely, we're looking at ways to improve both quality and speed:
186
+ - Datasets:
187
+ - Train on more data
188
+ - Add more features such as accents
189
+ - Training:
190
+ - Add PEFT compatibility to do Lora fine-tuning.
191
+ - Add possibility to train without description column.
192
+ - Add notebook training.
193
+ - Explore multilingual training.
194
+ - Explore mono-speaker finetuning.
195
+ - Explore more architectures.
196
+ - Optimization:
197
+ - Compilation and static cache
198
+ - Support to FA2 and SDPA
199
+ - Evaluation:
200
+ - Add more evaluation metrics
201
+
parler-tts/helpers/gradio_demo/app.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from transformers import AutoFeatureExtractor, AutoTokenizer, set_seed
4
+
5
+ from parler_tts import ParlerTTSForConditionalGeneration
6
+
7
+
8
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
9
+
10
+ repo_id = "parler-tts/parler_tts_mini_v0.1"
11
+
12
+ model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
13
+ tokenizer = AutoTokenizer.from_pretrained(repo_id)
14
+ feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
15
+
16
+
17
+ SAMPLE_RATE = feature_extractor.sampling_rate
18
+ SEED = 41
19
+
20
+ default_text = "Please surprise me and speak in whatever voice you enjoy."
21
+
22
+ title = "# Parler-TTS </div>"
23
+
24
+ examples = [
25
+ [
26
+ "'This is the best time of my life, Bartley,' she said happily.",
27
+ "A female speaker with a slightly low-pitched, quite monotone voice delivers her words at a slightly faster-than-average pace in a confined space with very clear audio.",
28
+ ],
29
+ [
30
+ "Montrose also, after having experienced still more variety of good and bad fortune, threw down his arms, and retired out of the kingdom. ",
31
+ "A male speaker with a slightly high-pitched voice delivering his words at a slightly slow pace in a small, confined space with a touch of background noise and a quite monotone tone.",
32
+ ],
33
+ [
34
+ "montrose also after having experienced still more variety of good and bad fortune threw down his arms and retired out of the kingdom",
35
+ "A male speaker with a low-pitched voice delivering his words at a fast pace in a small, confined space with a lot of background noise and an animated tone.",
36
+ ],
37
+ ]
38
+
39
+
40
+ def gen_tts(text, description):
41
+ inputs = tokenizer(description, return_tensors="pt").to(device)
42
+ prompt = tokenizer(text, return_tensors="pt").to(device)
43
+
44
+ set_seed(SEED)
45
+ generation = model.generate(
46
+ input_ids=inputs.input_ids, prompt_input_ids=prompt.input_ids, do_sample=True, temperature=1.0
47
+ )
48
+ audio_arr = generation.cpu().numpy().squeeze()
49
+
50
+ return (SAMPLE_RATE, audio_arr)
51
+
52
+
53
+ css = """
54
+ #share-btn-container {
55
+ display: flex;
56
+ padding-left: 0.5rem !important;
57
+ padding-right: 0.5rem !important;
58
+ background-color: #000000;
59
+ justify-content: center;
60
+ align-items: center;
61
+ border-radius: 9999px !important;
62
+ width: 13rem;
63
+ margin-top: 10px;
64
+ margin-left: auto;
65
+ flex: unset !important;
66
+ }
67
+ #share-btn {
68
+ all: initial;
69
+ color: #ffffff;
70
+ font-weight: 600;
71
+ cursor: pointer;
72
+ font-family: 'IBM Plex Sans', sans-serif;
73
+ margin-left: 0.5rem !important;
74
+ padding-top: 0.25rem !important;
75
+ padding-bottom: 0.25rem !important;
76
+ right:0;
77
+ }
78
+ #share-btn * {
79
+ all: unset !important;
80
+ }
81
+ #share-btn-container div:nth-child(-n+2){
82
+ width: auto !important;
83
+ min-height: 0px !important;
84
+ }
85
+ #share-btn-container .wrap {
86
+ display: none !important;
87
+ }
88
+ """
89
+ with gr.Blocks(css=css) as block:
90
+ gr.Markdown(title)
91
+ with gr.Row():
92
+ with gr.Column():
93
+ input_text = gr.Textbox(label="Input Text", lines=2, value=default_text, elem_id="input_text")
94
+ description = gr.Textbox(label="Description", lines=2, value="", elem_id="input_description")
95
+ run_button = gr.Button("Generate Audio", variant="primary")
96
+ with gr.Column():
97
+ audio_out = gr.Audio(label="Parler-TTS generation", type="numpy", elem_id="audio_out")
98
+
99
+ inputs = [input_text, description]
100
+ outputs = [audio_out]
101
+ gr.Examples(examples=examples, fn=gen_tts, inputs=inputs, outputs=outputs, cache_examples=True)
102
+ run_button.click(fn=gen_tts, inputs=inputs, outputs=outputs, queue=True)
103
+
104
+ block.queue()
105
+ block.launch(share=True)
parler-tts/helpers/model_init_scripts/init_dummy_model.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+
4
+ from transformers import AutoConfig
5
+
6
+ from parler_tts import ParlerTTSDecoderConfig, ParlerTTSForCausalLM, ParlerTTSForConditionalGeneration
7
+
8
+
9
+ if __name__ == "__main__":
10
+ parser = argparse.ArgumentParser()
11
+ parser.add_argument("save_directory", type=str, help="Directory where to save the model and the decoder.")
12
+ parser.add_argument("--text_model", type=str, help="Repository id or path to the text encoder.")
13
+ parser.add_argument("--audio_model", type=str, help="Repository id or path to the audio encoder.")
14
+
15
+ args = parser.parse_args()
16
+
17
+ text_model = args.text_model
18
+ encodec_version = args.audio_model
19
+
20
+ t5 = AutoConfig.from_pretrained(text_model)
21
+ encodec = AutoConfig.from_pretrained(encodec_version)
22
+
23
+ encodec_vocab_size = encodec.codebook_size
24
+ num_codebooks = encodec.num_codebooks
25
+ print("num_codebooks", num_codebooks)
26
+
27
+ decoder_config = ParlerTTSDecoderConfig(
28
+ vocab_size=encodec_vocab_size + 1,
29
+ max_position_embeddings=2048,
30
+ num_hidden_layers=4,
31
+ ffn_dim=512,
32
+ num_attention_heads=8,
33
+ layerdrop=0.0,
34
+ use_cache=True,
35
+ activation_function="gelu",
36
+ hidden_size=512,
37
+ dropout=0.0,
38
+ attention_dropout=0.0,
39
+ activation_dropout=0.0,
40
+ pad_token_id=encodec_vocab_size,
41
+ eos_token_id=encodec_vocab_size,
42
+ bos_token_id=encodec_vocab_size + 1,
43
+ num_codebooks=num_codebooks,
44
+ )
45
+
46
+ decoder = ParlerTTSForCausalLM(decoder_config)
47
+ decoder.save_pretrained(os.path.join(args.save_directory, "decoder"))
48
+
49
+ model = ParlerTTSForConditionalGeneration.from_sub_models_pretrained(
50
+ text_encoder_pretrained_model_name_or_path=text_model,
51
+ audio_encoder_pretrained_model_name_or_path=encodec_version,
52
+ decoder_pretrained_model_name_or_path=os.path.join(args.save_directory, "decoder"),
53
+ vocab_size=t5.vocab_size,
54
+ )
55
+
56
+ # set the appropriate bos/pad token ids
57
+ model.generation_config.decoder_start_token_id = encodec_vocab_size + 1
58
+ model.generation_config.pad_token_id = encodec_vocab_size
59
+ model.generation_config.eos_token_id = encodec_vocab_size
60
+
61
+ # set other default generation config params
62
+ model.generation_config.max_length = int(30 * model.audio_encoder.config.frame_rate)
63
+ model.generation_config.do_sample = True # True
64
+
65
+
66
+ model.config.pad_token_id = encodec_vocab_size
67
+ model.config.decoder_start_token_id = encodec_vocab_size + 1
68
+
69
+ model.save_pretrained(os.path.join(args.save_directory, "tiny-model"))
parler-tts/helpers/model_init_scripts/init_dummy_model_with_encodec.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+
4
+ from transformers import AutoConfig
5
+
6
+ from parler_tts import ParlerTTSDecoderConfig, ParlerTTSForCausalLM, ParlerTTSForConditionalGeneration
7
+
8
+
9
+ if __name__ == "__main__":
10
+ parser = argparse.ArgumentParser()
11
+ parser.add_argument("save_directory", type=str, help="Directory where to save the model and the decoder.")
12
+ args = parser.parse_args()
13
+
14
+ text_model = "google-t5/t5-small"
15
+ encodec_version = "facebook/encodec_24khz"
16
+
17
+ t5 = AutoConfig.from_pretrained(text_model)
18
+ encodec = AutoConfig.from_pretrained(encodec_version)
19
+
20
+ encodec_vocab_size = encodec.codebook_size
21
+ num_codebooks = 8
22
+ print("num_codebooks", num_codebooks)
23
+
24
+ decoder_config = ParlerTTSDecoderConfig(
25
+ vocab_size=encodec_vocab_size + 1,
26
+ max_position_embeddings=2048,
27
+ num_hidden_layers=4,
28
+ ffn_dim=512,
29
+ num_attention_heads=8,
30
+ layerdrop=0.0,
31
+ use_cache=True,
32
+ activation_function="gelu",
33
+ hidden_size=512,
34
+ dropout=0.0,
35
+ attention_dropout=0.0,
36
+ activation_dropout=0.0,
37
+ pad_token_id=encodec_vocab_size,
38
+ eos_token_id=encodec_vocab_size,
39
+ bos_token_id=encodec_vocab_size + 1,
40
+ num_codebooks=num_codebooks,
41
+ )
42
+
43
+ decoder = ParlerTTSForCausalLM(decoder_config)
44
+
45
+ decoder.save_pretrained(os.path.join(args.save_directory, "decoder"))
46
+
47
+ model = ParlerTTSForConditionalGeneration.from_sub_models_pretrained(
48
+ text_encoder_pretrained_model_name_or_path=text_model,
49
+ audio_encoder_pretrained_model_name_or_path=encodec_version,
50
+ decoder_pretrained_model_name_or_path=os.path.join(args.save_directory, "decoder"),
51
+ vocab_size=t5.vocab_size,
52
+ )
53
+
54
+ # set the appropriate bos/pad token ids
55
+ model.generation_config.decoder_start_token_id = encodec_vocab_size + 1
56
+ model.generation_config.pad_token_id = encodec_vocab_size
57
+ model.generation_config.eos_token_id = encodec_vocab_size
58
+
59
+ # set other default generation config params
60
+ model.generation_config.max_length = int(30 * model.audio_encoder.config.frame_rate)
61
+ model.generation_config.do_sample = True # True
62
+
63
+
64
+ model.config.pad_token_id = encodec_vocab_size
65
+ model.config.decoder_start_token_id = encodec_vocab_size + 1
66
+
67
+ model.save_pretrained(os.path.join(args.save_directory, "tiny-model"))
parler-tts/helpers/model_init_scripts/init_large_model.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from parler_tts import ParlerTTSForCausalLM, ParlerTTSForConditionalGeneration, ParlerTTSDecoderConfig
2
+ from transformers import AutoConfig
3
+ import os
4
+ import argparse
5
+
6
+
7
+ if __name__ == "__main__":
8
+ parser = argparse.ArgumentParser()
9
+ parser.add_argument("save_directory", type=str, help="Directory where to save the model and the decoder.")
10
+ parser.add_argument("--text_model", type=str, help="Repository id or path to the text encoder.")
11
+ parser.add_argument("--audio_model", type=str, help="Repository id or path to the audio encoder.")
12
+
13
+ args = parser.parse_args()
14
+
15
+ text_model = args.text_model
16
+ encodec_version = args.audio_model
17
+
18
+ t5 = AutoConfig.from_pretrained(text_model)
19
+ encodec = AutoConfig.from_pretrained(encodec_version)
20
+
21
+ encodec_vocab_size = encodec.codebook_size
22
+ num_codebooks = encodec.num_codebooks
23
+ print("num_codebooks", num_codebooks)
24
+
25
+ decoder_config = ParlerTTSDecoderConfig(
26
+ vocab_size=encodec_vocab_size + 64, # + 64 instead of +1 to have a multiple of 64
27
+ max_position_embeddings=4096, # 30 s = 2580
28
+ num_hidden_layers=30,
29
+ ffn_dim=6144,
30
+ num_attention_heads=24,
31
+ num_key_value_heads=24,
32
+ layerdrop=0.0,
33
+ use_cache=True,
34
+ activation_function="gelu",
35
+ hidden_size=1536,
36
+ dropout=0.1,
37
+ attention_dropout=0.0,
38
+ activation_dropout=0.0,
39
+ pad_token_id=encodec_vocab_size,
40
+ eos_token_id=encodec_vocab_size,
41
+ bos_token_id=encodec_vocab_size + 1,
42
+ num_codebooks=num_codebooks,
43
+ )
44
+
45
+ decoder = ParlerTTSForCausalLM(decoder_config)
46
+ decoder.save_pretrained(os.path.join(args.save_directory, "decoder"))
47
+
48
+ model = ParlerTTSForConditionalGeneration.from_sub_models_pretrained(
49
+ text_encoder_pretrained_model_name_or_path=text_model,
50
+ audio_encoder_pretrained_model_name_or_path=encodec_version,
51
+ decoder_pretrained_model_name_or_path=os.path.join(args.save_directory, "decoder"),
52
+ vocab_size=t5.vocab_size,
53
+ )
54
+
55
+ # set the appropriate bos/pad token ids
56
+ model.generation_config.decoder_start_token_id = encodec_vocab_size + 1
57
+ model.generation_config.pad_token_id = encodec_vocab_size
58
+ model.generation_config.eos_token_id = encodec_vocab_size
59
+
60
+ # set other default generation config params
61
+ model.generation_config.max_length = int(30 * model.audio_encoder.config.frame_rate)
62
+ model.generation_config.do_sample = True # True
63
+
64
+
65
+ model.config.pad_token_id = encodec_vocab_size
66
+ model.config.decoder_start_token_id = encodec_vocab_size + 1
67
+
68
+ model.save_pretrained(os.path.join(args.save_directory, "parler-tts-untrained-larger/"))
parler-tts/helpers/model_init_scripts/init_model_600M.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+
4
+ from transformers import AutoConfig
5
+
6
+ from parler_tts import ParlerTTSDecoderConfig, ParlerTTSForCausalLM, ParlerTTSForConditionalGeneration
7
+
8
+
9
+ if __name__ == "__main__":
10
+ parser = argparse.ArgumentParser()
11
+ parser.add_argument("save_directory", type=str, help="Directory where to save the model and the decoder.")
12
+ parser.add_argument("--text_model", type=str, help="Repository id or path to the text encoder.")
13
+ parser.add_argument("--audio_model", type=str, help="Repository id or path to the audio encoder.")
14
+
15
+ args = parser.parse_args()
16
+
17
+ text_model = args.text_model
18
+ encodec_version = args.audio_model
19
+
20
+ t5 = AutoConfig.from_pretrained(text_model)
21
+ encodec = AutoConfig.from_pretrained(encodec_version)
22
+
23
+ encodec_vocab_size = encodec.codebook_size
24
+ num_codebooks = encodec.num_codebooks
25
+ print("num_codebooks", num_codebooks)
26
+
27
+ decoder_config = ParlerTTSDecoderConfig(
28
+ vocab_size=encodec_vocab_size + 64, # + 64 instead of +1 to have a multiple of 64
29
+ max_position_embeddings=4096, # 30 s = 2580
30
+ num_hidden_layers=24,
31
+ ffn_dim=4096,
32
+ num_attention_heads=16,
33
+ layerdrop=0.0,
34
+ use_cache=True,
35
+ activation_function="gelu",
36
+ hidden_size=1024,
37
+ dropout=0.1,
38
+ attention_dropout=0.0,
39
+ activation_dropout=0.0,
40
+ pad_token_id=encodec_vocab_size,
41
+ eos_token_id=encodec_vocab_size,
42
+ bos_token_id=encodec_vocab_size + 1,
43
+ num_codebooks=num_codebooks,
44
+ )
45
+
46
+ decoder = ParlerTTSForCausalLM(decoder_config)
47
+ decoder.save_pretrained(os.path.join(args.save_directory, "decoder"))
48
+
49
+ model = ParlerTTSForConditionalGeneration.from_sub_models_pretrained(
50
+ text_encoder_pretrained_model_name_or_path=text_model,
51
+ audio_encoder_pretrained_model_name_or_path=encodec_version,
52
+ decoder_pretrained_model_name_or_path=os.path.join(args.save_directory, "decoder"),
53
+ vocab_size=t5.vocab_size,
54
+ )
55
+
56
+ # set the appropriate bos/pad token ids
57
+ model.generation_config.decoder_start_token_id = encodec_vocab_size + 1
58
+ model.generation_config.pad_token_id = encodec_vocab_size
59
+ model.generation_config.eos_token_id = encodec_vocab_size
60
+
61
+ # set other default generation config params
62
+ model.generation_config.max_length = int(30 * model.audio_encoder.config.frame_rate)
63
+ model.generation_config.do_sample = True # True
64
+
65
+ model.config.pad_token_id = encodec_vocab_size
66
+ model.config.decoder_start_token_id = encodec_vocab_size + 1
67
+
68
+ model.save_pretrained(os.path.join(args.save_directory, "parler-tts-untrained-600M/"))
parler-tts/helpers/push_to_hub_scripts/push_dac_to_hub.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import dac
2
+ from transformers import AutoConfig, AutoModel, EncodecFeatureExtractor
3
+
4
+ from parler_tts import DACConfig, DACModel
5
+ from transformers import AutoConfig, AutoModel
6
+ from transformers import EncodecFeatureExtractor
7
+
8
+ from importlib.metadata import version
9
+ from packaging.version import Version
10
+
11
+ if Version(version("transformers"))<= Version("4.44.2dev"):
12
+ AutoConfig.register("dac", DACConfig)
13
+ else:
14
+ AutoConfig.register("dac_on_the_hub", DACConfig)
15
+
16
+ AutoModel.register(DACConfig, DACModel)
17
+
18
+ # Download a model
19
+ model_path = dac.utils.download(model_type="44khz")
20
+ model = dac.DAC.load(model_path)
21
+
22
+ hf_dac = DACModel(DACConfig())
23
+ hf_dac.model.load_state_dict(model.state_dict())
24
+
25
+ hf_dac.push_to_hub("parler-tts/dac_44khZ_8kbps")
26
+ EncodecFeatureExtractor(sampling_rate=44100).push_to_hub("parler-tts/dac_44khZ_8kbps")
parler-tts/helpers/push_to_hub_scripts/push_trained_parler_tts_to_hub.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoFeatureExtractor, AutoTokenizer
2
+
3
+ from parler_tts import ParlerTTSForConditionalGeneration
4
+
5
+
6
+ path = "TODO"
7
+ repo_id = "parler_tts_600M"
8
+
9
+
10
+ AutoFeatureExtractor.from_pretrained("ylacombe/dac_44khZ_8kbps").push_to_hub(repo_id)
11
+ AutoTokenizer.from_pretrained("google/t5-v1_1-base").push_to_hub(repo_id)
12
+
13
+ ParlerTTSForConditionalGeneration.from_pretrained(path).push_to_hub(repo_id)
parler-tts/helpers/training_configs/librispeech_tts_r_300M_dummy.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_name_or_path": "./parler-tts-untrained-600M/parler-tts-untrained-600M/",
3
+ "save_to_disk": "./tmp_dataset_audio/",
4
+ "temporary_save_to_disk": "./audio_code_tmp/",
5
+
6
+
7
+ "feature_extractor_name":"ylacombe/dac_44khZ_8kbps",
8
+ "description_tokenizer_name":"google/flan-t5-base",
9
+ "prompt_tokenizer_name":"google/flan-t5-base",
10
+
11
+ "report_to": ["wandb"],
12
+ "overwrite_output_dir": true,
13
+ "output_dir": "./output_dir_training",
14
+
15
+ "train_dataset_name": "blabble-io/libritts_r",
16
+ "train_metadata_dataset_name": "parler-tts/libritts_r_tags_tagged_10k_generated",
17
+ "train_dataset_config_name": "clean",
18
+ "train_split_name": "test.clean",
19
+
20
+ "eval_dataset_name": "blabble-io/libritts_r",
21
+ "eval_metadata_dataset_name": "parler-tts/libritts_r_tags_tagged_10k_generated",
22
+ "eval_dataset_config_name": "clean",
23
+ "eval_split_name": "test.clean",
24
+
25
+ "target_audio_column_name": "audio",
26
+ "description_column_name": "text_description",
27
+ "prompt_column_name": "text",
28
+
29
+ "max_eval_samples": 48,
30
+ "max_train_samples": 96,
31
+
32
+ "max_duration_in_seconds": 20,
33
+ "min_duration_in_seconds": 2.0,
34
+
35
+ "add_audio_samples_to_wandb": true,
36
+ "id_column_name": "id",
37
+
38
+ "preprocessing_num_workers": 8,
39
+
40
+ "do_train": true,
41
+ "num_train_epochs": 50,
42
+ "gradient_accumulation_steps": 1,
43
+ "gradient_checkpointing": false,
44
+ "per_device_train_batch_size": 4,
45
+ "learning_rate": 1e-3,
46
+ "adam_beta1": 0.9,
47
+ "adam_beta2": 0.99,
48
+ "weight_decay": 0.01,
49
+
50
+ "lr_scheduler_type": "cosine",
51
+ "warmup_steps": 40,
52
+
53
+
54
+ "logging_steps": 2,
55
+ "freeze_text_encoder": true,
56
+
57
+
58
+ "do_eval": true,
59
+ "predict_with_generate": true,
60
+ "include_inputs_for_metrics": true,
61
+ "evaluation_strategy": "steps",
62
+ "eval_steps": 500,
63
+ "save_steps": 5000,
64
+
65
+ "per_device_eval_batch_size": 12,
66
+
67
+ "audio_encoder_per_device_batch_size":24,
68
+ "dtype": "bfloat16",
69
+ "seed": 456,
70
+
71
+ "dataloader_num_workers":8
72
+ }
parler-tts/helpers/training_configs/starting_point_0.01.json ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_name_or_path": "./parler-tts-untrained-600M/parler-tts-untrained-600M/",
3
+ "save_to_disk": "./tmp_dataset_audio/",
4
+ "temporary_save_to_disk": "./audio_code_tmp/",
5
+
6
+
7
+ "feature_extractor_name":"ylacombe/dac_44khZ_8kbps",
8
+ "description_tokenizer_name":"google/flan-t5-base",
9
+ "prompt_tokenizer_name":"google/flan-t5-base",
10
+
11
+ "report_to": ["wandb"],
12
+ "overwrite_output_dir": true,
13
+ "output_dir": "./output_dir_training",
14
+
15
+ "train_dataset_name": "blabble-io/libritts_r+blabble-io/libritts_r+blabble-io/libritts_r+parler-tts/mls_eng_10k",
16
+ "train_metadata_dataset_name": "parler-tts/libritts_r_tags_tagged_10k_generated+parler-tts/libritts_r_tags_tagged_10k_generated+parler-tts/libritts_r_tags_tagged_10k_generated+parler-tts/mls-eng-10k-tags_tagged_10k_generated",
17
+ "train_dataset_config_name": "clean+clean+other+default",
18
+ "train_split_name": "train.clean.360+train.clean.100+train.other.500+train",
19
+
20
+ "eval_dataset_name": "blabble-io/libritts_r+parler-tts/mls_eng_10k",
21
+ "eval_metadata_dataset_name": "parler-tts/libritts_r_tags_tagged_10k_generated+parler-tts/mls-eng-10k-tags_tagged_10k_generated",
22
+ "eval_dataset_config_name": "other+default",
23
+ "eval_split_name": "test.other+test",
24
+
25
+ "target_audio_column_name": "audio",
26
+ "description_column_name": "text_description",
27
+ "prompt_column_name": "text",
28
+
29
+ "max_eval_samples": 96,
30
+
31
+ "max_duration_in_seconds": 30,
32
+ "min_duration_in_seconds": 2.0,
33
+ "max_text_length": 400,
34
+
35
+ "group_by_length": true,
36
+
37
+ "add_audio_samples_to_wandb": true,
38
+ "id_column_name": "id",
39
+
40
+ "preprocessing_num_workers": 8,
41
+
42
+ "do_train": true,
43
+ "num_train_epochs": 40,
44
+ "gradient_accumulation_steps": 8,
45
+ "gradient_checkpointing": false,
46
+ "per_device_train_batch_size": 3,
47
+ "learning_rate": 0.00095,
48
+ "adam_beta1": 0.9,
49
+ "adam_beta2": 0.99,
50
+ "weight_decay": 0.01,
51
+
52
+ "lr_scheduler_type": "constant_with_warmup",
53
+ "warmup_steps": 20000,
54
+
55
+
56
+ "logging_steps": 1000,
57
+ "freeze_text_encoder": true,
58
+
59
+
60
+ "do_eval": true,
61
+ "predict_with_generate": true,
62
+ "include_inputs_for_metrics": true,
63
+ "evaluation_strategy": "steps",
64
+ "eval_steps": 10000,
65
+ "save_steps": 10000,
66
+
67
+ "per_device_eval_batch_size": 12,
68
+
69
+ "audio_encoder_per_device_batch_size":20,
70
+ "dtype": "bfloat16",
71
+ "seed": 456,
72
+
73
+ "dataloader_num_workers":8
74
+ }
parler-tts/helpers/training_configs/starting_point_v1.json ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_name_or_path": "./parler-tts-untrained-600M/parler-tts-untrained-600M/",
3
+ "save_to_disk": "./tmp_dataset_audio/",
4
+ "temporary_save_to_disk": "./audio_code_tmp/",
5
+ "wandb_project": "parler-tts-50k-hours",
6
+ "wandb_run_name": "Mini",
7
+
8
+ "feature_extractor_name":"ylacombe/dac_44khZ_8kbps",
9
+ "description_tokenizer_name":"google/flan-t5-large",
10
+ "prompt_tokenizer_name":"google/flan-t5-large",
11
+
12
+ "report_to": ["wandb"],
13
+ "overwrite_output_dir": true,
14
+ "output_dir": "./output_dir_training",
15
+
16
+ "train_dataset_name": "ylacombe/libritts_r_filtered+ylacombe/libritts_r_filtered+ylacombe/libritts_r_filtered+parler-tts/mls_eng",
17
+ "train_metadata_dataset_name": "ylacombe/libritts-r-filtered-descriptions-10k-v5-without-accents+ylacombe/libritts-r-filtered-descriptions-10k-v5-without-accents+ylacombe/libritts-r-filtered-descriptions-10k-v5-without-accents+ylacombe/mls-eng-descriptions-v4",
18
+ "train_dataset_config_name": "clean+clean+other+default",
19
+ "train_split_name": "train.clean.360+train.clean.100+train.other.500+train",
20
+
21
+ "eval_dataset_name": "ylacombe/libritts_r_filtered+parler-tts/mls_eng",
22
+ "eval_metadata_dataset_name": "ylacombe/libritts-r-filtered-descriptions-10k-v5-without-accents+ylacombe/mls-eng-descriptions-v4",
23
+ "eval_dataset_config_name": "other+default",
24
+ "eval_split_name": "test.other+test",
25
+
26
+ "target_audio_column_name": "audio",
27
+ "description_column_name": "text_description",
28
+ "prompt_column_name": "text",
29
+
30
+ "max_eval_samples": 96,
31
+
32
+ "max_duration_in_seconds": 30,
33
+ "min_duration_in_seconds": 2.0,
34
+ "max_text_length": 600,
35
+
36
+ "group_by_length": true,
37
+
38
+ "add_audio_samples_to_wandb": true,
39
+ "id_column_name": "id",
40
+
41
+ "preprocessing_num_workers": 8,
42
+
43
+ "do_train": true,
44
+ "num_train_epochs": 4,
45
+ "gradient_accumulation_steps": 4,
46
+ "gradient_checkpointing": false,
47
+ "per_device_train_batch_size": 6,
48
+ "learning_rate": 0.00095,
49
+ "adam_beta1": 0.9,
50
+ "adam_beta2": 0.99,
51
+ "weight_decay": 0.01,
52
+
53
+ "lr_scheduler_type": "constant_with_warmup",
54
+ "warmup_steps": 20000,
55
+
56
+
57
+ "logging_steps": 1000,
58
+ "freeze_text_encoder": true,
59
+
60
+
61
+ "do_eval": true,
62
+ "predict_with_generate": true,
63
+ "include_inputs_for_metrics": true,
64
+ "evaluation_strategy": "steps",
65
+ "eval_steps": 10000,
66
+ "save_steps": 10000,
67
+
68
+ "per_device_eval_batch_size": 4,
69
+
70
+ "audio_encoder_per_device_batch_size":24,
71
+ "dtype": "bfloat16",
72
+ "seed": 456,
73
+
74
+ "dataloader_num_workers":8,
75
+ "attn_implementation": "sdpa"
76
+ }
parler-tts/helpers/training_configs/starting_point_v1_large.json ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_name_or_path": "./parler-tts-untrained-large/parler-tts-untrained-large",
3
+ "save_to_disk": "./tmp_dataset_audio/",
4
+ "temporary_save_to_disk": "./audio_code_tmp/",
5
+ "wandb_project": "parler-tts-50k-hours",
6
+ "wandb_run_name": "Large",
7
+
8
+ "feature_extractor_name":"ylacombe/dac_44khZ_8kbps",
9
+ "description_tokenizer_name":"google/flan-t5-large",
10
+ "prompt_tokenizer_name":"google/flan-t5-large",
11
+
12
+ "report_to": ["wandb"],
13
+ "overwrite_output_dir": true,
14
+ "output_dir": "./output_dir_training",
15
+
16
+ "train_dataset_name": "ylacombe/libritts_r_filtered+ylacombe/libritts_r_filtered+ylacombe/libritts_r_filtered+parler-tts/mls_eng",
17
+ "train_metadata_dataset_name": "ylacombe/libritts-r-filtered-descriptions-10k-v5-without-accents+ylacombe/libritts-r-filtered-descriptions-10k-v5-without-accents+ylacombe/libritts-r-filtered-descriptions-10k-v5-without-accents+ylacombe/mls-eng-descriptions-v4",
18
+ "train_dataset_config_name": "clean+clean+other+default",
19
+ "train_split_name": "train.clean.360+train.clean.100+train.other.500+train",
20
+
21
+ "eval_dataset_name": "ylacombe/libritts_r_filtered+parler-tts/mls_eng",
22
+ "eval_metadata_dataset_name": "ylacombe/libritts-r-filtered-descriptions-10k-v5-without-accents+ylacombe/mls-eng-descriptions-v4",
23
+ "eval_dataset_config_name": "other+default",
24
+ "eval_split_name": "test.other+test",
25
+
26
+ "target_audio_column_name": "audio",
27
+ "description_column_name": "text_description",
28
+ "prompt_column_name": "text",
29
+
30
+ "max_eval_samples": 96,
31
+
32
+ "max_duration_in_seconds": 30,
33
+ "min_duration_in_seconds": 2.0,
34
+ "max_text_length": 600,
35
+
36
+ "group_by_length": true,
37
+
38
+ "add_audio_samples_to_wandb": true,
39
+ "id_column_name": "id",
40
+
41
+ "preprocessing_num_workers": 8,
42
+
43
+ "do_train": true,
44
+ "num_train_epochs": 4,
45
+ "gradient_accumulation_steps": 4,
46
+ "gradient_checkpointing": false,
47
+ "per_device_train_batch_size": 3,
48
+ "learning_rate": 0.0015,
49
+ "adam_beta1": 0.9,
50
+ "adam_beta2": 0.99,
51
+ "weight_decay": 0.01,
52
+
53
+ "lr_scheduler_type": "constant_with_warmup",
54
+ "warmup_steps": 10000,
55
+
56
+
57
+ "logging_steps": 1000,
58
+ "freeze_text_encoder": true,
59
+
60
+
61
+ "do_eval": true,
62
+ "predict_with_generate": true,
63
+ "include_inputs_for_metrics": true,
64
+ "evaluation_strategy": "steps",
65
+ "eval_steps": 10000,
66
+ "save_steps": 10000,
67
+ "save_total_limit": 10,
68
+
69
+ "per_device_eval_batch_size": 6,
70
+
71
+ "audio_encoder_per_device_batch_size":24,
72
+ "dtype": "bfloat16",
73
+ "seed": 738,
74
+
75
+ "dataloader_num_workers":8,
76
+ "attn_implementation": "sdpa"
77
+ }
parler-tts/parler_tts/__init__.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ __version__ = "0.2.2"
2
+
3
+
4
+ from transformers import AutoConfig, AutoModel
5
+
6
+ from .configuration_parler_tts import ParlerTTSConfig, ParlerTTSDecoderConfig
7
+ from .dac_wrapper import DACConfig, DACModel
8
+ from .modeling_parler_tts import (
9
+ ParlerTTSForCausalLM,
10
+ ParlerTTSForConditionalGeneration,
11
+ apply_delay_pattern_mask,
12
+ build_delay_pattern_mask,
13
+ )
14
+
15
+ from .streamer import ParlerTTSStreamer
16
+
17
+ from importlib.metadata import version
18
+ from packaging.version import Version
19
+
20
+ if Version(version("transformers"))<= Version("4.44.2dev"):
21
+ AutoConfig.register("dac", DACConfig)
22
+ else:
23
+ AutoConfig.register("dac_on_the_hub", DACConfig)
24
+
25
+ AutoModel.register(DACConfig, DACModel)
parler-tts/parler_tts/configuration_parler_tts.py ADDED
@@ -0,0 +1,291 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Parler-TTS model configuration"""
16
+
17
+ from transformers import AutoConfig, logging
18
+ from transformers.configuration_utils import PretrainedConfig
19
+
20
+ from importlib.metadata import version
21
+ from packaging.version import Version
22
+
23
+ use_dac_on_the_hub = Version(version("transformers")) > Version("4.44.2dev")
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+ PARLER_TTS_PRETRAINED_CONFIG_ARCHIVE_MAP = {
28
+ "parler-tts/parler-tts-mini-v1": "https://huggingface.co/parler-tts/parler-tts-mini-v1/resolve/main/config.json",
29
+ # See all ParlerTTS models at https://huggingface.co/models?filter=parler_tts
30
+ }
31
+
32
+
33
+ class ParlerTTSDecoderConfig(PretrainedConfig):
34
+ r"""
35
+ This is the configuration class to store the configuration of an [`ParlerTTSDecoder`]. It is used to instantiate a
36
+ Parler-TTS decoder according to the specified arguments, defining the model architecture. Instantiating a
37
+ configuration with the defaults will yield a similar configuration to that of the Parler-TTS
38
+ [parler-tts/parler-tts-mini-v1](https://huggingface.co/parler-tts/parler-tts-mini-v1) architecture.
39
+
40
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
41
+ documentation from [`PretrainedConfig`] for more information.
42
+
43
+
44
+ Args:
45
+ vocab_size (`int`, *optional*, defaults to 2049):
46
+ Vocabulary size of the ParlerTTSDecoder model. Defines the number of different tokens that can be
47
+ represented by the `inputs_ids` passed when calling [`ParlerTTSDecoder`].
48
+ hidden_size (`int`, *optional*, defaults to 1024):
49
+ Dimensionality of the layers and the pooler layer.
50
+ num_hidden_layers (`int`, *optional*, defaults to 24):
51
+ Number of decoder layers.
52
+ num_attention_heads (`int`, *optional*, defaults to 16):
53
+ Number of attention heads for each attention layer in the Transformer block.
54
+ num_key_value_heads (`int`, *optional*):
55
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
56
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
57
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
58
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
59
+ by meanpooling all the original heads within that group. For more details checkout [this
60
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
61
+ `num_attention_heads`.
62
+ num_cross_attention_key_value_heads (`int`, *optional*):
63
+ This is the number of key_value heads that should be used to implement Grouped Query Attention in the cross-attention layers.
64
+ If it is not specified, will default to `num_key_value_heads`.
65
+ ffn_dim (`int`, *optional*, defaults to 4096):
66
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer block.
67
+ activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
68
+ The non-linear activation function (function or string) in the decoder and pooler. If string, `"gelu"`,
69
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
70
+ dropout (`float`, *optional*, defaults to 0.1):
71
+ The dropout probability for all fully connected layers in the embeddings, text_encoder, and pooler.
72
+ attention_dropout (`float`, *optional*, defaults to 0.0):
73
+ The dropout ratio for the attention probabilities.
74
+ activation_dropout (`float`, *optional*, defaults to 0.0):
75
+ The dropout ratio for activations inside the fully connected layer.
76
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
77
+ The maximum sequence length that this model might ever be used with. Typically, set this to something large
78
+ just in case (e.g., 512 or 1024 or 2048).
79
+ initializer_factor (`float`, *optional*, defaults to 0.02):
80
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
81
+ layerdrop (`float`, *optional*, defaults to 0.0):
82
+ The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
83
+ for more details.
84
+ scale_embedding (`bool`, *optional*, defaults to `False`):
85
+ Scale embeddings by diving by sqrt(hidden_size).
86
+ use_cache (`bool`, *optional*, defaults to `True`):
87
+ Whether the model should return the last key/values attentions (not used by all models)
88
+ num_codebooks (`int`, *optional*, defaults to 4):
89
+ The number of parallel codebooks forwarded to the model.
90
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
91
+ Whether input and output word embeddings should be tied.
92
+ rope_embeddings (`bool`, *optional*, defaults to `False`):
93
+ Whether to use ROPE or absolute positional embeddings.
94
+ rope_theta (`float`, *optional*, defaults to 100000.0):
95
+ The base period of the RoPE embeddings.
96
+ cross_attention_implementation_strategy (`str`, *optional*):
97
+ If not specified, the cross-attention implementation will be the same as `_attn_implementation`. If `always_eager`, it will always be the eager implementation. If `always_sdpa`, it will always be the sdpa implementation.
98
+ use_fused_lm_heads(`bool`, *optional*, defaults to `False`):
99
+ Whether to fuse audio LM heads instead of applying them sequentially.
100
+ codebook_weights(`List[int]`, *optional*):
101
+ Weights applied to each codebook when computing the loss.
102
+ """
103
+
104
+ model_type = "parler_tts_decoder"
105
+ keys_to_ignore_at_inference = ["past_key_values"]
106
+
107
+ def __init__(
108
+ self,
109
+ vocab_size=2049, # vocab size = 2048 (encodec vocab size) + 1 (eos)
110
+ max_position_embeddings=2048,
111
+ num_hidden_layers=24,
112
+ ffn_dim=4096,
113
+ num_attention_heads=16,
114
+ num_key_value_heads=None,
115
+ num_cross_attention_key_value_heads=None,
116
+ layerdrop=0.0,
117
+ use_cache=True,
118
+ activation_function="gelu",
119
+ hidden_size=1024,
120
+ dropout=0.1,
121
+ attention_dropout=0.0,
122
+ activation_dropout=0.0,
123
+ initializer_factor=0.02,
124
+ scale_embedding=False,
125
+ num_codebooks=4,
126
+ pad_token_id=2048,
127
+ bos_token_id=2049,
128
+ eos_token_id=2048,
129
+ tie_word_embeddings=False,
130
+ rope_embeddings=False,
131
+ rope_theta=10_000.0,
132
+ cross_attention_implementation_strategy=None,
133
+ use_fused_lm_heads=False,
134
+ codebook_weights=None,
135
+ **kwargs,
136
+ ):
137
+ self.vocab_size = vocab_size
138
+ self.max_position_embeddings = max_position_embeddings
139
+ self.hidden_size = hidden_size
140
+ self.ffn_dim = ffn_dim
141
+ self.num_hidden_layers = num_hidden_layers
142
+ self.num_attention_heads = num_attention_heads
143
+ if num_key_value_heads is None:
144
+ num_key_value_heads = num_attention_heads
145
+ self.num_key_value_heads = num_key_value_heads
146
+ if num_cross_attention_key_value_heads is None:
147
+ num_cross_attention_key_value_heads = num_key_value_heads
148
+ self.num_cross_attention_key_value_heads = num_cross_attention_key_value_heads
149
+ self.dropout = dropout
150
+ self.attention_dropout = attention_dropout
151
+ self.activation_dropout = activation_dropout
152
+ self.activation_function = activation_function
153
+ self.initializer_factor = initializer_factor
154
+ self.layerdrop = layerdrop
155
+ self.use_cache = use_cache
156
+ self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
157
+ self.num_codebooks = num_codebooks
158
+ self.rope_embeddings = rope_embeddings
159
+ self.rope_theta = rope_theta
160
+ self.cross_attention_implementation_strategy = cross_attention_implementation_strategy
161
+ self.use_fused_lm_heads = use_fused_lm_heads
162
+ self.codebook_weights = codebook_weights
163
+
164
+ if codebook_weights is not None and len(codebook_weights) != num_codebooks:
165
+ raise ValueError(f"`codebook_weights` has length {len(codebook_weights)} when it should be of length {num_codebooks}.")
166
+ super().__init__(
167
+ pad_token_id=pad_token_id,
168
+ bos_token_id=bos_token_id,
169
+ eos_token_id=eos_token_id,
170
+ tie_word_embeddings=tie_word_embeddings,
171
+ **kwargs,
172
+ )
173
+
174
+
175
+ class ParlerTTSConfig(PretrainedConfig):
176
+ r"""
177
+ This is the configuration class to store the configuration of a [`ParlerTTSModel`]. It is used to instantiate a
178
+ Parler-TTS model according to the specified arguments, defining the text encoder, audio encoder and Parler-TTS decoder
179
+ configs.
180
+
181
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
182
+ documentation from [`PretrainedConfig`] for more information.
183
+
184
+ Args:
185
+ vocab_size (`int`, *optional*, defaults to 1024):
186
+ Vocabulary size of the prompt token ids. Defines the number of different tokens that can be
187
+ represented by the `prompt_inputs_ids`.
188
+ prompt_cross_attention (`bool`, *optional*, defaults to `False`):
189
+ Whether to use cross-attention conditioning for the prompt (as well as the description).
190
+ kwargs (*optional*):
191
+ Dictionary of keyword arguments. Notably:
192
+
193
+ - **text_encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
194
+ defines the text encoder config.
195
+ - **audio_encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
196
+ defines the audio encoder config.
197
+ - **decoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines
198
+ the decoder config.
199
+
200
+ Example:
201
+
202
+ ```python
203
+ >>> from transformers import (
204
+ ... ParlerTTSConfig,
205
+ ... ParlerTTSDecoderConfig,
206
+ ... T5Config,
207
+ ... EncodecConfig,
208
+ ... ParlerTTSForConditionalGeneration,
209
+ ... )
210
+
211
+ >>> # Initializing text encoder, audio encoder, and decoder model configurations
212
+ >>> text_encoder_config = T5Config()
213
+ >>> audio_encoder_config = EncodecConfig()
214
+ >>> decoder_config = ParlerTTSDecoderConfig()
215
+
216
+ >>> configuration = ParlerTTSConfig.from_sub_models_config(
217
+ ... text_encoder_config, audio_encoder_config, decoder_config
218
+ ... )
219
+
220
+ >>> # Initializing a ParlerTTSForConditionalGeneration (with random weights) from the parler-tts/parler-tts-mini-v1 style configuration
221
+ >>> model = ParlerTTSForConditionalGeneration(configuration)
222
+
223
+ >>> # Accessing the model configuration
224
+ >>> configuration = model.config
225
+ >>> config_text_encoder = model.config.text_encoder
226
+ >>> config_audio_encoder = model.config.audio_encoder
227
+ >>> config_decoder = model.config.decoder
228
+
229
+ >>> # Saving the model, including its configuration
230
+ >>> model.save_pretrained("parler_tts-model")
231
+
232
+ >>> # loading model and config from pretrained folder
233
+ >>> parler_tts_config = ParlerTTSConfig.from_pretrained("parler_tts-model")
234
+ >>> model = ParlerTTSForConditionalGeneration.from_pretrained("parler_tts-model", config=parler_tts_config)
235
+ ```"""
236
+
237
+ model_type = "parler_tts"
238
+ is_composition = True
239
+
240
+ def __init__(self, vocab_size=1024, prompt_cross_attention=False, **kwargs):
241
+ super().__init__(**kwargs)
242
+ if "text_encoder" not in kwargs or "audio_encoder" not in kwargs or "decoder" not in kwargs:
243
+ raise ValueError("Config has to be initialized with text_encoder, audio_encoder and decoder config")
244
+
245
+ text_encoder_config = kwargs.pop("text_encoder")
246
+ text_encoder_model_type = text_encoder_config.pop("model_type")
247
+
248
+ audio_encoder_config = kwargs.pop("audio_encoder")
249
+ audio_encoder_model_type = audio_encoder_config.pop("model_type")
250
+
251
+ model_version = kwargs.get("transformers_version", None)
252
+ if model_version is not None and Version(model_version) <= Version("4.44.2dev") and use_dac_on_the_hub and audio_encoder_model_type=="dac":
253
+ # here we have to manually change model type if DAC based on transformers version
254
+ audio_encoder_model_type = "dac_on_the_hub"
255
+
256
+ decoder_config = kwargs.pop("decoder")
257
+
258
+ self.vocab_size = vocab_size
259
+ self.prompt_cross_attention = prompt_cross_attention
260
+ self.text_encoder = AutoConfig.for_model(text_encoder_model_type, **text_encoder_config)
261
+ self.audio_encoder = AutoConfig.for_model(audio_encoder_model_type, **audio_encoder_config)
262
+ self.decoder = ParlerTTSDecoderConfig(**decoder_config)
263
+ self.is_encoder_decoder = True
264
+
265
+ @classmethod
266
+ def from_sub_models_config(
267
+ cls,
268
+ text_encoder_config: PretrainedConfig,
269
+ audio_encoder_config: PretrainedConfig,
270
+ decoder_config: ParlerTTSDecoderConfig,
271
+ **kwargs,
272
+ ):
273
+ r"""
274
+ Instantiate a [`ParlerTTSConfig`] (or a derived class) from text encoder, audio encoder and decoder
275
+ configurations.
276
+
277
+ Returns:
278
+ [`ParlerTTSConfig`]: An instance of a configuration object
279
+ """
280
+
281
+ return cls(
282
+ text_encoder=text_encoder_config.to_dict(),
283
+ audio_encoder=audio_encoder_config.to_dict(),
284
+ decoder=decoder_config.to_dict(),
285
+ **kwargs,
286
+ )
287
+
288
+ @property
289
+ # This is a property because you might want to change the codec model on the fly
290
+ def sampling_rate(self):
291
+ return self.audio_encoder.sampling_rate
parler-tts/parler_tts/dac_wrapper/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from .configuration_dac import DACConfig
2
+ from .modeling_dac import DACModel
parler-tts/parler_tts/dac_wrapper/configuration_dac.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from transformers import PretrainedConfig
3
+ from importlib.metadata import version
4
+ from packaging.version import Version
5
+
6
+
7
+ class DACConfig(PretrainedConfig):
8
+ model_type = "dac" if Version(version("transformers"))<= Version("4.44.2dev") else "dac_on_the_hub"
9
+
10
+ def __init__(
11
+ self,
12
+ num_codebooks: int = 9,
13
+ model_bitrate: int = 8, # kbps
14
+ codebook_size: int = 1024,
15
+ latent_dim: int = 1024,
16
+ frame_rate: int = 86,
17
+ sampling_rate: int = 44100,
18
+ **kwargs,
19
+ ):
20
+ self.codebook_size = codebook_size
21
+ self.model_bitrate = model_bitrate
22
+ self.latent_dim = latent_dim
23
+ self.num_codebooks = num_codebooks
24
+ self.frame_rate = frame_rate
25
+ self.sampling_rate = sampling_rate
26
+
27
+ super().__init__(**kwargs)
parler-tts/parler_tts/dac_wrapper/modeling_dac.py ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from dac.model import DAC
3
+ from torch import nn
4
+
5
+ from transformers import PreTrainedModel
6
+ from transformers.models.encodec.modeling_encodec import EncodecDecoderOutput, EncodecEncoderOutput
7
+
8
+ from .configuration_dac import DACConfig
9
+
10
+
11
+ # model doesn't support batching yet
12
+
13
+
14
+ class DACModel(PreTrainedModel):
15
+ config_class = DACConfig
16
+ main_input_name = "input_values"
17
+
18
+ # Set main input to 'input_values' for voice steering
19
+ main_input_name = "input_values"
20
+
21
+ def __init__(self, config):
22
+ super().__init__(config)
23
+
24
+ self.model = DAC(
25
+ n_codebooks=config.num_codebooks,
26
+ latent_dim=config.latent_dim,
27
+ codebook_size=config.codebook_size,
28
+ )
29
+
30
+ self.remove_weight_norm()
31
+ self.apply_weight_norm()
32
+
33
+ def encode(
34
+ self, input_values, padding_mask=None, bandwidth=None, return_dict=None, n_quantizers=None, sample_rate=None
35
+ ):
36
+ """
37
+ Encodes the input audio waveform into discrete codes.
38
+
39
+ Args:
40
+ input_values (`torch.Tensor` of shape `(batch_size, channels, sequence_length)`):
41
+ Float values of the input audio waveform.
42
+ padding_mask (`torch.Tensor` of shape `(batch_size, channels, sequence_length)`):
43
+ Padding mask used to pad the `input_values`.
44
+ bandwidth (`float`, *optional*):
45
+ Not used, kept to have the same inferface as HF encodec.
46
+ n_quantizers (`int`, *optional*) :
47
+ Number of quantizers to use, by default None
48
+ If None, all quantizers are used.
49
+ sample_rate (`int`, *optional*) :
50
+ Signal sampling_rate
51
+
52
+ Returns:
53
+ A list of frames containing the discrete encoded codes for the input audio waveform, along with rescaling
54
+ factors for each chunk when `normalize` is True. Each frames is a tuple `(codebook, scale)`, with
55
+ `codebook` of shape `[batch_size, num_codebooks, frames]`.
56
+ Scale is not used here.
57
+
58
+ """
59
+ _, channels, input_length = input_values.shape
60
+
61
+ if channels < 1 or channels > 2:
62
+ raise ValueError(f"Number of audio channels must be 1 or 2, but got {channels}")
63
+
64
+ audio_data = self.model.preprocess(input_values, sample_rate)
65
+
66
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
67
+
68
+ # TODO: for now, no chunk length
69
+
70
+ chunk_length = None # self.config.chunk_length
71
+ if chunk_length is None:
72
+ chunk_length = input_length
73
+ stride = input_length
74
+ else:
75
+ stride = self.config.chunk_stride
76
+
77
+ if padding_mask is None:
78
+ padding_mask = torch.ones_like(input_values).bool()
79
+
80
+ encoded_frames = []
81
+ scales = []
82
+
83
+ step = chunk_length - stride
84
+ if (input_length % stride) - step != 0:
85
+ raise ValueError(
86
+ "The input length is not properly padded for batched chunked decoding. Make sure to pad the input correctly."
87
+ )
88
+
89
+ for offset in range(0, input_length - step, stride):
90
+ mask = padding_mask[..., offset : offset + chunk_length].bool()
91
+ frame = audio_data[:, :, offset : offset + chunk_length]
92
+
93
+ scale = None
94
+
95
+ _, encoded_frame, _, _, _ = self.model.encode(frame, n_quantizers=n_quantizers)
96
+ encoded_frames.append(encoded_frame)
97
+ scales.append(scale)
98
+
99
+ encoded_frames = torch.stack(encoded_frames)
100
+
101
+ if not return_dict:
102
+ return (encoded_frames, scales)
103
+
104
+ return EncodecEncoderOutput(encoded_frames, scales)
105
+
106
+ def decode(
107
+ self,
108
+ audio_codes,
109
+ audio_scales,
110
+ padding_mask=None,
111
+ return_dict=None,
112
+ ):
113
+ """
114
+ Decodes the given frames into an output audio waveform.
115
+
116
+ Note that the output might be a bit bigger than the input. In that case, any extra steps at the end can be
117
+ trimmed.
118
+
119
+ Args:
120
+ audio_codes (`torch.FloatTensor` of shape `(batch_size, nb_chunks, chunk_length)`, *optional*):
121
+ Discret code embeddings computed using `model.encode`.
122
+ audio_scales (`torch.Tensor` of shape `(batch_size, nb_chunks)`, *optional*):
123
+ Not used, kept to have the same inferface as HF encodec.
124
+ padding_mask (`torch.Tensor` of shape `(batch_size, channels, sequence_length)`):
125
+ Padding mask used to pad the `input_values`.
126
+ Not used yet, kept to have the same inferface as HF encodec.
127
+ return_dict (`bool`, *optional*):
128
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
129
+
130
+ """
131
+ return_dict = return_dict or self.config.return_dict
132
+
133
+ # TODO: for now, no chunk length
134
+
135
+ if len(audio_codes) != 1:
136
+ raise ValueError(f"Expected one frame, got {len(audio_codes)}")
137
+
138
+ audio_values = self.model.quantizer.from_codes(audio_codes.squeeze(0))[0]
139
+ audio_values = self.model.decode(audio_values)
140
+ if not return_dict:
141
+ return (audio_values,)
142
+ return EncodecDecoderOutput(audio_values)
143
+
144
+ def forward(self, tensor):
145
+ raise ValueError("`DACModel.forward` not implemented yet")
146
+
147
+
148
+ def apply_weight_norm(self):
149
+ weight_norm = nn.utils.weight_norm
150
+ if hasattr(nn.utils.parametrizations, "weight_norm"):
151
+ weight_norm = nn.utils.parametrizations.weight_norm
152
+
153
+ def _apply_weight_norm(module):
154
+ if isinstance(module, nn.Conv1d) or isinstance(module, nn.ConvTranspose1d):
155
+ weight_norm(module)
156
+
157
+ self.apply(_apply_weight_norm)
158
+
159
+
160
+ def remove_weight_norm(self):
161
+ def _remove_weight_norm(module):
162
+ if isinstance(module, nn.Conv1d) or isinstance(module, nn.ConvTranspose1d):
163
+ nn.utils.remove_weight_norm(module)
164
+ self.apply(_remove_weight_norm)
parler-tts/parler_tts/logits_processors.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import LogitsProcessor, LogitsProcessorList
2
+ from transformers.pytorch_utils import isin_mps_friendly
3
+ import math
4
+ import torch
5
+
6
+ class ParlerTTSLogitsProcessor(LogitsProcessor):
7
+ r"""This processor ensures that the delayed pattern mask constraints are respected.
8
+
9
+ <Tip warning={true}>
10
+
11
+ This logits processor is exclusively compatible with Parler-TTS.
12
+ See the model documentation for examples.
13
+
14
+ </Tip>
15
+
16
+ Args:
17
+ eos_token_id (`Union[int, List[int], torch.Tensor]`):
18
+ The id(s) of the *end-of-sequence* token.
19
+ min_eos_p (`float`, *optional*):
20
+ Minimum end of speech threshold.
21
+ """
22
+
23
+ def __init__(self, eos_token_id, num_codebooks: int, batch_size: int, device: str = "cpu"):
24
+ if not isinstance(eos_token_id, torch.Tensor):
25
+ if isinstance(eos_token_id, int):
26
+ eos_token_id = [eos_token_id]
27
+ eos_token_id = torch.tensor(eos_token_id, device=device)
28
+ self.eos_token_id = eos_token_id
29
+ self.batch_size = batch_size
30
+
31
+ if torch.is_floating_point(eos_token_id) or (eos_token_id < 0).any():
32
+ raise ValueError(f"`eos_token_id` has to be a list of positive integers, but is {eos_token_id}")
33
+
34
+ self.num_codebooks = num_codebooks
35
+ self.device = device
36
+
37
+
38
+ self.codebook_idx = torch.arange(self.batch_size*self.num_codebooks, device=self.device)
39
+ self.first_codebooks_unfinished = torch.arange(batch_size, device=device)*num_codebooks
40
+
41
+ max_codebooks = torch.arange(self.batch_size, device=self.device)*self.num_codebooks + self.num_codebooks -1
42
+ self.max_codebooks = max_codebooks
43
+
44
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
45
+
46
+ is_eos = isin_mps_friendly(input_ids, self.eos_token_id).sum(1)
47
+
48
+ self.first_codebooks_unfinished = torch.where((is_eos[self.first_codebooks_unfinished]>0) & (self.first_codebooks_unfinished<self.max_codebooks), self.first_codebooks_unfinished+1, self.first_codebooks_unfinished)
49
+
50
+ # every codebook higher than the first one unfinished will never be eos
51
+ eos_token_mask = self.codebook_idx > self.first_codebooks_unfinished.repeat_interleave(self.num_codebooks)
52
+ scores[eos_token_mask, self.eos_token_id] = -math.inf
53
+
54
+ return scores
parler-tts/parler_tts/modeling_parler_tts.py ADDED
The diff for this file is too large to render. See raw diff
 
parler-tts/parler_tts/streamer.py ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from .modeling_parler_tts import ParlerTTSForConditionalGeneration
3
+ from transformers.generation.streamers import BaseStreamer
4
+ from typing import Optional
5
+ import torch
6
+ import numpy as np
7
+ import math
8
+ from queue import Queue
9
+
10
+
11
+ class ParlerTTSStreamer(BaseStreamer):
12
+ def __init__(
13
+ self,
14
+ model: ParlerTTSForConditionalGeneration,
15
+ device: Optional[str] = None,
16
+ play_steps: Optional[int] = 10,
17
+ stride: Optional[int] = None,
18
+ timeout: Optional[float] = None,
19
+ ):
20
+ """
21
+ Streamer that stores playback-ready audio in a queue, to be used by a downstream application as an iterator. This is
22
+ useful for applications that benefit from accessing the generated audio in a non-blocking way (e.g. in an interactive
23
+ Gradio demo).
24
+ Parameters:
25
+ model (`ParlerTTSForConditionalGeneration`):
26
+ The Parler-TTS model used to generate the audio waveform.
27
+ device (`str`, *optional*):
28
+ The torch device on which to run the computation. If `None`, will default to the device of the model.
29
+ play_steps (`int`, *optional*, defaults to 10):
30
+ The number of generation steps with which to return the generated audio array. Using fewer steps will
31
+ mean the first chunk is ready faster, but will require more codec decoding steps overall. This value
32
+ should be tuned to your device and latency requirements.
33
+ stride (`int`, *optional*):
34
+ The window (stride) between adjacent audio samples. Using a stride between adjacent audio samples reduces
35
+ the hard boundary between them, giving smoother playback. If `None`, will default to a value equivalent to
36
+ play_steps // 6 in the audio space.
37
+ timeout (`int`, *optional*):
38
+ The timeout for the audio queue. If `None`, the queue will block indefinitely. Useful to handle exceptions
39
+ in `.generate()`, when it is called in a separate thread.
40
+ """
41
+ self.decoder = model.decoder
42
+ self.audio_encoder = model.audio_encoder
43
+ self.generation_config = model.generation_config
44
+ self.device = device if device is not None else model.device
45
+ self.use_audio_scales = model.use_audio_scales
46
+ self.use_4dim_audio_codes = model.use_4dim_audio_codes
47
+ self.audio_kwargs = {}
48
+ if self.use_audio_scales:
49
+ self.audio_kwargs["audio_scales"] = [None]
50
+
51
+ # variables used in the streaming process
52
+ self.play_steps = play_steps
53
+ if stride is not None:
54
+ self.stride = stride
55
+ else:
56
+ hop_length = math.floor(self.audio_encoder.config.sampling_rate / self.audio_encoder.config.frame_rate)
57
+ self.stride = hop_length * (play_steps - self.decoder.num_codebooks) // 6
58
+ self.token_cache = None
59
+ self.to_yield = 0
60
+
61
+ # varibles used in the thread process
62
+ self.audio_queue = Queue()
63
+ self.stop_signal = None
64
+ self.timeout = timeout
65
+
66
+ def apply_delay_pattern_mask(self, input_ids):
67
+ # build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to Parler)
68
+ _, delay_pattern_mask = self.decoder.build_delay_pattern_mask(
69
+ input_ids[:, :1],
70
+ bos_token_id=self.generation_config.bos_token_id,
71
+ pad_token_id=self.generation_config.decoder_start_token_id,
72
+ max_length=input_ids.shape[-1],
73
+ )
74
+ # apply the pattern mask to the input ids
75
+ input_ids = self.decoder.apply_delay_pattern_mask(input_ids, delay_pattern_mask)
76
+
77
+ # revert the pattern delay mask by filtering the pad token id
78
+ mask = (delay_pattern_mask != self.generation_config.bos_token_id) & (delay_pattern_mask != self.generation_config.pad_token_id)
79
+ input_ids = input_ids[mask].reshape(1, self.decoder.num_codebooks, -1)
80
+
81
+ if self.use_4dim_audio_codes:
82
+ # append the frame dimension back to the audio codes
83
+ input_ids = input_ids[None, ...]
84
+
85
+ # send the input_ids to the correct device
86
+ input_ids = input_ids.to(self.audio_encoder.device)
87
+
88
+ decode_sequentially = (
89
+ self.generation_config.bos_token_id in input_ids
90
+ or self.generation_config.pad_token_id in input_ids
91
+ or self.generation_config.eos_token_id in input_ids
92
+ )
93
+ if not decode_sequentially:
94
+ sample = self.audio_encoder.decode(
95
+ audio_codes=input_ids,
96
+ **self.audio_kwargs,
97
+ ).audio_values
98
+ output_values = sample if sample.ndim == 3 else sample.unsqueeze(0)
99
+ else:
100
+ sample = input_ids[:, 0] if self.use_4dim_audio_codes else input_ids[0]
101
+ sample_mask = ((sample >= self.audio_encoder.config.codebook_size).sum(dim=(0, 1)) == 0) if self.use_4dim_audio_codes else ((sample >= self.audio_encoder.config.codebook_size).sum(dim=0) == 0)
102
+ sample = sample[:, :, sample_mask] if self.use_4dim_audio_codes else sample[:, sample_mask]
103
+ sample = self.audio_encoder.decode(audio_codes=sample[None, ...], **self.audio_kwargs).audio_values
104
+ output_values = sample if sample.ndim == 3 else sample.unsqueeze(0)
105
+
106
+ audio_values = output_values[0, 0]
107
+ return audio_values.cpu().float().numpy()
108
+
109
+ def put(self, value):
110
+ batch_size = value.shape[0] // self.decoder.num_codebooks
111
+ if batch_size > 1:
112
+ raise ValueError("ParlerTTSStreamer only supports batch size 1")
113
+
114
+ if self.token_cache is None:
115
+ self.token_cache = value
116
+ else:
117
+ self.token_cache = torch.concatenate([self.token_cache, value[:, None]], dim=-1)
118
+
119
+ if self.token_cache.shape[-1] % self.play_steps == 0:
120
+ audio_values = self.apply_delay_pattern_mask(self.token_cache)
121
+ self.on_finalized_audio(audio_values[self.to_yield : -self.stride])
122
+ self.to_yield += len(audio_values) - self.to_yield - self.stride
123
+
124
+ def end(self):
125
+ """Flushes any remaining cache and appends the stop symbol."""
126
+ if self.token_cache is not None:
127
+ audio_values = self.apply_delay_pattern_mask(self.token_cache)
128
+ else:
129
+ audio_values = np.zeros(self.to_yield)
130
+
131
+ self.on_finalized_audio(audio_values[self.to_yield :], stream_end=True)
132
+
133
+ def on_finalized_audio(self, audio: np.ndarray, stream_end: bool = False):
134
+ """Put the new audio in the queue. If the stream is ending, also put a stop signal in the queue."""
135
+ self.audio_queue.put(audio, timeout=self.timeout)
136
+ if stream_end:
137
+ self.audio_queue.put(self.stop_signal, timeout=self.timeout)
138
+
139
+ def __iter__(self):
140
+ return self
141
+
142
+ def __next__(self):
143
+ value = self.audio_queue.get(timeout=self.timeout)
144
+ if not isinstance(value, np.ndarray) and value == self.stop_signal:
145
+ raise StopIteration()
146
+ else:
147
+ return value
parler-tts/pyproject.toml ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [tool.black]
2
+ line-length = 119
3
+ target-version = ['py37']
4
+
5
+ [tool.ruff]
6
+ # Never enforce `E501` (line length violations).
7
+ ignore = ["C901", "E501", "E741", "W605"]
8
+ select = ["C", "E", "F", "I", "W"]
9
+ line-length = 119
10
+
11
+ # Ignore import violations in all `__init__.py` files.
12
+ [tool.ruff.per-file-ignores]
13
+ "__init__.py" = ["E402", "F401", "F403", "F811"]
14
+
15
+ [tool.ruff.isort]
16
+ lines-after-imports = 2
17
+ known-first-party = ["distil_whisper"]
parler-tts/setup.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import os
16
+
17
+ import setuptools
18
+
19
+
20
+ _deps = [
21
+ "transformers>=4.46.1,<=4.46.1",
22
+ "torch",
23
+ "sentencepiece",
24
+ "descript-audio-codec",
25
+ "descript-audiotools @ git+https://github.com/descriptinc/audiotools", # temporary fix as long as 0.7.4 is not published
26
+ "protobuf>=4.0.0"
27
+ ]
28
+
29
+ _extras_dev_deps = [
30
+ "black~=23.1",
31
+ "isort>=5.5.4",
32
+ "ruff>=0.0.241,<=0.0.259",
33
+ ]
34
+
35
+ _extras_training_deps = [
36
+ "jiwer",
37
+ "wandb",
38
+ "accelerate",
39
+ "evaluate",
40
+ "datasets[audio]>=2.14.5",
41
+ ]
42
+
43
+ here = os.path.abspath(os.path.dirname(__file__))
44
+
45
+ with open(os.path.join(here, "README.md"), encoding="utf-8") as f:
46
+ long_description = f.read()
47
+
48
+ # read version
49
+ with open(os.path.join(here, "parler_tts", "__init__.py"), encoding="utf-8") as f:
50
+ for line in f:
51
+ if line.startswith("__version__"):
52
+ version = line.split("=")[1].strip().strip('"')
53
+ break
54
+ else:
55
+ raise RuntimeError("Unable to find version string.")
56
+
57
+ setuptools.setup(
58
+ name="parler_tts",
59
+ version=version,
60
+ description="Toolkit for using and training Parler-TTS, a high-quality text-to-speech model.",
61
+ long_description=long_description,
62
+ long_description_content_type="text/markdown",
63
+ packages=setuptools.find_packages(),
64
+ install_requires=_deps,
65
+ extras_require={
66
+ "dev": _extras_dev_deps,
67
+ "train": _extras_training_deps,
68
+ },
69
+ )
parler-tts/training/README.md ADDED
@@ -0,0 +1,212 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Training Parler-TTS
2
+
3
+ <a target="_blank" href="https://github.com/ylacombe/scripts_and_notebooks/blob/main/Finetuning_Parler_TTS_v1_on_a_single_speaker_dataset.ipynb">
4
+ <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
5
+ </a>
6
+
7
+ **TL;DR:** After having followed the [installation steps](#requirements), you can reproduce the [Parler-TTS Mini v1](https://huggingface.co/parler-tts/parler-tts-mini-v1) training recipe with the following command line:
8
+
9
+ ```sh
10
+ accelerate launch ./training/run_parler_tts_training.py ./helpers/training_configs/starting_point_v1.json
11
+ ```
12
+
13
+ -------------
14
+
15
+ This sub-folder contains all the information to train or fine-tune your own Parler-TTS model. It consists of:
16
+ - [1. An introduction to the Parler-TTS architecture](#a-architecture)
17
+ - [2. First steps to get started](#b-getting-started)
18
+ - [3. Training guide](#c-training)
19
+
20
+ > [!IMPORTANT]
21
+ > You can also follow [this fine-tuning guide](https://github.com/ylacombe/scripts_and_notebooks/blob/main/Finetuning_Parler_TTS_v1_on_a_single_speaker_dataset.ipynb) on a mono-speaker dataset example.
22
+
23
+ ## 1. Architecture
24
+
25
+ At the moment, Parler-TTS architecture is almost a carbon copy of the [MusicGen architecture](https://huggingface.co/docs/transformers/v4.39.3/en/model_doc/musicgen#model-structure) and can be decomposed into three distinct stages:
26
+ 1. Text encoder: maps the text descriptions to a sequence of hidden-state representations. Parler-TTS uses a frozen text encoder initialised entirely from Flan-T5
27
+ 2. Parler-TTS decoder: a language model (LM) that auto-regressively generates audio tokens (or codes) conditional on the encoder hidden-state representations
28
+ 3. Audio codec: used to recover the audio waveform from the audio tokens predicted by the decoder. We use the [DAC model](https://github.com/descriptinc/descript-audio-codec) from Descript, although other codec models, such as [EnCodec](https://huggingface.co/facebook/encodec_48khz), can also be used.
29
+
30
+ Parler-TTS however introduces some small tweaks:
31
+ - The text **description** is passed through the text encoder and used in the cross-attention layers of the decoder.
32
+ - The text **prompt** is simply passed through an embedding layer and concatenated to the decoder input hidden states.
33
+ - The audio encoder used is [**DAC**](https://descript.notion.site/Descript-Audio-Codec-11389fce0ce2419891d6591a68f814d5) instead of [Encodec](https://github.com/facebookresearch/encodec), as it exhibits better quality.
34
+
35
+
36
+ ## 2. Getting started
37
+
38
+ To get started, you need to follow a few steps:
39
+ 1. Install the requirements.
40
+ 2. Find or initialize the model you'll train on.
41
+ 3. Find and/or annotate the dataset you'll train your model on.
42
+
43
+ ### Requirements
44
+
45
+ The Parler-TTS code is written in [PyTorch](https://pytorch.org) and [Accelerate](https://huggingface.co/docs/accelerate/index). It uses some additional requirements, like [wandb](https://wandb.ai/), especially for logging and evaluation.
46
+
47
+ To install the package for training, you need to clone the repository from source...
48
+
49
+ ```bash
50
+ git clone https://github.com/huggingface/parler-tts.git
51
+ cd parler-tts
52
+ ```
53
+
54
+ ... And then install the requirements:
55
+
56
+ ```bash
57
+ pip install -e .[train]
58
+ ```
59
+
60
+ Optionally, you can create a wandb account and login to it by following [this guide](https://docs.wandb.ai/quickstart). [`wandb`](https://docs.wandb.ai/) allows for better tracking of the experiments metrics and losses.
61
+
62
+ You also have the option to configure Accelerate by running the following command. Note that you should set the number of GPUs you wish to use for training, and also the data type (dtype) to your preferred dtype for training/inference (e.g. `bfloat16` on A100 GPUs, `float16` on V100 GPUs, etc.):
63
+
64
+ ```bash
65
+ accelerate config
66
+ ```
67
+
68
+ Lastly, you can link you Hugging Face account so that you can push model repositories on the Hub. This will allow you to save your trained models on the Hub so that you can share them with the community. Run the command:
69
+
70
+ ```bash
71
+ git config --global credential.helper store
72
+ huggingface-cli login
73
+ ```
74
+ And then enter an authentication token from https://huggingface.co/settings/tokens. Create a new token if you do not have one already. You should make sure that this token has "write" privileges.
75
+
76
+ ### Initialize a model from scratch or use a pre-trained one.
77
+
78
+ Depending on your compute resources and your dataset, you need to choose between fine-tuning a pre-trained model and training a new model from scratch.
79
+
80
+ In that sense, we released a 880M checkpoint trained on 45K hours of annotated data under the repository id: [`parler-tts/parler-tts-mini-v1`](https://huggingface.co/parler-tts/parler-tts-mini-v1), that you can fine-tune for your own use-case.
81
+
82
+ You can also train you own model from scratch. You can find [here](/helpers/model_init_scripts/) examples on how to initialize a model from scratch. For example, you can initialize a dummy model with:
83
+
84
+ ```sh
85
+ python helpers/model_init_scripts/init_dummy_model.py ./parler-tts-untrained-dummy --text_model "google-t5/t5-small" --audio_model "parler-tts/dac_44khZ_8kbps"
86
+ ```
87
+
88
+ In the rest of this guide, and to reproduce the Parler-TTS Mini v1 training recipe, we'll use a 880M parameters model that we'll initialize with:
89
+
90
+ ```sh
91
+ python helpers/model_init_scripts/init_model_600M.py ./parler-tts-untrained-600M --text_model "google/flan-t5-large" --audio_model "parler-tts/dac_44khZ_8kbps"
92
+ ```
93
+
94
+
95
+ ### Create or find datasets
96
+
97
+ To train your own Parler-TTS, you need datasets with 3 main features:
98
+ - speech data
99
+ - text transcription of the speech data
100
+ - conditionning text description - that you can create using [Data-Speech](https://github.com/huggingface/dataspeech), a library that allows you to annotate the speaker and utterance characteristics with natural language description.
101
+
102
+ Note that we made the choice to use description of the main speech characteristics (speaker pitch, speaking rate, level of noise, etc.) but that you are free to use any handmade or generated text description that makes sense.
103
+
104
+ To train Parler-TTS Mini v1, we used:
105
+ * A [filtered version](https://huggingface.co/datasets/parler-tts/libritts_r_filtered) of [LibriTTS-R dataset](https://huggingface.co/datasets/blabble-io/libritts_r), a 1K hours high-quality speech dataset.
106
+ * The [English subset](https://huggingface.co/datasets/parler-tts/mls_eng) of [Multilingual LibriSpeech](https://huggingface.co/datasets/facebook/multilingual_librispeech).
107
+
108
+ Both datasets have been annotated using the [Data-Speech](https://github.com/huggingface/dataspeech) recipe, respectively [here](https://huggingface.co/datasets/parler-tts/libritts-r-filtered-speaker-descriptions) and [here](https://huggingface.co/datasets/parler-tts/mls-eng-speaker-descriptions).
109
+
110
+
111
+ ## 3. Training
112
+
113
+ The script [`run_parler_tts_training.py`](/training/run_parler_tts_training.py) is an end-to-end script that:
114
+ 1. load dataset(s) and merge them to the annotation dataset(s) if necessary
115
+ 2. pre-compute audio tokens
116
+ 3. train Parler-TTS
117
+
118
+ To train Parler-TTS Mini v1, we roughly used:
119
+
120
+ ```sh
121
+ accelerate launch ./training/run_parler_tts_training.py \
122
+ --model_name_or_path "./parler-tts-untrained-600M/parler-tts-untrained-600M/" \
123
+ --feature_extractor_name "parler-tts/dac_44khZ_8kbps" \
124
+ --description_tokenizer_name "google/flan-t5-large" \
125
+ --prompt_tokenizer_name "google/flan-t5-large" \
126
+ --report_to "wandb" \
127
+ --overwrite_output_dir true \
128
+ --train_dataset_name "parler-tts/libritts_r_filtered+parler-tts/libritts_r_filtered+parler-tts/libritts_r_filtered+parler-tts/mls_eng" \
129
+ --train_metadata_dataset_name "parler-tts/libritts-r-filtered-speaker-descriptions+parler-tts/libritts-r-filtered-speaker-descriptions+parler-tts/libritts-r-filtered-speaker-descriptions+parler-tts/mls-eng-speaker-descriptions" \
130
+ --train_dataset_config_name "clean+clean+other+default" \
131
+ --train_split_name "train.clean.360+train.clean.100+train.other.500+train" \
132
+ --eval_dataset_name "parler-tts/libritts_r_filtered+parler-tts/mls_eng" \
133
+ --eval_metadata_dataset_name "parler-tts/libritts-r-filtered-speaker-descriptions+parler-tts/mls-eng-speaker-descriptions" \
134
+ --eval_dataset_config_name "other+default" \
135
+ --eval_split_name "test.other+test" \
136
+ --target_audio_column_name "audio" \
137
+ --description_column_name "text_description" \
138
+ --prompt_column_name "text" \
139
+ --max_duration_in_seconds 30 \
140
+ --min_duration_in_seconds 2.0 \
141
+ --max_text_length 600 \
142
+ --add_audio_samples_to_wandb true \
143
+ --id_column_name "id" \
144
+ --preprocessing_num_workers 8 \
145
+ --do_train true \
146
+ --num_train_epochs 4 \
147
+ --gradient_accumulation_steps 6 \
148
+ --gradient_checkpointing false \
149
+ --per_device_train_batch_size 4 \
150
+ --learning_rate 0.00095 \
151
+ --adam_beta1 0.9 \
152
+ --adam_beta2 0.99 \
153
+ --weight_decay 0.01 \
154
+ --lr_scheduler_type "constant_with_warmup" \
155
+ --warmup_steps 20000 \
156
+ --logging_steps 1000 \
157
+ --freeze_text_encoder true \
158
+ --do_eval true \
159
+ --predict_with_generate true \
160
+ --include_inputs_for_metrics true \
161
+ --evaluation_strategy steps \
162
+ --eval_steps 10000 \
163
+ --save_steps 10000 \
164
+ --per_device_eval_batch_size 4 \
165
+ --audio_encoder_per_device_batch_size 24 \
166
+ --dtype "bfloat16" \
167
+ --seed 456 \
168
+ --output_dir "./output_dir_training/" \
169
+ --temporary_save_to_disk "./audio_code_tmp/" \
170
+ --save_to_disk "./tmp_dataset_audio/" \
171
+ --max_eval_samples 96 \
172
+ --dataloader_num_workers 8 \
173
+ --group_by_length true \
174
+ --attn_implementation "sdpa"
175
+ ```
176
+
177
+ In particular, note how multiple training datasets, metadataset, configurations and splits can be loaded by separating the dataset arguments by + symbols:
178
+ ```sh
179
+ "train_dataset_name": "parler-tts/libritts_r_filtered+parler-tts/libritts_r_filtered+parler-tts/libritts_r_filtered+parler-tts/mls_eng",
180
+ "train_metadata_dataset_name": "parler-tts/libritts-r-filtered-speaker-descriptions+parler-tts/libritts-r-filtered-speaker-descriptions+parler-tts/libritts-r-filtered-speaker-descriptions+parler-tts/mls-eng-speaker-descriptions",
181
+ "train_dataset_config_name": "clean+clean+other+default",
182
+ "train_split_name": "train.clean.360+train.clean.100+train.other.500+train",
183
+ ```
184
+
185
+
186
+ Additionally, you can also write a JSON config file. Here, [starting_point_v1.json](helpers/training_configs/starting_point_v1.json) contains the exact same hyper-parameters than above and can be launched like that:
187
+ ```sh
188
+ accelerate launch ./training/run_parler_tts_training.py ./helpers/training_configs/starting_point_v1.json
189
+ ```
190
+
191
+ Training logs will be reported to wandb, provided that you passed `--report_to "wandb"` to the arguments.
192
+
193
+ > [!TIP]
194
+ > Starting training a new model from scratch can easily be overwhelming, so here's what training looked like for v1: [logs](https://api.wandb.ai/links/ylacombe/j7g8isjn)
195
+
196
+ Scaling to multiple GPUs using [distributed data parallelism (DDP)](https://pytorch.org/tutorials/beginner/ddp_series_theory.html) is trivial: simply run `accelerate config` and select the multi-GPU option, specifying the IDs of the GPUs you wish to use. The above script can then be run using DDP with no code changes. In our case, we used 4 nodes of 8 H100 80GB to train Parler-TTS Mini for around 1.5 days.
197
+
198
+
199
+ There are a few other noteworthy arguments:
200
+ 1. `train_metadata_dataset_name` and `eval_metadata_dataset_name` specify, if necessary, the names of the dataset(s) that contain(s) the conditionning text descriptions. For example, this [dataset resulting from the Data-Speech annotation process](https://huggingface.co/datasets/parler-tts/libritts-r-filtered-speaker-descriptions) is saved without the audio column, as it's costly to write and push audio data, so it needs to be concatenated back to the original LibriTTS-R dataset.
201
+ 2. As noted above, the script pre-computes audio tokens as computing audio codes is costly and only needs to be done once, since we're freezing the audio encoder. `audio_encoder_per_device_batch_size` is used to precise the per devie batch size for this pre-processing step.
202
+ 3. Additionnally, when scaling up the training data and iterating on the hyper-parameters or the model architecture, we might want to avoid recomputing the audio tokens at each training run. That's why we introduced two additional parameters, `save_to_disk` and `temporary_save_to_disk` that serves as temporary buffers to save intermediary datasets. Note that processed data is made of text and audio tokens which are much more memory efficient, so the additional required space is negligible.
203
+ 4. `predict_with_generate` and `add_audio_samples_to_wandb` are required to store generated audios and to compute WER and CLAP similarity.
204
+ 5. `freeze_text_encoder`: which allows to freeze the text encoder, to save compute resources.
205
+
206
+ And finally, two additional comments:
207
+ 1. `lr_scheduler_stype`: defines the learning rate schedule, one of `constant_with_warmup` or `cosine`. When experimenting with a training set-up or training for very few epochs, using `constant_with_warmup` is typically beneficial, since the learning rate remains high over the short training run. When performing longer training runs, using a `cosine` schedule shoud give better results.
208
+ 2. `dtype`: data type (dtype) in which the model computation should be performed. Note that this only controls the dtype of the computations (forward and backward pass), and not the dtype of the parameters or optimiser states.
209
+
210
+ > [!TIP]
211
+ > Fine-tuning is as easy as modifying `model_name_or_path` to a pre-trained model.
212
+ > For example: `--model_name_or_path parler-tts/parler-tts-mini-v1`.
parler-tts/training/__init__.py ADDED
File without changes
parler-tts/training/arguments.py ADDED
@@ -0,0 +1,375 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass, field
2
+ from typing import Optional, List
3
+
4
+ from transformers import Seq2SeqTrainingArguments
5
+
6
+
7
+ @dataclass
8
+ class ModelArguments:
9
+ """
10
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
11
+ """
12
+
13
+ model_name_or_path: str = field(
14
+ metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
15
+ )
16
+ config_name: Optional[str] = field(
17
+ default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
18
+ )
19
+ feature_extractor_name: Optional[str] = field(
20
+ default=None, metadata={"help": "Pretrained feature extractor name or path if not the same as model_name"}
21
+ )
22
+ description_tokenizer_name: Optional[str] = field(
23
+ default=None, metadata={"help": "Pretrained description tokenizer name or path if not the same as model_name"}
24
+ )
25
+ prompt_tokenizer_name: Optional[str] = field(
26
+ default=None,
27
+ metadata={"help": "Pretrained prompt tokenizer name or path if not the same as description_tokenizer_name"},
28
+ )
29
+ cache_dir: Optional[str] = field(
30
+ default=None,
31
+ metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
32
+ )
33
+ use_fast_tokenizer: bool = field(
34
+ default=True,
35
+ metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
36
+ )
37
+ model_revision: str = field(
38
+ default="main",
39
+ metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
40
+ )
41
+ pad_token_id: int = field(
42
+ default=None,
43
+ metadata={"help": "If specified, change the model pad token id."},
44
+ )
45
+ decoder_start_token_id: int = field(
46
+ default=None,
47
+ metadata={"help": "If specified, change the model decoder start token id."},
48
+ )
49
+ freeze_text_encoder: bool = field(
50
+ default=False,
51
+ metadata={"help": "Whether to freeze the text encoder."},
52
+ )
53
+ do_sample: bool = field(
54
+ default=True,
55
+ metadata={"help": "Whether to do sampling or greedy decoding."},
56
+ )
57
+ temperature: float = field(
58
+ default=1.0,
59
+ metadata={"help": "Temperature if sampling."},
60
+ )
61
+ max_length: int = field(
62
+ default=2580,
63
+ metadata={"help": "Generation max length."},
64
+ )
65
+ bandwidth: float = field(
66
+ default=6,
67
+ metadata={"help": "Audio encoder bandwidth."},
68
+ )
69
+ asr_model_name_or_path: str = field(
70
+ default="distil-whisper/distil-large-v2",
71
+ metadata={
72
+ "help": "Used to compute WER during evaluation. Path to pretrained model or model identifier from huggingface.co/models"
73
+ },
74
+ )
75
+ clap_model_name_or_path: str = field(
76
+ default="laion/larger_clap_music_and_speech",
77
+ metadata={
78
+ "help": "Used to compute audio similarity during evaluation. Path to pretrained model or model identifier from huggingface.co/models"
79
+ },
80
+ )
81
+ attn_implementation: str = field(
82
+ default="eager",
83
+ metadata={"help": "Attention implementation used. One of `eager`, `sdpa`, `flash_attention_2`"},
84
+ )
85
+ cross_attention_implementation_strategy: str = field(
86
+ default=None,
87
+ metadata={
88
+ "help": "If not specified, the cross-attention implementation will be the same as `_attn_implementation`. If `always_eager`, it will always be the eager implementation. If `always_sdpa`, it will always be the sdpa implementation."
89
+ },
90
+ )
91
+ prompt_padding_side: Optional[str] = field(
92
+ default="left",
93
+ metadata={
94
+ "help": "Prompt tokenizer padding side. Defaults to `left`. If the prompt is pre-pended to the codebooks hidden states, it should be padded on the left."
95
+ },
96
+ )
97
+
98
+
99
+ @dataclass
100
+ class DataTrainingArguments:
101
+ """
102
+ Arguments pertaining to what data we are going to input our model for training and eval.
103
+
104
+ Using `HfArgumentParser` we can turn this class
105
+ into argparse arguments to be able to specify them on
106
+ the command line.
107
+ """
108
+
109
+ train_dataset_name: str = field(
110
+ default=None,
111
+ metadata={
112
+ "help": "The name of the training dataset to use (via the datasets library). Load and combine "
113
+ "multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine "
114
+ " librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`."
115
+ },
116
+ )
117
+ train_dataset_config_name: Optional[str] = field(
118
+ default=None,
119
+ metadata={
120
+ "help": "The configuration name of the training dataset to use (via the datasets library). Load and combine "
121
+ "multiple datasets by separating dataset configs by a '+' symbol."
122
+ },
123
+ )
124
+ train_split_name: str = field(
125
+ default="train",
126
+ metadata={
127
+ "help": ("The name of the training data set split to use (via the datasets library). Defaults to 'train'")
128
+ },
129
+ )
130
+ train_dataset_samples: str = field(
131
+ default=None,
132
+ metadata={
133
+ "help": "Number of samples in the training data. Load and combine "
134
+ "multiple datasets by separating dataset samples by a '+' symbol."
135
+ },
136
+ )
137
+ train_metadata_dataset_name: str = field(
138
+ default=None,
139
+ metadata={
140
+ "help": "The name of the metadata training dataset to use (via the datasets library). Load and combine "
141
+ "multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine "
142
+ " librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`."
143
+ },
144
+ )
145
+ eval_dataset_name: str = field(
146
+ default=None,
147
+ metadata={
148
+ "help": "The name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset name if unspecified."
149
+ },
150
+ )
151
+ eval_dataset_config_name: Optional[str] = field(
152
+ default=None,
153
+ metadata={
154
+ "help": "The configuration name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset config name if unspecified"
155
+ },
156
+ )
157
+ eval_split_name: str = field(
158
+ default="test",
159
+ metadata={
160
+ "help": "The name of the evaluation data set split to use (via the datasets library). Defaults to 'test'"
161
+ },
162
+ )
163
+ eval_metadata_dataset_name: str = field(
164
+ default=None,
165
+ metadata={
166
+ "help": "The name of the metadata training dataset to use (via the datasets library). Load and combine "
167
+ "multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine "
168
+ " librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`."
169
+ },
170
+ )
171
+ target_audio_column_name: str = field(
172
+ default="audio",
173
+ metadata={"help": "The name of the dataset column containing the target audio data. Defaults to 'audio'"},
174
+ )
175
+ description_column_name: str = field(
176
+ default=None,
177
+ metadata={"help": "The name of the dataset column containing the description text data. Defaults to 'None'."},
178
+ )
179
+ prompt_column_name: str = field(
180
+ default=None,
181
+ metadata={"help": "The name of the dataset column containing the prompt text data. Defaults to 'None'."},
182
+ )
183
+ overwrite_cache: bool = field(
184
+ default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
185
+ )
186
+ preprocessing_num_workers: Optional[int] = field(
187
+ default=None,
188
+ metadata={"help": "The number of processes to use for the preprocessing."},
189
+ )
190
+ max_train_samples: Optional[int] = field(
191
+ default=None,
192
+ metadata={
193
+ "help": (
194
+ "For debugging purposes or quicker training, truncate the number of training examples to this "
195
+ "value if set."
196
+ )
197
+ },
198
+ )
199
+ max_eval_samples: Optional[int] = field(
200
+ default=None,
201
+ metadata={
202
+ "help": (
203
+ "For debugging purposes or quicker training, truncate the number of validation examples to this "
204
+ "value if set."
205
+ )
206
+ },
207
+ )
208
+ max_duration_in_seconds: float = field(
209
+ default=35.0,
210
+ metadata={
211
+ "help": (
212
+ "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`."
213
+ "Also, used to set maximum audio length if `pad_to_max_length=True`."
214
+ )
215
+ },
216
+ )
217
+ min_duration_in_seconds: float = field(
218
+ default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
219
+ )
220
+ max_text_length: int = field(
221
+ default=500, metadata={"help": "If set, max description lengths in number of characters."}
222
+ )
223
+ max_prompt_token_length: int = field(
224
+ default=None,
225
+ metadata={
226
+ "help": (
227
+ "If set, filter samples with prompts that are longer than `max_prompt_token_length` tokens."
228
+ "Also, used to set maximum prompt token length if `pad_to_max_length=True`."
229
+ )
230
+ },
231
+ )
232
+ max_description_token_length: int = field(
233
+ default=None,
234
+ metadata={
235
+ "help": (
236
+ "If set, filter samples with descriptions that are longer than `max_description_token_length` tokens."
237
+ "Also, used to set maximum description token length if `pad_to_max_length=True`."
238
+ )
239
+ },
240
+ )
241
+ pad_to_max_length: bool = field(
242
+ default=False,
243
+ metadata={
244
+ "help": (
245
+ "If `True`, pad audio, prompt and description to a maximum length set with respectively "
246
+ "`max_duration_in_seconds`, `max_prompt_token_length`, `max_description_token_length`."
247
+ )
248
+ },
249
+ )
250
+ preprocessing_only: bool = field(
251
+ default=False,
252
+ metadata={
253
+ "help": (
254
+ "Whether to only do data preprocessing and skip training. This is especially useful when data"
255
+ " preprocessing errors out in distributed training due to timeout. In this case, one should run the"
256
+ " preprocessing in a non-distributed setup with `preprocessing_only=True` so that the cached datasets"
257
+ " can consequently be loaded in distributed training."
258
+ " In this training script, `save_to_disk` must be set to the path in which the dataset should be saved. "
259
+ )
260
+ },
261
+ )
262
+ token: str = field(
263
+ default=None,
264
+ metadata={
265
+ "help": (
266
+ "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
267
+ "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
268
+ )
269
+ },
270
+ )
271
+ use_auth_token: bool = field(
272
+ default=None,
273
+ metadata={
274
+ "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
275
+ },
276
+ )
277
+ trust_remote_code: bool = field(
278
+ default=False,
279
+ metadata={
280
+ "help": (
281
+ "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
282
+ "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
283
+ "execute code present on the Hub on your local machine."
284
+ )
285
+ },
286
+ )
287
+ add_audio_samples_to_wandb: bool = field(
288
+ default=False,
289
+ metadata={"help": "If set and if `wandb` in args.report_to, will add generated audio samples to wandb logs."},
290
+ )
291
+ id_column_name: str = field(default=None, metadata={"help": "id column name."})
292
+ wandb_project: str = field(
293
+ default="parler-speech",
294
+ metadata={"help": "The name of the wandb project."},
295
+ )
296
+ wandb_run_name: str = field(
297
+ default=None,
298
+ metadata={
299
+ "help": "If specified, the name of the run. If not specified, wandb will give a random name to this run."
300
+ },
301
+ )
302
+ save_to_disk: str = field(
303
+ default=None,
304
+ metadata={
305
+ "help": "If set, will save the dataset to this path if this is an empyt folder. If not empty, will load the datasets from it."
306
+ },
307
+ )
308
+ temporary_save_to_disk: str = field(default=None, metadata={"help": "Temporarily save audio labels here."})
309
+ save_codec_steps: Optional[int] = field(
310
+ default=500,
311
+ metadata={"help": "Temporarily save the audio labels every `save_steps`."},
312
+ )
313
+ pad_to_multiple_of: Optional[int] = field(
314
+ default=2,
315
+ metadata={"help": ("Pad to multiple of for tokenizers.")},
316
+ )
317
+
318
+
319
+ @dataclass
320
+ class ParlerTTSTrainingArguments(Seq2SeqTrainingArguments):
321
+ dtype: Optional[str] = field(
322
+ default="float32",
323
+ metadata={
324
+ "help": (
325
+ "The data type (dtype) in which to run training. One of `float32` (full-precision), "
326
+ "`float16` or `bfloat16` (both half-precision)."
327
+ )
328
+ },
329
+ )
330
+ audio_encoder_per_device_batch_size: int = field(
331
+ default=8,
332
+ metadata={"help": ("Specify the batch size of the audio encoding pre-processing steps.")},
333
+ )
334
+ eval_dataloader_num_workers: Optional[int] = field(
335
+ default=0,
336
+ metadata={
337
+ "help": (
338
+ "Number of subprocesses to use for evaluation data loading (PyTorch only). 0 means that the data will be loaded in the main process."
339
+ )
340
+ },
341
+ )
342
+ compute_clap_similarity_metric: bool = field(
343
+ default=True,
344
+ metadata={
345
+ "help": (
346
+ "Whether or not to compute the clap similarity metric between the description and the generation during evalution."
347
+ )
348
+ },
349
+ )
350
+ compute_noise_level_metric: bool = field(
351
+ default=True,
352
+ metadata={"help": ("Whether or not to compute the squim si-sdr measure of the generations.")},
353
+ )
354
+ noise_level_to_compute_clean_wer: float = field(
355
+ default=25,
356
+ metadata={
357
+ "help": (
358
+ "if `compute_noise_level_metric=True`, will compute a 'clean' WER on samples with generated noise higher than `noise_level_to_compute_clean_wer`."
359
+ "This is a proxy measure to compute WER on clean audios, provided that the model learn to generate clean audios."
360
+ )
361
+ },
362
+ )
363
+ eval_generation_steps: Optional[int] = field(
364
+ default=None,
365
+ metadata={
366
+ "help": (
367
+ "Number of update steps between two generation evaluation. Will default to the same"
368
+ "value as `eval_steps` if not set. Should be an integer and a multiple of `eval_steps`."
369
+ )
370
+ },
371
+ )
372
+ codebook_weights: Optional[List[float]] = field(
373
+ default=None,
374
+ metadata={"help": "Weights applied to each codebook."},
375
+ )
parler-tts/training/data.py ADDED
@@ -0,0 +1,311 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from dataclasses import dataclass
3
+ from typing import Dict, List, Optional, Set, Union
4
+
5
+ import datasets
6
+ import numpy as np
7
+ import torch
8
+ from accelerate import Accelerator
9
+ from datasets import Dataset, IterableDataset, concatenate_datasets, interleave_datasets, load_dataset
10
+ from tqdm import tqdm
11
+ from transformers import AutoFeatureExtractor, AutoTokenizer
12
+
13
+
14
+ @dataclass
15
+ class DataCollatorEncodecWithPadding:
16
+ """
17
+ Data collator that will dynamically pad the inputs received to the longest sequence in the batch or
18
+ to `max_length` if `max_length` is set and `padding=max_length`.
19
+ """
20
+
21
+ feature_extractor: AutoFeatureExtractor
22
+ audio_column_name: str
23
+ feature_extractor_input_name: Optional[str] = "input_values"
24
+ max_length: Optional[int] = None
25
+ padding: Optional[str] = "longest"
26
+
27
+ def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
28
+ # split inputs and labels since they have to be of different lengths and need
29
+ # different padding methods
30
+ audios = [feature[self.audio_column_name]["array"] for feature in features]
31
+ len_audio = [len(audio) for audio in audios]
32
+ if self.max_length is not None:
33
+ audios = [audio[: min(l, self.max_length)] for audio, l in zip(audios, len_audio)]
34
+
35
+ # since resampling has already been performed in the 'load_multiple_datasets' function,
36
+ # a fixed sampling_rate(44100hz) is passed to the feature_extractor.
37
+ sampling_rate = self.feature_extractor.sampling_rate
38
+ batch = self.feature_extractor(
39
+ audios, sampling_rate=sampling_rate, return_tensors="pt", padding=self.padding, max_length=self.max_length
40
+ )
41
+ batch["len_audio"] = torch.tensor(len_audio).unsqueeze(1)
42
+ return batch
43
+
44
+
45
+ @dataclass
46
+ class DataCollatorParlerTTSWithPadding:
47
+ """
48
+ Data collator that will dynamically pad the inputs received.
49
+ Args:
50
+ prompt_tokenizer (:class:`~transformers.AutoTokenizer`)
51
+ The prompt_tokenizer used for proccessing the data.
52
+ description_tokenizer (:class:`~transformers.AutoTokenizer`)
53
+ The description_tokenizer used for proccessing the data.
54
+ padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
55
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
56
+ among:
57
+ * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
58
+ sequence if provided).
59
+ * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
60
+ maximum acceptable input length for the model if that argument is not provided.
61
+ * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
62
+ different lengths).
63
+ pad_to_multiple_of (:obj:`int`, `optional`):
64
+ If set will pad the sequence to a multiple of the provided value.
65
+ This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
66
+ 7.5 (Volta).
67
+ """
68
+
69
+ prompt_tokenizer: AutoTokenizer
70
+ description_tokenizer: AutoTokenizer
71
+ padding: Union[bool, str] = "longest"
72
+ pad_to_multiple_of: Optional[int] = None
73
+ prompt_max_length: Optional[int] = None
74
+ description_max_length: Optional[int] = None
75
+ audio_max_length: Optional[int] = None
76
+
77
+ def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
78
+ # split inputs and labels since they have to be of different lengths and need
79
+ # different padding methods
80
+
81
+ labels = [torch.tensor(feature["labels"]).transpose(0, 1) for feature in features]
82
+ # (bsz, seq_len, num_codebooks)
83
+ labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=-100)
84
+ if self.audio_max_length is not None and self.padding == "max_length":
85
+ labels = torch.nn.functional.pad(
86
+ labels, pad=(0, 0, 0, max(self.audio_max_length - labels.shape[1], 0)), value=-100
87
+ )
88
+
89
+ input_ids = [{"input_ids": feature["input_ids"]} for feature in features]
90
+
91
+ input_ids = self.description_tokenizer.pad(
92
+ input_ids,
93
+ return_tensors="pt",
94
+ padding=self.padding,
95
+ pad_to_multiple_of=self.pad_to_multiple_of,
96
+ max_length=self.description_max_length,
97
+ )
98
+
99
+ batch = {"labels": labels, **input_ids}
100
+
101
+ prompt_input_ids = [{"input_ids": feature["prompt_input_ids"]} for feature in features]
102
+ prompt_input_ids = self.prompt_tokenizer.pad(
103
+ prompt_input_ids,
104
+ return_tensors="pt",
105
+ padding=self.padding,
106
+ pad_to_multiple_of=self.pad_to_multiple_of,
107
+ max_length=self.prompt_max_length,
108
+ )
109
+
110
+ batch["prompt_input_ids"] = prompt_input_ids["input_ids"]
111
+ if "attention_mask" in prompt_input_ids:
112
+ batch["prompt_attention_mask"] = prompt_input_ids["attention_mask"]
113
+
114
+ return batch
115
+
116
+
117
+ def convert_dataset_str_to_list(
118
+ dataset_names,
119
+ dataset_config_names,
120
+ metadata_dataset_names=None,
121
+ splits=None,
122
+ dataset_samples=None,
123
+ default_split="train",
124
+ ):
125
+ if isinstance(dataset_names, str):
126
+ dataset_names = dataset_names.split("+")
127
+ dataset_config_names = dataset_config_names.split("+")
128
+ splits = splits.split("+") if splits is not None else None
129
+ dataset_samples = dataset_samples.split("+") if dataset_samples is not None else None
130
+ metadata_dataset_names = metadata_dataset_names.split("+") if metadata_dataset_names is not None else None
131
+
132
+ # basic checks to ensure we've got the right number of datasets/configs/splits/columns/probs
133
+ if len(dataset_names) != len(dataset_config_names):
134
+ raise ValueError(
135
+ f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and"
136
+ f" {len(dataset_config_names)} configs."
137
+ )
138
+
139
+ if splits is not None and len(splits) != len(dataset_names):
140
+ raise ValueError(
141
+ f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits."
142
+ )
143
+
144
+ if metadata_dataset_names is not None and len(metadata_dataset_names) != len(dataset_names):
145
+ raise ValueError(
146
+ f"Ensure one metadata dataset is passed for each dataset, got {len(dataset_names)} datasets and {len(metadata_dataset_names)} metadata datasets."
147
+ )
148
+
149
+ if dataset_samples is not None:
150
+ if len(dataset_samples) != len(dataset_names):
151
+ raise ValueError(
152
+ f"Ensure one sample is passed for each dataset, got {len(dataset_names)} datasets and "
153
+ f"{len(dataset_samples)} samples."
154
+ )
155
+ dataset_samples = [float(ds_sample) for ds_sample in dataset_samples]
156
+ else:
157
+ dataset_samples = [None] * len(dataset_names)
158
+
159
+ splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))]
160
+
161
+ dataset_names_dict = []
162
+ for i, ds_name in enumerate(dataset_names):
163
+ dataset_names_dict.append(
164
+ {
165
+ "name": ds_name,
166
+ "config": dataset_config_names[i],
167
+ "split": splits[i],
168
+ "metadata_dataset_name": metadata_dataset_names[i],
169
+ "samples": dataset_samples[i],
170
+ }
171
+ )
172
+ return dataset_names_dict
173
+
174
+
175
+ def load_multiple_datasets(
176
+ accelerator: Accelerator,
177
+ dataset_names: Union[List, str],
178
+ dataset_config_names: Union[List, str],
179
+ metadata_dataset_names: Optional[str] = None,
180
+ splits: Optional[Union[List, str]] = None,
181
+ label_column_names: Optional[List] = None,
182
+ stopping_strategy: Optional[str] = "first_exhausted",
183
+ dataset_samples: Optional[Union[List, np.array]] = None,
184
+ streaming: Optional[bool] = False,
185
+ seed: Optional[int] = None,
186
+ id_column_name: Optional[str] = None,
187
+ columns_to_keep: Optional[Set[str]] = None,
188
+ prompt_column_name: Optional[str] = None,
189
+ sampling_rate: Optional[int] = None,
190
+ audio_column_name: Optional[str] = None,
191
+ logger: Optional[logging.Logger] = None,
192
+ **kwargs,
193
+ ) -> Union[Dataset, IterableDataset]:
194
+ dataset_names_dict = convert_dataset_str_to_list(
195
+ dataset_names, dataset_config_names, metadata_dataset_names, splits, label_column_names, dataset_samples
196
+ )
197
+
198
+ if dataset_samples is not None:
199
+ dataset_samples = [ds_dict["samples"] for ds_dict in dataset_names_dict]
200
+ probabilities = np.array(dataset_samples) / np.sum(dataset_samples)
201
+ else:
202
+ probabilities = None
203
+
204
+ all_datasets = []
205
+ # iterate over the datasets we want to interleave
206
+ for dataset_dict in tqdm(dataset_names_dict, desc="Combining datasets..."):
207
+ with accelerator.local_main_process_first():
208
+ dataset = load_dataset(
209
+ dataset_dict["name"],
210
+ dataset_dict["config"],
211
+ split=dataset_dict["split"],
212
+ streaming=streaming,
213
+ **kwargs,
214
+ )
215
+ dataset_features = dataset.features.keys()
216
+
217
+ if sampling_rate is not None and audio_column_name is not None:
218
+ # resample target audio
219
+ dataset = dataset.cast_column(audio_column_name, datasets.features.Audio(sampling_rate=sampling_rate))
220
+
221
+ metadata_dataset_name = dataset_dict["metadata_dataset_name"]
222
+ if metadata_dataset_name is not None:
223
+ logger.info(
224
+ f'Merging {dataset_dict["name"]} - {dataset_dict["split"]} with {metadata_dataset_name} - {dataset_dict["split"]}'
225
+ )
226
+ metadata_dataset = load_dataset(
227
+ metadata_dataset_name,
228
+ dataset_dict["config"],
229
+ split=dataset_dict["split"],
230
+ streaming=streaming,
231
+ **kwargs,
232
+ )
233
+
234
+ # TODO(YL): I forgot to create unique ids for MLS english.
235
+ # To iterate faster, I bypass the original id check and do another one. - Done once because assuming it won't change next time
236
+ # if dataset_dict["name"] == "parler-tts/mls_eng_10k":
237
+ # def concat_ids(book_id, speaker_id, begin_time):
238
+ # return {"id": f"{book_id}_{speaker_id}_{str(begin_time).replace('.', '_')}"}
239
+ # dataset = dataset.map(concat_ids, input_columns=["book_id", "speaker_id", "begin_time"], num_proc=24)
240
+ # metadata_dataset = metadata_dataset.map(concat_ids, input_columns=["book_id", "speaker_id", "begin_time"], num_proc=24)
241
+ # metadata_dataset = metadata_dataset.rename_column(id_column_name, f"metadata_{id_column_name}")
242
+
243
+ if dataset_dict["name"] not in {"parler-tts/mls_eng_10k", "parler-tts/mls_eng"}:
244
+ if id_column_name is not None and id_column_name not in dataset.column_names:
245
+ raise ValueError(
246
+ f"id_column_name={id_column_name} but has not been found in the dataset columns"
247
+ f"- one of {', '.join(list(dataset.column_names))}."
248
+ )
249
+ if id_column_name is not None and id_column_name not in metadata_dataset.column_names:
250
+ raise ValueError(
251
+ f"id_column_name={id_column_name} but has not been found in the metadata dataset columns"
252
+ f"- one of {', '.join(list(metadata_dataset.column_names))}."
253
+ )
254
+ elif id_column_name is not None:
255
+ metadata_dataset = metadata_dataset.rename_column(id_column_name, f"metadata_{id_column_name}")
256
+
257
+ metadata_columns_to_remove = set(metadata_dataset.column_names).intersection(set(dataset.column_names))
258
+
259
+ if prompt_column_name is not None:
260
+ # We might have applied some transformations to the prompts (e.g punctuation restoration)
261
+ # so we make sure to remove it from the original dataset
262
+ if prompt_column_name in dataset.column_names:
263
+ logger.info(
264
+ f"REMOVE {prompt_column_name} from dataset {dataset_dict['name']} - dataset_dict['split']"
265
+ )
266
+ dataset.remove_columns(prompt_column_name)
267
+
268
+ metadata_columns_to_remove = set(metadata_dataset.column_names).intersection(set(dataset.column_names))
269
+ metadata_dataset = metadata_dataset.remove_columns(metadata_columns_to_remove)
270
+
271
+ dataset = concatenate_datasets([dataset, metadata_dataset], axis=1)
272
+
273
+ if id_column_name is not None and dataset_dict["name"] not in {
274
+ "parler-tts/mls_eng_10k",
275
+ "parler-tts/mls_eng",
276
+ }:
277
+ if (
278
+ len(
279
+ dataset.filter(
280
+ lambda id1, id2: id1 != id2,
281
+ input_columns=[id_column_name, f"metadata_{id_column_name}"],
282
+ )
283
+ )
284
+ != 0
285
+ ):
286
+ raise ValueError(
287
+ f"Concatenate didn't work. Some ids don't correspond on dataset {dataset_dict['name']}"
288
+ )
289
+
290
+ dataset_features = dataset.features.keys()
291
+
292
+ if columns_to_keep is not None:
293
+ dataset = dataset.remove_columns(set(dataset_features - columns_to_keep))
294
+ all_datasets.append(dataset)
295
+
296
+ if len(all_datasets) == 1:
297
+ # we have a single dataset so just return it as is
298
+ return all_datasets[0]
299
+
300
+ if streaming:
301
+ interleaved_dataset = interleave_datasets(
302
+ all_datasets,
303
+ stopping_strategy=stopping_strategy,
304
+ probabilities=probabilities,
305
+ seed=seed,
306
+ )
307
+ else:
308
+ with accelerator.local_main_process_first():
309
+ interleaved_dataset = concatenate_datasets(all_datasets)
310
+
311
+ return interleaved_dataset
parler-tts/training/eval.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torchaudio.pipelines import SQUIM_OBJECTIVE
3
+ import torchaudio
4
+ import evaluate
5
+ from transformers import (
6
+ AutoModel,
7
+ AutoProcessor,
8
+ pipeline,
9
+ WhisperForConditionalGeneration,
10
+ WhisperTokenizer,
11
+ WhisperTokenizerFast,
12
+ )
13
+ from accelerate.utils.memory import release_memory
14
+ import numpy as np
15
+
16
+
17
+ def clap_similarity(clap_model_name_or_path, texts, audios, device, input_sampling_rate=44100):
18
+ clap = AutoModel.from_pretrained(clap_model_name_or_path)
19
+ clap_processor = AutoProcessor.from_pretrained(clap_model_name_or_path)
20
+ output_sampling_rate = clap_processor.feature_extractor.sampling_rate
21
+ if input_sampling_rate != output_sampling_rate:
22
+ audios = [
23
+ torchaudio.functional.resample(torch.from_numpy(audio), input_sampling_rate, output_sampling_rate).numpy()
24
+ for audio in audios
25
+ ]
26
+ clap_inputs = clap_processor(
27
+ text=texts, audios=audios, padding=True, return_tensors="pt", sampling_rate=output_sampling_rate
28
+ ).to(device)
29
+
30
+ clap.to(device)
31
+ with torch.no_grad():
32
+ text_features = clap.get_text_features(
33
+ clap_inputs["input_ids"], attention_mask=clap_inputs.get("attention_mask", None)
34
+ )
35
+ audio_features = clap.get_audio_features(clap_inputs["input_features"])
36
+
37
+ cosine_sim = torch.nn.functional.cosine_similarity(audio_features, text_features, dim=1, eps=1e-8).mean()
38
+
39
+ cosine_sim = cosine_sim.to("cpu")
40
+
41
+ clap.to("cpu")
42
+ clap, clap_inputs, audio_features, text_features = release_memory(clap, clap_inputs, audio_features, text_features)
43
+ return cosine_sim
44
+
45
+
46
+ def si_sdr(audios, device, input_sampling_rate=44100):
47
+ max_audio_length = 15 * SQUIM_OBJECTIVE.sample_rate
48
+ model = SQUIM_OBJECTIVE.get_model().to((device))
49
+
50
+ output_sampling_rate = SQUIM_OBJECTIVE.sample_rate
51
+ if input_sampling_rate != output_sampling_rate:
52
+ audios = [
53
+ torchaudio.functional.resample(
54
+ torch.tensor(audio)[None, :].to(device).float(), input_sampling_rate, output_sampling_rate
55
+ )
56
+ for audio in audios
57
+ ]
58
+
59
+ def apply_squim(waveform):
60
+ with torch.no_grad():
61
+ waveform = waveform[:, : min(max_audio_length, waveform.shape[1])]
62
+ _, _, sdr_sample = model(waveform)
63
+ sdr_sample = sdr_sample.cpu()[0]
64
+ return sdr_sample
65
+
66
+ si_sdrs = [apply_squim(audio) for audio in audios]
67
+ audios, model = release_memory(audios, model)
68
+ return si_sdrs
69
+
70
+
71
+ def wer(
72
+ asr_model_name_or_path,
73
+ prompts,
74
+ audios,
75
+ device,
76
+ per_device_eval_batch_size,
77
+ sampling_rate,
78
+ noise_level_to_compute_clean_wer,
79
+ si_sdr_measures,
80
+ ):
81
+ metric = evaluate.load("wer")
82
+ asr_pipeline = pipeline(model=asr_model_name_or_path, device=device, chunk_length_s=25.0)
83
+
84
+ return_language = None
85
+ if isinstance(asr_pipeline.model, WhisperForConditionalGeneration):
86
+ return_language = True
87
+
88
+ transcriptions = asr_pipeline(
89
+ [{"raw": audio, "sampling_rate": sampling_rate} for audio in audios],
90
+ batch_size=int(per_device_eval_batch_size),
91
+ return_language=return_language,
92
+ )
93
+
94
+ if isinstance(asr_pipeline.tokenizer, (WhisperTokenizer, WhisperTokenizerFast)):
95
+ tokenizer = asr_pipeline.tokenizer
96
+ else:
97
+ tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-large-v3")
98
+
99
+ english_normalizer = tokenizer.normalize
100
+ basic_normalizer = tokenizer.basic_normalize
101
+
102
+ normalized_predictions = []
103
+ normalized_references = []
104
+
105
+ for pred, ref in zip(transcriptions, prompts):
106
+ normalizer = (
107
+ english_normalizer
108
+ if isinstance(pred.get("chunks", None), list) and pred["chunks"][0].get("language", None) == "english"
109
+ else basic_normalizer
110
+ )
111
+ norm_ref = normalizer(ref)
112
+ if len(norm_ref) > 0:
113
+ norm_pred = normalizer(pred["text"])
114
+ normalized_predictions.append(norm_pred)
115
+ normalized_references.append(norm_ref)
116
+
117
+ word_error = 100
118
+ clean_word_error = None
119
+ noisy_word_error = None
120
+ percent_clean_samples = 0
121
+ if len(normalized_references) > 0:
122
+ word_error = 100 * metric.compute(predictions=normalized_predictions, references=normalized_references)
123
+
124
+
125
+ if noise_level_to_compute_clean_wer and si_sdr_measures:
126
+ si_sdr_measures = np.array(si_sdr_measures)
127
+ mask = si_sdr_measures >= noise_level_to_compute_clean_wer
128
+ if mask.any():
129
+ clean_word_error = 100 * metric.compute(
130
+ predictions=np.array(normalized_predictions)[mask], references=np.array(normalized_references)[mask]
131
+ )
132
+ if not mask.all():
133
+ noisy_word_error = 100 * metric.compute(
134
+ predictions=np.array(normalized_predictions)[~mask], references=np.array(normalized_references)[~mask]
135
+ )
136
+ else:
137
+ noisy_word_error = 0
138
+ percent_clean_samples = mask.sum() / len(mask)
139
+
140
+ asr_pipeline.model.to("cpu")
141
+ asr_pipeline = release_memory(asr_pipeline)
142
+ return word_error, [t["text"] for t in transcriptions], clean_word_error, noisy_word_error, percent_clean_samples
parler-tts/training/run_parler_tts_training.py ADDED
@@ -0,0 +1,1249 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2024 The HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ """ Train Parler-TTS using 🤗 Accelerate"""
18
+
19
+ import logging
20
+ import os
21
+ import re
22
+ import sys
23
+ import time
24
+ import math
25
+ import contextlib
26
+ from multiprocess import set_start_method
27
+ from datetime import timedelta
28
+ import inspect
29
+ from tqdm import tqdm
30
+ from pathlib import Path
31
+
32
+ import torch
33
+ from torch.utils.data import DataLoader
34
+
35
+ import datasets
36
+ from datasets import DatasetDict, Dataset, IterableDataset, concatenate_datasets
37
+
38
+ from huggingface_hub import HfApi
39
+
40
+ import transformers
41
+ from transformers import AutoFeatureExtractor, AutoTokenizer, HfArgumentParser
42
+ from transformers.trainer_pt_utils import LengthGroupedSampler
43
+ from transformers.optimization import get_scheduler
44
+ from transformers.utils import send_example_telemetry
45
+
46
+
47
+ from accelerate import Accelerator, skip_first_batches
48
+ from accelerate.utils import set_seed, AutocastKwargs, InitProcessGroupKwargs, TorchDynamoPlugin, DistributedDataParallelKwargs
49
+ from accelerate.utils.memory import release_memory
50
+
51
+ from parler_tts import (
52
+ ParlerTTSConfig,
53
+ ParlerTTSForConditionalGeneration,
54
+ build_delay_pattern_mask,
55
+ )
56
+
57
+ from training.utils import (
58
+ get_last_checkpoint,
59
+ rotate_checkpoints,
60
+ log_pred,
61
+ log_metric,
62
+ load_all_codec_checkpoints,
63
+ save_codec_checkpoint,
64
+ get_last_codec_checkpoint_step,
65
+ )
66
+ from training.arguments import ModelArguments, DataTrainingArguments, ParlerTTSTrainingArguments
67
+ from training.data import load_multiple_datasets, DataCollatorParlerTTSWithPadding, DataCollatorEncodecWithPadding
68
+ from training.eval import clap_similarity, wer, si_sdr
69
+
70
+ logger = logging.getLogger(__name__)
71
+
72
+
73
+ def main():
74
+ # See all possible arguments in src/transformers/training_args.py
75
+ # or by passing the --help flag to this script.
76
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
77
+
78
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, ParlerTTSTrainingArguments))
79
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
80
+ # If we pass only one argument to the script and it's the path to a json file,
81
+ # let's parse it to get our arguments.
82
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
83
+ else:
84
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
85
+
86
+ # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
87
+ # information sent is the one passed as arguments along with your Python/PyTorch versions.
88
+ send_example_telemetry("run_parler_tts", model_args, data_args)
89
+
90
+ if training_args.dtype == "float16":
91
+ mixed_precision = "fp16"
92
+ torch_dtype = torch.float16
93
+ elif training_args.dtype == "bfloat16":
94
+ mixed_precision = "bf16"
95
+ torch_dtype = torch.bfloat16
96
+ else:
97
+ mixed_precision = "no"
98
+ torch_dtype = torch.float32
99
+
100
+ if data_args.pad_to_max_length and (
101
+ data_args.max_duration_in_seconds is None
102
+ or data_args.max_prompt_token_length is None
103
+ or data_args.max_description_token_length is None
104
+ ):
105
+ raise ValueError(
106
+ "`pad_to_max_length` is `True` but one of the following parameters has not been set: `max_duration_in_seconds`, `max_prompt_token_length`, `max_description_token_length`"
107
+ )
108
+
109
+ padding = "max_length" if data_args.pad_to_max_length else "longest"
110
+
111
+ ####### A. Preparation
112
+ kwargs_handlers = [InitProcessGroupKwargs(timeout=timedelta(minutes=120)), DistributedDataParallelKwargs(find_unused_parameters=False)]
113
+
114
+ accelerator = Accelerator(
115
+ gradient_accumulation_steps=training_args.gradient_accumulation_steps,
116
+ mixed_precision=mixed_precision,
117
+ log_with=training_args.report_to,
118
+ project_dir=training_args.output_dir,
119
+ kwargs_handlers=kwargs_handlers,
120
+ )
121
+
122
+ accelerator.init_trackers(
123
+ project_name=data_args.wandb_project,
124
+ config={
125
+ "learning_rate": training_args.learning_rate,
126
+ "model_name_or_path": model_args.model_name_or_path,
127
+ "num_train_epochs": training_args.num_train_epochs,
128
+ "gradient_accumulation_steps": training_args.gradient_accumulation_steps,
129
+ "per_device_train_batch_size": training_args.per_device_train_batch_size,
130
+ "global_batch_size": training_args.per_device_train_batch_size * accelerator.num_processes,
131
+ "mixed_precision": mixed_precision,
132
+ "lr_scheduler_type": training_args.lr_scheduler_type,
133
+ "warmup_steps": training_args.warmup_steps,
134
+ "freeze_text_encoder": model_args.freeze_text_encoder,
135
+ "max_duration_in_seconds": data_args.max_duration_in_seconds,
136
+ "weight_decay": training_args.weight_decay,
137
+ "adam_beta1": training_args.adam_beta1,
138
+ "adam_beta2": training_args.adam_beta2,
139
+ "temperature": model_args.temperature,
140
+ },
141
+ init_kwargs={"wandb": {"name": data_args.wandb_run_name}} if data_args.wandb_run_name else {},
142
+ )
143
+
144
+ # Detecting last checkpoint and eventually continue from last checkpoint
145
+ last_checkpoint = None
146
+ if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
147
+ last_checkpoint = get_last_checkpoint(training_args.output_dir)
148
+ if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
149
+ raise ValueError(
150
+ f"Output directory ({training_args.output_dir}) already exists and is not empty. "
151
+ "Use --overwrite_output_dir to overcome."
152
+ )
153
+ elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
154
+ logger.info(
155
+ f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
156
+ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
157
+ )
158
+
159
+ # Setup logging
160
+ logging.basicConfig(
161
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
162
+ datefmt="%m/%d/%Y %H:%M:%S",
163
+ handlers=[logging.StreamHandler(sys.stdout)],
164
+ )
165
+ logger.setLevel(logging.INFO if accelerator.is_main_process else logging.WARN)
166
+
167
+ # Log a small summary on each proces
168
+ logger.warning(
169
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
170
+ f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
171
+ )
172
+
173
+ # Set the verbosity to info of the Transformers logger (on main process only)
174
+ if accelerator.is_local_main_process:
175
+ datasets.utils.logging.set_verbosity_warning()
176
+ transformers.utils.logging.set_verbosity_info()
177
+ else:
178
+ datasets.utils.logging.set_verbosity_error()
179
+ transformers.utils.logging.set_verbosity_error()
180
+
181
+ logger.info("Training/evaluation parameters %s", training_args)
182
+
183
+ # Set seed before initializing model.
184
+ set_seed(training_args.seed)
185
+ num_workers = data_args.preprocessing_num_workers
186
+
187
+ # 1. First, lett's instantiate the feature extractor, tokenizers and model
188
+ # Note for distributed training, the .from_pretrained methods guarantee that only
189
+ # one local process can concurrently download model & vocab.
190
+
191
+ # load feature extractor
192
+ feature_extractor = AutoFeatureExtractor.from_pretrained(
193
+ model_args.feature_extractor_name or model_args.model_name_or_path,
194
+ cache_dir=model_args.cache_dir,
195
+ token=data_args.token,
196
+ trust_remote_code=data_args.trust_remote_code,
197
+ )
198
+ sampling_rate = feature_extractor.sampling_rate
199
+
200
+ # load prompt tokenizer
201
+ prompt_tokenizer = AutoTokenizer.from_pretrained(
202
+ model_args.prompt_tokenizer_name or model_args.description_tokenizer_name or model_args.model_name_or_path,
203
+ cache_dir=model_args.cache_dir,
204
+ token=data_args.token,
205
+ trust_remote_code=data_args.trust_remote_code,
206
+ use_fast=model_args.use_fast_tokenizer,
207
+ padding_side=model_args.prompt_padding_side,
208
+ )
209
+
210
+ # load description tokenizer
211
+ description_tokenizer = AutoTokenizer.from_pretrained(
212
+ model_args.description_tokenizer_name or model_args.model_name_or_path,
213
+ cache_dir=model_args.cache_dir,
214
+ token=data_args.token,
215
+ trust_remote_code=data_args.trust_remote_code,
216
+ use_fast=model_args.use_fast_tokenizer,
217
+ )
218
+
219
+ if model_args.use_fast_tokenizer:
220
+ logger.warning(
221
+ "Disabling fast tokenizer warning: https://github.com/huggingface/transformers/blob/main/src/transformers/tokenization_utils_base.py#L3231-L3235"
222
+ )
223
+ prompt_tokenizer.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = True
224
+ description_tokenizer.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = True
225
+
226
+ # 2. Now, let's load the dataset
227
+
228
+ if data_args.save_to_disk is not None:
229
+ os.makedirs(data_args.save_to_disk, exist_ok=True)
230
+
231
+ # assume that the dataset has been saved to `save_to_disk` if the latter is not empty
232
+ dataset_was_precomputed = len(os.listdir(data_args.save_to_disk)) > 0
233
+ if dataset_was_precomputed:
234
+ with accelerator.local_main_process_first():
235
+ vectorized_datasets = datasets.load_from_disk(data_args.save_to_disk)
236
+ else:
237
+ raw_datasets = DatasetDict()
238
+
239
+ columns_to_keep = {
240
+ "target_audio_column_name": data_args.target_audio_column_name,
241
+ "prompt_column_name": data_args.prompt_column_name,
242
+ }
243
+ if data_args.description_column_name is not None:
244
+ columns_to_keep["description_column_name"] = data_args.description_column_name
245
+
246
+ if training_args.do_train:
247
+ raw_datasets["train"] = load_multiple_datasets(
248
+ accelerator,
249
+ data_args.train_dataset_name,
250
+ data_args.train_dataset_config_name,
251
+ metadata_dataset_names=data_args.train_metadata_dataset_name,
252
+ splits=data_args.train_split_name,
253
+ dataset_samples=data_args.train_dataset_samples,
254
+ seed=training_args.seed,
255
+ cache_dir=model_args.cache_dir,
256
+ num_proc=data_args.preprocessing_num_workers,
257
+ id_column_name=data_args.id_column_name,
258
+ columns_to_keep=columns_to_keep.values(),
259
+ prompt_column_name=data_args.prompt_column_name,
260
+ audio_column_name=data_args.target_audio_column_name,
261
+ sampling_rate=sampling_rate,
262
+ logger=logger,
263
+ # streaming=data_args.streaming, TODO(SG): optionally enable streaming mode
264
+ )
265
+
266
+ for key in columns_to_keep:
267
+ if columns_to_keep[key] not in raw_datasets["train"].column_names:
268
+ raise ValueError(
269
+ f"--{key} '{columns_to_keep[key]}' not found in dataset '{data_args.train_dataset_name}'."
270
+ f" Make sure to set `--{key}` to the correct audio column - one of"
271
+ f" {', '.join(raw_datasets['train'].column_names)}."
272
+ )
273
+
274
+ if data_args.max_train_samples is not None:
275
+ raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
276
+
277
+ if training_args.do_eval:
278
+ raw_datasets["eval"] = load_multiple_datasets(
279
+ accelerator,
280
+ data_args.eval_dataset_name if data_args.eval_dataset_name else data_args.train_dataset_name,
281
+ data_args.eval_dataset_config_name
282
+ if data_args.eval_dataset_config_name
283
+ else data_args.train_dataset_config_name,
284
+ metadata_dataset_names=data_args.eval_metadata_dataset_name,
285
+ splits=data_args.eval_split_name,
286
+ cache_dir=model_args.cache_dir,
287
+ num_proc=data_args.preprocessing_num_workers,
288
+ id_column_name=data_args.id_column_name,
289
+ columns_to_keep=columns_to_keep.values(),
290
+ prompt_column_name=data_args.prompt_column_name,
291
+ audio_column_name=data_args.target_audio_column_name,
292
+ sampling_rate=sampling_rate,
293
+ logger=logger,
294
+ # streaming=data_args.streaming, TODO(SG): optionally enable streaming mode
295
+ )
296
+
297
+ if data_args.max_eval_samples is not None:
298
+ with accelerator.local_main_process_first():
299
+ raw_datasets["eval"] = (
300
+ raw_datasets["eval"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples))
301
+ )
302
+
303
+ # 3. Next, let's load the config.
304
+ config = ParlerTTSConfig.from_pretrained(
305
+ model_args.model_name_or_path,
306
+ cache_dir=model_args.cache_dir,
307
+ token=data_args.token,
308
+ trust_remote_code=data_args.trust_remote_code,
309
+ )
310
+
311
+ if training_args.codebook_weights is not None and len(training_args.codebook_weights) != config.decoder.num_codebooks:
312
+ raise ValueError(f"`codebook_weights` has length {len(training_args.codebook_weights)} when it should be of length {config.decoder.num_codebooks}.")
313
+
314
+ # update pad token id and decoder_start_token_id
315
+ config.decoder.update(
316
+ {
317
+ "cross_attention_implementation_strategy": model_args.cross_attention_implementation_strategy
318
+ if model_args.cross_attention_implementation_strategy is not None
319
+ else None,
320
+ "codebook_weights": training_args.codebook_weights if training_args.codebook_weights is not None else config.decoder.codebook_weights
321
+ }
322
+ )
323
+ config.update(
324
+ {
325
+ "pad_token_id": model_args.pad_token_id if model_args.pad_token_id is not None else config.pad_token_id,
326
+ "decoder_start_token_id": model_args.decoder_start_token_id
327
+ if model_args.decoder_start_token_id is not None
328
+ else config.decoder_start_token_id,
329
+ }
330
+ )
331
+
332
+ # create model
333
+ model = ParlerTTSForConditionalGeneration.from_pretrained(
334
+ model_args.model_name_or_path,
335
+ cache_dir=model_args.cache_dir,
336
+ config=config,
337
+ token=data_args.token,
338
+ trust_remote_code=data_args.trust_remote_code,
339
+ attn_implementation={"decoder": model_args.attn_implementation, "text_encoder": "eager"},
340
+ )
341
+
342
+ # enable gradient checkpointing if necessary
343
+ if training_args.gradient_checkpointing:
344
+ model.gradient_checkpointing_enable()
345
+
346
+ # 4. Now we preprocess the datasets including loading the audio, resampling and normalization
347
+ # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
348
+ # so that we just need to set the correct target sampling rate and normalize the input
349
+ # via the `feature_extractor`
350
+
351
+ # derive max & min input length for sample rate & max duration
352
+ sampling_rate = feature_extractor.sampling_rate
353
+ max_target_length = int(data_args.max_duration_in_seconds * sampling_rate)
354
+ min_target_length = int(data_args.min_duration_in_seconds * sampling_rate)
355
+ target_audio_column_name = data_args.target_audio_column_name
356
+ description_column_name = data_args.description_column_name
357
+ prompt_column_name = data_args.prompt_column_name
358
+ feature_extractor_input_name = feature_extractor.model_input_names[0]
359
+ audio_encoder_pad_token_id = config.decoder.pad_token_id
360
+ audio_encoder_eos_token_id = config.decoder.eos_token_id
361
+ audio_encoder_bos_token_id = model.generation_config.decoder_start_token_id
362
+ max_length = model.generation_config.max_length
363
+ num_codebooks = model.decoder.config.num_codebooks
364
+ bandwidth = model_args.bandwidth
365
+ attn_implementation = model_args.attn_implementation
366
+
367
+ # Freeze Encoders
368
+ model.freeze_encoders(model_args.freeze_text_encoder)
369
+
370
+ # Test all gather - used for warmout and avoiding timeout
371
+ logger.debug(str(accelerator.process_index), main_process_only=False, in_order=True)
372
+ test_tensor = torch.tensor([accelerator.process_index], device=accelerator.device)
373
+ gathered_tensor = accelerator.gather(test_tensor)
374
+ print("gathered_tensor", gathered_tensor)
375
+ accelerator.wait_for_everyone()
376
+
377
+ if not dataset_was_precomputed:
378
+ # Filter on text length
379
+ if description_column_name is not None and data_args.max_text_length is not None:
380
+ with accelerator.local_main_process_first():
381
+ # filter description that is shorter than max_text_length
382
+ raw_datasets = raw_datasets.filter(
383
+ lambda x: len(x) < data_args.max_text_length,
384
+ num_proc=num_workers,
385
+ input_columns=[description_column_name],
386
+ )
387
+
388
+ # Preprocessing the dataset.
389
+ # We need to tokenize the texts.
390
+ def pass_through_processors(description, prompt):
391
+ batch = {}
392
+
393
+ batch["input_ids"] = description_tokenizer(description.strip())["input_ids"]
394
+ batch["prompt_input_ids"] = prompt_tokenizer(prompt.strip())["input_ids"]
395
+
396
+ return batch
397
+
398
+ with accelerator.local_main_process_first():
399
+ # this is a trick to avoid to rewrite the entire audio column which takes ages
400
+ vectorized_datasets = raw_datasets.map(
401
+ pass_through_processors,
402
+ remove_columns=next(iter(raw_datasets.values())).column_names,
403
+ input_columns=[description_column_name, prompt_column_name],
404
+ num_proc=num_workers,
405
+ desc="preprocess datasets",
406
+ )
407
+
408
+ # We use Accelerate to perform distributed inference
409
+ # T5 doesn't support fp16
410
+ autocast_kwargs = AutocastKwargs(enabled=(mixed_precision != "fp16"))
411
+
412
+ # Now we encode the audio labels with encodec.
413
+ ####### B. Encode audio
414
+
415
+ logger.info("*** Encode target audio with encodec ***")
416
+
417
+ # no need to prepare audio_decoder because used for inference without mixed precision
418
+ # see: https://huggingface.co/docs/accelerate/main/en/package_reference/accelerator#accelerate.Accelerator.prepare
419
+ if training_args.torch_compile:
420
+ audio_decoder = accelerator.prepare_model(model.audio_encoder, evaluation_mode=True)
421
+ else:
422
+ audio_decoder = model.audio_encoder
423
+
424
+ encoder_data_collator = DataCollatorEncodecWithPadding(
425
+ feature_extractor,
426
+ audio_column_name=target_audio_column_name,
427
+ feature_extractor_input_name=feature_extractor_input_name,
428
+ max_length=max_target_length,
429
+ padding=padding,
430
+ )
431
+ encoder_signature = set(inspect.signature(audio_decoder.forward).parameters)
432
+
433
+ def apply_audio_decoder(batch):
434
+ len_audio = batch.pop("len_audio")
435
+ audio_decoder.to(batch["input_values"].device).eval()
436
+ if bandwidth is not None:
437
+ batch["bandwidth"] = bandwidth
438
+ elif "num_quantizers" in encoder_signature:
439
+ batch["num_quantizers"] = num_codebooks
440
+ elif "num_codebooks" in encoder_signature:
441
+ batch["num_codebooks"] = num_codebooks
442
+ elif "n_quantizers" in encoder_signature:
443
+ batch["n_quantizers"] = num_codebooks
444
+
445
+ with torch.no_grad():
446
+ labels = audio_decoder.encode(**batch)["audio_codes"]
447
+ output = {}
448
+ output["len_audio"] = len_audio
449
+ # (1, bsz, codebooks, seq_len) -> (bsz, seq_len, codebooks)
450
+ output["labels"] = labels.squeeze(0).transpose(1, 2)
451
+
452
+ # if `pad_to_max_length`, the maximum corresponding audio length of the current batch is max_duration*sampling_rate
453
+ max_length = len_audio.max() if padding != "max_length" else max_target_length
454
+ output["ratio"] = torch.ones_like(len_audio) * labels.shape[-1] / max_length
455
+ return output
456
+
457
+ # (1, codebooks, seq_len) where seq_len=1
458
+ bos_labels = torch.ones((1, num_codebooks, 1)) * audio_encoder_bos_token_id
459
+
460
+ def postprocess_dataset(labels):
461
+ # (1, codebooks, seq_len)
462
+ labels = torch.tensor(labels).unsqueeze(0)
463
+ # add bos
464
+ labels = torch.cat([bos_labels, labels], dim=-1)
465
+
466
+ labels, delay_pattern_mask = build_delay_pattern_mask(
467
+ labels,
468
+ bos_token_id=audio_encoder_bos_token_id,
469
+ pad_token_id=audio_encoder_eos_token_id,
470
+ max_length=labels.shape[-1] + num_codebooks,
471
+ num_codebooks=num_codebooks,
472
+ )
473
+
474
+ # the first ids of the delay pattern mask are precisely labels, we use the rest of the labels mask
475
+ # to take care of EOS
476
+ # we want labels to look like this:
477
+ # - [B, a, b, E, E, E, E]
478
+ # - [B, B, c, d, E, E, E]
479
+ # - [B, B, B, e, f, E, E]
480
+ # - [B, B, B, B, g, h, E]
481
+ labels = torch.where(delay_pattern_mask == -1, audio_encoder_eos_token_id, delay_pattern_mask)
482
+
483
+ # the first timestamp is associated to a row full of BOS, let's get rid of it
484
+ # we also remove the last timestampts (full of PAD)
485
+ output = {"labels": labels[:, 1:]}
486
+ return output
487
+
488
+ for split in vectorized_datasets:
489
+ data_loader = DataLoader(
490
+ raw_datasets[split],
491
+ batch_size=training_args.audio_encoder_per_device_batch_size,
492
+ collate_fn=encoder_data_collator,
493
+ num_workers=training_args.dataloader_num_workers,
494
+ pin_memory=True,
495
+ )
496
+ data_loader = accelerator.prepare(data_loader)
497
+ total_inference_steps = len(data_loader)
498
+
499
+ start_step = get_last_codec_checkpoint_step(os.path.join(data_args.temporary_save_to_disk, split))
500
+ accelerator.wait_for_everyone()
501
+ if start_step > 0:
502
+ logger.info(f"Resuming {split} from step {start_step}")
503
+ # efficiently skip the first n batches
504
+ start_step += 1
505
+ data_loader = skip_first_batches(data_loader, start_step)
506
+
507
+ all_generated_labels = []
508
+ all_lens = []
509
+ if start_step < total_inference_steps:
510
+ for i, batch in enumerate(tqdm(data_loader, disable=not accelerator.is_local_main_process)):
511
+ cur_step = start_step + i
512
+ generate_labels = apply_audio_decoder(batch)
513
+ generate_labels = accelerator.pad_across_processes(generate_labels, dim=1, pad_index=0)
514
+ generate_labels = accelerator.gather_for_metrics(generate_labels)
515
+
516
+ if accelerator.is_main_process:
517
+ lab = generate_labels["labels"].cpu().transpose(1, 2).to(torch.int16)
518
+ rat = generate_labels["ratio"].cpu().squeeze(1)
519
+ lens = generate_labels["len_audio"].cpu().squeeze(1)
520
+ lab = [l[:, : int(ratio * length)] for (l, ratio, length) in zip(lab, rat, lens)]
521
+
522
+ all_generated_labels.extend(lab)
523
+ all_lens.extend(lens)
524
+
525
+ if ((cur_step + 1) % data_args.save_codec_steps == 0) or (
526
+ cur_step == total_inference_steps - 1
527
+ ):
528
+ tmp_labels = Dataset.from_dict({"labels": all_generated_labels, "target_length": all_lens})
529
+ tmp_labels = tmp_labels.map(
530
+ postprocess_dataset,
531
+ num_proc=data_args.preprocessing_num_workers, # this one is resource consuming if many processor.
532
+ input_columns=["labels"],
533
+ desc="Postprocessing labeling",
534
+ )
535
+ save_codec_checkpoint(
536
+ os.path.join(data_args.temporary_save_to_disk, split), tmp_labels, cur_step
537
+ )
538
+ all_generated_labels = []
539
+ all_lens = []
540
+
541
+ accelerator.wait_for_everyone()
542
+
543
+ if accelerator.is_main_process and len(all_generated_labels) > 0:
544
+ tmp_labels = Dataset.from_dict({"labels": all_generated_labels, "target_length": all_lens})
545
+ tmp_labels = tmp_labels.map(
546
+ postprocess_dataset,
547
+ num_proc=data_args.preprocessing_num_workers, # this one is resource consuming if many processor.
548
+ input_columns=["labels"],
549
+ desc="Postprocessing labeling",
550
+ )
551
+ save_codec_checkpoint(os.path.join(data_args.temporary_save_to_disk, split), tmp_labels, cur_step)
552
+ all_generated_labels = []
553
+ all_lens = []
554
+ accelerator.wait_for_everyone()
555
+
556
+ del all_generated_labels
557
+ accelerator.wait_for_everyone()
558
+
559
+ with accelerator.local_main_process_first():
560
+ tmp_labels = load_all_codec_checkpoints(os.path.join(data_args.temporary_save_to_disk, split)).select(
561
+ range(len(vectorized_datasets[split]))
562
+ )
563
+ logger.info(f"Concatenating {split}: {tmp_labels} with {vectorized_datasets[split]}")
564
+ vectorized_datasets[split] = concatenate_datasets([vectorized_datasets[split], tmp_labels], axis=1)
565
+
566
+ accelerator.free_memory()
567
+ del generate_labels, all_lens
568
+
569
+ with accelerator.local_main_process_first():
570
+ # NOTE: filtering is done at the end because in the `datasets` library, caching audio files is done after most operations
571
+ # caching audio files is time and disk-space consuming, so we want to avoid it at all costs, especially for large (>1Kh) audio datasets.
572
+ # That's also why we avoid to concat the processed datasets (vectorized_datasets) with the audio column present in raw_datasets.
573
+
574
+ def is_audio_in_length_range(length):
575
+ return length > min_target_length and length < max_target_length
576
+
577
+ # filter data that is shorter than min_target_length
578
+ vectorized_datasets = vectorized_datasets.filter(
579
+ is_audio_in_length_range,
580
+ num_proc=num_workers,
581
+ input_columns=["target_length"],
582
+ )
583
+
584
+ if description_column_name is not None and data_args.max_description_token_length is not None:
585
+ with accelerator.local_main_process_first():
586
+ # filter description that is shorter than max_text_length
587
+ vectorized_datasets = vectorized_datasets.filter(
588
+ lambda x: len(x) < data_args.max_description_token_length,
589
+ num_proc=num_workers,
590
+ input_columns=["input_ids"],
591
+ )
592
+
593
+ if data_args.max_prompt_token_length is not None:
594
+ with accelerator.local_main_process_first():
595
+ # filter description that is shorter than max_text_length
596
+ vectorized_datasets = vectorized_datasets.filter(
597
+ lambda x: len(x) < data_args.max_prompt_token_length,
598
+ num_proc=num_workers,
599
+ input_columns=["prompt_input_ids"],
600
+ )
601
+
602
+ if data_args.save_to_disk is not None and not dataset_was_precomputed:
603
+ if accelerator.is_main_process:
604
+ vectorized_datasets.save_to_disk(
605
+ data_args.save_to_disk,
606
+ num_proc=min(data_args.preprocessing_num_workers, len(vectorized_datasets["eval"]) - 1),
607
+ )
608
+ accelerator.wait_for_everyone()
609
+ logger.info(f"Dataset saved at {data_args.save_to_disk}")
610
+
611
+ audio_max_length = None
612
+ if padding == "max_length":
613
+ audio_max_length = max(vectorized_datasets["train"]["target_length"])
614
+ with accelerator.local_main_process_first():
615
+ max_sample = vectorized_datasets["train"].filter(
616
+ lambda x: x == audio_max_length,
617
+ num_proc=num_workers,
618
+ input_columns=["target_length"],
619
+ )
620
+ audio_max_length = max([len(l[0]) for l in max_sample["labels"]])
621
+
622
+ if description_column_name is not None and data_args.max_description_token_length is not None:
623
+ with accelerator.local_main_process_first():
624
+ # filter description that is shorter than max_text_length
625
+ vectorized_datasets = vectorized_datasets.filter(
626
+ lambda x: len(x) < data_args.max_description_token_length,
627
+ num_proc=num_workers,
628
+ input_columns=["input_ids"],
629
+ )
630
+
631
+ if data_args.max_prompt_token_length is not None:
632
+ with accelerator.local_main_process_first():
633
+ # filter description that is shorter than max_text_length
634
+ vectorized_datasets = vectorized_datasets.filter(
635
+ lambda x: len(x) < data_args.max_prompt_token_length,
636
+ num_proc=num_workers,
637
+ input_columns=["prompt_input_ids"],
638
+ )
639
+
640
+ if training_args.group_by_length:
641
+ # apply a simple heuristic to take into account audio and text lengths
642
+ def add_target_lengths(target_length, prompt, description):
643
+ return {"target_length": target_length + len(prompt) + len(description)}
644
+
645
+ with accelerator.local_main_process_first():
646
+ vectorized_datasets = vectorized_datasets.map(
647
+ add_target_lengths,
648
+ num_proc=num_workers,
649
+ input_columns=["target_length", "prompt_input_ids", "input_ids"],
650
+ )
651
+
652
+ # for large datasets it is advised to run the preprocessing on a
653
+ # single machine first with ``args.preprocessing_only`` since there will mostly likely
654
+ # be a timeout when running the script in distributed mode.
655
+ # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
656
+ # cached dataset
657
+ if data_args.preprocessing_only and data_args.save_to_disk is None:
658
+ raise ValueError(
659
+ "`preprocessing_only=True` but `save_to_disk` is not set. The latter should indicates where to save the dataset locally."
660
+ )
661
+ elif data_args.preprocessing_only:
662
+ logger.info(f"Data preprocessing finished. Files save at {data_args.save_to_disk}")
663
+ return
664
+
665
+ # 6. Next, we can prepare the training.
666
+
667
+ # Let's use word CLAP similary and WER metrics as our evaluation metrics,
668
+ def compute_metrics(
669
+ audios,
670
+ descriptions,
671
+ prompts,
672
+ device="cpu",
673
+ compute_clap_similarity_metric=False,
674
+ compute_noise_level_metric=False,
675
+ noise_level_to_compute_clean_wer=None,
676
+ ):
677
+ results = {}
678
+ input_ids = descriptions
679
+ texts = description_tokenizer.batch_decode(input_ids, skip_special_tokens=True)
680
+ prompts = prompt_tokenizer.batch_decode(prompts, skip_special_tokens=True)
681
+ audios = [a.float().cpu().numpy() for a in audios]
682
+
683
+ if compute_clap_similarity_metric:
684
+ clap_score = clap_similarity(
685
+ model_args.clap_model_name_or_path, texts, audios, device, input_sampling_rate=sampling_rate
686
+ )
687
+ results["clap"] = clap_score
688
+
689
+ si_sdr_measures = None
690
+ if compute_noise_level_metric:
691
+ si_sdr_measures = si_sdr(audios, device, input_sampling_rate=sampling_rate)
692
+
693
+ word_error, transcriptions, clean_word_error, noisy_word_error, percent_clean_samples = wer(
694
+ model_args.asr_model_name_or_path,
695
+ prompts,
696
+ audios,
697
+ device,
698
+ training_args.per_device_eval_batch_size,
699
+ sampling_rate,
700
+ noise_level_to_compute_clean_wer,
701
+ si_sdr_measures,
702
+ )
703
+ results["wer"] = word_error
704
+ if clean_word_error is not None:
705
+ results["clean_wer"] = clean_word_error
706
+ results["noisy_word_error"] = noisy_word_error
707
+ results["percent_clean_samples"] = percent_clean_samples
708
+
709
+ return results, texts, prompts, audios, transcriptions, si_sdr_measures
710
+
711
+ # Define Training Schedule
712
+ # Store some constants
713
+ per_device_train_batch_size = int(training_args.per_device_train_batch_size)
714
+ train_batch_size = per_device_train_batch_size * accelerator.num_processes
715
+ gradient_accumulation_steps = int(training_args.gradient_accumulation_steps)
716
+ per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
717
+
718
+ if training_args.max_steps < 0:
719
+ num_epochs = int(training_args.num_train_epochs)
720
+ steps_per_epoch = len(vectorized_datasets["train"]) // (train_batch_size * gradient_accumulation_steps)
721
+ total_train_steps = steps_per_epoch * num_epochs
722
+ elif training_args.max_steps > 0:
723
+ logger.info("max_steps is given, it will override any value given in num_train_epochs")
724
+ total_train_steps = int(training_args.max_steps)
725
+ # Setting a very large number of epochs so we go as many times as necessary over the iterator.
726
+ num_epochs = sys.maxsize
727
+ steps_per_epoch = total_train_steps
728
+
729
+ if training_args.eval_steps is None:
730
+ logger.info(f"eval_steps is not set, evaluating at the end of each epoch")
731
+ eval_steps = steps_per_epoch
732
+ else:
733
+ eval_steps = training_args.eval_steps
734
+
735
+ if training_args.eval_generation_steps is None:
736
+ eval_generation_steps = eval_steps
737
+ else:
738
+ eval_generation_steps = training_args.eval_generation_steps
739
+
740
+ # T5 doesn't support fp16
741
+ autocast_kwargs = AutocastKwargs(enabled=(mixed_precision != "fp16"))
742
+
743
+ # Define optimizer, LR scheduler, collator
744
+ optimizer = torch.optim.AdamW(
745
+ params=model.parameters(),
746
+ lr=training_args.learning_rate,
747
+ betas=(training_args.adam_beta1, training_args.adam_beta2),
748
+ eps=training_args.adam_epsilon,
749
+ weight_decay=training_args.weight_decay,
750
+ )
751
+
752
+ # LR scheduler gets stepped by `num_processes` each time -> account for this in warmup / total steps
753
+ lr_scheduler = get_scheduler(
754
+ name=training_args.lr_scheduler_type,
755
+ optimizer=optimizer,
756
+ num_warmup_steps=training_args.get_warmup_steps(total_train_steps) * accelerator.num_processes,
757
+ num_training_steps=total_train_steps * accelerator.num_processes,
758
+ )
759
+
760
+ # Instantiate custom data collator
761
+ data_collator = DataCollatorParlerTTSWithPadding(
762
+ prompt_tokenizer=prompt_tokenizer,
763
+ description_tokenizer=description_tokenizer,
764
+ pad_to_multiple_of=data_args.pad_to_multiple_of,
765
+ padding=padding,
766
+ prompt_max_length=data_args.max_prompt_token_length,
767
+ description_max_length=data_args.max_description_token_length,
768
+ audio_max_length=audio_max_length,
769
+ )
770
+
771
+ # Prepare everything with accelerate
772
+ model, optimizer, lr_scheduler = accelerator.prepare(model, optimizer, lr_scheduler)
773
+
774
+ num_examples = total_train_steps * train_batch_size * gradient_accumulation_steps
775
+ logger.info("***** Running training *****")
776
+ logger.info(f" Num examples = {num_examples}")
777
+ logger.info(" Instantaneous batch size per device =" f" {per_device_train_batch_size}")
778
+ logger.info(" Gradient accumulation steps =" f" {gradient_accumulation_steps}")
779
+ logger.info(
780
+ f" Total train batch size (w. parallel & distributed) = {train_batch_size * gradient_accumulation_steps}"
781
+ )
782
+ logger.info(f" Total optimization steps = {total_train_steps}")
783
+
784
+ # ======================== Training ================================
785
+ train_time = 0
786
+ train_start = time.time()
787
+ steps_trained_progress_bar = tqdm(
788
+ range(total_train_steps), desc="Train steps ... ", position=0, disable=not accelerator.is_local_main_process
789
+ )
790
+ continue_training = True
791
+ epochs_trained = 0
792
+ cur_step = 0
793
+
794
+ checkpoint = None
795
+ if training_args.resume_from_checkpoint is not None:
796
+ checkpoint = training_args.resume_from_checkpoint
797
+ elif last_checkpoint is not None:
798
+ checkpoint = last_checkpoint
799
+
800
+ if accelerator.is_main_process:
801
+ if training_args.push_to_hub:
802
+ api = HfApi(token=training_args.hub_token)
803
+
804
+ # Create repo (repo_name from args or inferred)
805
+ repo_name = training_args.hub_model_id
806
+ if repo_name is None:
807
+ repo_name = Path(training_args.output_dir).absolute().name
808
+ repo_id = api.create_repo(repo_name, exist_ok=True).repo_id
809
+
810
+ with open(os.path.join(training_args.output_dir, ".gitignore"), "w+") as gitignore:
811
+ if "wandb" not in gitignore:
812
+ gitignore.write("wandb\n")
813
+ elif training_args.output_dir is not None:
814
+ os.makedirs(training_args.output_dir, exist_ok=True)
815
+ accelerator.wait_for_everyone()
816
+
817
+ # Now save everything to be able to create a single processor later
818
+ # make sure all processes wait until data is saved
819
+ # only the main process saves them
820
+ if accelerator.is_main_process:
821
+ # save feature extractor, tokenizer and config
822
+ if (
823
+ model_args.prompt_tokenizer_name is None
824
+ and model_args.description_tokenizer_name
825
+ or (model_args.prompt_tokenizer_name == model_args.description_tokenizer_name)
826
+ ):
827
+ prompt_tokenizer.save_pretrained(training_args.output_dir)
828
+ else:
829
+ logger.warning(
830
+ f"Prompt tokenizer ('{model_args.prompt_tokenizer_name}') and description tokenizer ('{model_args.description_tokenizer_name}') are not the same. Saving only the prompt tokenizer."
831
+ )
832
+ prompt_tokenizer.save_pretrained(training_args.output_dir)
833
+
834
+ feature_extractor.save_pretrained(training_args.output_dir)
835
+ config.save_pretrained(training_args.output_dir)
836
+ accelerator.wait_for_everyone()
837
+
838
+ if checkpoint is not None:
839
+ accelerator.load_state(checkpoint)
840
+ # Find num steps and epoch from saved state string pattern
841
+ pattern = r"checkpoint-(\d+)-epoch-(\d+)"
842
+ match = re.search(pattern, checkpoint)
843
+ cur_step = int(match.group(1))
844
+ epochs_trained = int(match.group(2))
845
+
846
+ logger.info(" Continuing training from checkpoint, will skip to saved global_step")
847
+ logger.info(f" Continuing training from epoch {epochs_trained}")
848
+ logger.info(f" Continuing training from global step {cur_step}")
849
+
850
+ steps_trained_progress_bar.update(cur_step)
851
+
852
+ for epoch in range(0, epochs_trained):
853
+ with accelerator.local_main_process_first():
854
+ vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
855
+
856
+ if training_args.max_steps < 0:
857
+ # we know exactly the number of steps per epoch, so can skip through the required number of batches
858
+ resume_step = (cur_step - epochs_trained * steps_per_epoch) * gradient_accumulation_steps
859
+ else:
860
+ # Currently we don't know how many steps we've taken in the current epoch
861
+ # So we just shuffle the dataset one extra time and start from a fresh epoch
862
+ # This is "good enough" for our purposes but not fully correct
863
+ resume_step = None
864
+ with accelerator.local_main_process_first():
865
+ vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
866
+ else:
867
+ resume_step = None
868
+
869
+ gen_kwargs = {
870
+ "do_sample": model_args.do_sample,
871
+ "temperature": model_args.temperature,
872
+ "max_length": model_args.max_length,
873
+ # Because of the delayed pattern mask, generation might stop earlier because of unexpected behaviour
874
+ # on the first tokens of the codebooks that are delayed.
875
+ # This fix the issue.
876
+ "min_new_tokens": num_codebooks + 1,
877
+ }
878
+
879
+ # Define gradient update step fn
880
+ def train_step(
881
+ batch,
882
+ accelerator,
883
+ autocast_kwargs,
884
+ num_items_in_batch,
885
+ gradient_accumulation_steps,
886
+ ):
887
+ if mixed_precision == "fp16":
888
+ # fp16 doesn't work with T5-like models
889
+ with accelerator.autocast(autocast_handler=autocast_kwargs):
890
+ if training_args.parallel_mode.value != "distributed":
891
+ encoder_outputs = model.text_encoder(
892
+ input_ids=batch.get("input_ids"), attention_mask=batch.get("attention_mask", None)
893
+ )
894
+ else:
895
+ encoder_outputs = model.module.text_encoder(
896
+ input_ids=batch.get("input_ids"), attention_mask=batch.get("attention_mask", None)
897
+ )
898
+ # we optionnally project last_hidden_state to avoid recomputing every time
899
+ encoder_hidden_states = encoder_outputs.last_hidden_state
900
+ if (
901
+ config.text_encoder.hidden_size != config.decoder.hidden_size
902
+ and config.decoder.cross_attention_hidden_size is None
903
+ ):
904
+ encoder_hidden_states = (
905
+ model.enc_to_dec_proj(encoder_hidden_states)
906
+ if training_args.parallel_mode.value != "distributed"
907
+ else model.module.enc_to_dec_proj(encoder_hidden_states)
908
+ )
909
+
910
+ if batch.get("attention_mask", None) is not None:
911
+ encoder_hidden_states = encoder_hidden_states * batch.get("attention_mask", None)[..., None]
912
+
913
+ encoder_outputs.last_hidden_state = encoder_hidden_states
914
+ batch["encoder_outputs"] = encoder_outputs
915
+
916
+ outputs = model(**batch, loss_reduction="sum")
917
+ # CE (data) loss
918
+ ce_loss = (outputs.loss * gradient_accumulation_steps * accelerator.num_processes) / num_items_in_batch
919
+
920
+ metrics = {"loss": ce_loss}
921
+
922
+ # per CE loss
923
+ per_codebook_losses = outputs.per_codebook_losses
924
+ metrics.update({f"codebook_{i}_loss": ((l * gradient_accumulation_steps * accelerator.num_processes) / num_items_in_batch) for (i,l) in enumerate(per_codebook_losses)})
925
+ return ce_loss, metrics
926
+
927
+ # Define eval fn
928
+ def eval_step(
929
+ batch,
930
+ accelerator,
931
+ autocast_kwargs,
932
+ ):
933
+ eval_model = model if not training_args.torch_compile else model._orig_mod
934
+
935
+ if mixed_precision == "fp16":
936
+ # fp16 doesn't work with T5-like models
937
+ with accelerator.autocast(autocast_handler=autocast_kwargs):
938
+ if training_args.parallel_mode.value != "distributed":
939
+ encoder_outputs = model.text_encoder(
940
+ input_ids=batch.get("input_ids"), attention_mask=batch.get("attention_mask", None)
941
+ )
942
+ else:
943
+ encoder_outputs = model.module.text_encoder(
944
+ input_ids=batch.get("input_ids"), attention_mask=batch.get("attention_mask", None)
945
+ )
946
+ # we optionnally project last_hidden_state to avoid recomputing every time
947
+ encoder_hidden_states = encoder_outputs.last_hidden_state
948
+ if (
949
+ config.text_encoder.hidden_size != config.decoder.hidden_size
950
+ and config.decoder.cross_attention_hidden_size is None
951
+ ):
952
+ encoder_hidden_states = (
953
+ model.enc_to_dec_proj(encoder_hidden_states)
954
+ if training_args.parallel_mode.value != "distributed"
955
+ else model.module.enc_to_dec_proj(encoder_hidden_states)
956
+ )
957
+
958
+ if batch.get("attention_mask", None) is not None:
959
+ encoder_hidden_states = encoder_hidden_states * batch.get("attention_mask", None)[..., None]
960
+
961
+ encoder_outputs.last_hidden_state = encoder_hidden_states
962
+ batch["encoder_outputs"] = encoder_outputs
963
+
964
+ with torch.no_grad():
965
+ outputs = eval_model(**batch)
966
+ # CE (data) loss
967
+ ce_loss = outputs.loss
968
+ metrics = {"loss": ce_loss}
969
+
970
+ # per CE loss
971
+ per_codebook_losses = outputs.per_codebook_losses
972
+ metrics.update({f"codebook_{i}_loss": l for (i,l) in enumerate(per_codebook_losses)})
973
+ return metrics
974
+
975
+ def generate_step(batch, accelerator):
976
+ batch.pop("decoder_attention_mask", None)
977
+ eval_model = accelerator.unwrap_model(model, keep_fp32_wrapper=True)
978
+ if training_args.torch_compile:
979
+ # if the model is compiled, we use the original model bc compile is not compatible with .generate
980
+ eval_model = model._orig_mod
981
+
982
+ # since we've might have loaded the weights in fp32, we have to autocast to ensure FA2 weights are in half-precision.
983
+ # with accelerator.autocast(autocast_handler=AutocastKwargs(enabled=(attn_implementation=="flash_attention_2"))):
984
+ output_audios = eval_model.generate(**batch, **gen_kwargs)
985
+ output_audios = accelerator.pad_across_processes(output_audios, dim=1, pad_index=0)
986
+ return output_audios
987
+
988
+ model.train()
989
+
990
+ total_batched_samples = resume_step if resume_step is not None else 0
991
+ for epoch in range(epochs_trained, num_epochs):
992
+ with accelerator.local_main_process_first():
993
+ vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
994
+ sampler = None
995
+ if training_args.group_by_length:
996
+ sampler = LengthGroupedSampler(train_batch_size, lengths=vectorized_datasets["train"]["target_length"])
997
+ train_dataloader = DataLoader(
998
+ vectorized_datasets["train"],
999
+ collate_fn=data_collator,
1000
+ batch_size=per_device_train_batch_size,
1001
+ sampler=sampler,
1002
+ shuffle=not training_args.group_by_length,
1003
+ num_workers=training_args.dataloader_num_workers,
1004
+ pin_memory=training_args.dataloader_pin_memory,
1005
+ )
1006
+ train_dataloader = accelerator.prepare(train_dataloader)
1007
+ if hasattr(train_dataloader, "dataset") and isinstance(train_dataloader.dataset, IterableDataset):
1008
+ train_dataloader.dataset.set_epoch(epoch)
1009
+
1010
+ if resume_step is not None:
1011
+ # Skip the first N batches in the dataloader when resuming from a checkpoint
1012
+ logger.info(f" Skip first {resume_step} batches")
1013
+ train_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
1014
+ resume_step = None
1015
+ accelerator.wait_for_everyone()
1016
+
1017
+ # We chunkify the epoch iterator into gradient accumulation steps `n` batches
1018
+ train_iterator = iter(train_dataloader)
1019
+ num_steps_in_epoch = len(train_dataloader)
1020
+ remainder = num_steps_in_epoch % gradient_accumulation_steps
1021
+ remainder = remainder if remainder != 0 else gradient_accumulation_steps
1022
+ total_updates = math.ceil(num_steps_in_epoch / gradient_accumulation_steps)
1023
+
1024
+ update_step = -1
1025
+ for _ in range(total_updates):
1026
+ update_step += 1
1027
+
1028
+ # preload the total batch per step
1029
+ batch_samples = []
1030
+ num_batches_in_step = gradient_accumulation_steps if update_step != (total_updates - 1) else remainder
1031
+ for _ in range(num_batches_in_step):
1032
+ batch_samples += [next(train_iterator)]
1033
+
1034
+ # get num items in batch - if different than BOS and than -100
1035
+ num_items_in_batch = sum([(batch["labels"].ne(audio_encoder_bos_token_id) | batch["labels"].ne(-100) | batch["labels"].ne(audio_encoder_eos_token_id)).sum((0,1))[0] for batch in batch_samples])
1036
+ num_items_in_batch = accelerator.gather(num_items_in_batch).sum().item()
1037
+
1038
+ # losses = []
1039
+ for i,batch in enumerate(batch_samples):
1040
+ total_batched_samples += 1
1041
+ ctx = model.no_sync if (i < len(batch_samples) - 1 and accelerator.num_processes > 1) else contextlib.nullcontext
1042
+
1043
+ with ctx():
1044
+ loss, train_metric = train_step(batch, accelerator, autocast_kwargs, num_items_in_batch, gradient_accumulation_steps)
1045
+ accelerator.backward(loss)
1046
+ # losses.append(loss.detach())
1047
+
1048
+ grad_norm = accelerator.clip_grad_norm_(model.parameters(), training_args.max_grad_norm)
1049
+ optimizer.step()
1050
+ lr_scheduler.step()
1051
+ optimizer.zero_grad()
1052
+
1053
+ # The accelerator has performed an optimization step behind the scenes
1054
+ steps_trained_progress_bar.update(1)
1055
+ cur_step += 1
1056
+
1057
+ # losses = accelerator.gather(sum(losses)).sum().item() / (accelerator.num_processes * gradient_accumulation_steps)
1058
+
1059
+ if cur_step % training_args.logging_steps == 0:
1060
+ steps_trained_progress_bar.write(
1061
+ f"Step... ({cur_step} / {total_train_steps} | Loss:"
1062
+ f" {train_metric['loss']}, Learning Rate:"
1063
+ f" {lr_scheduler.get_last_lr()[0]})"
1064
+ )
1065
+ train_metric["grad_norm"] = grad_norm.detach().item() if isinstance(grad_norm, torch.Tensor) else grad_norm
1066
+ log_metric(
1067
+ accelerator,
1068
+ metrics=train_metric,
1069
+ learning_rate=lr_scheduler.get_last_lr()[0],
1070
+ train_time=train_time + time.time() - train_start,
1071
+ step=cur_step,
1072
+ epoch=epoch,
1073
+ prefix="train",
1074
+ )
1075
+
1076
+ # save checkpoint and weights after each save_steps and at the end of training
1077
+ if (cur_step % training_args.save_steps == 0) or cur_step == total_train_steps:
1078
+ intermediate_dir = os.path.join(training_args.output_dir, f"checkpoint-{cur_step}-epoch-{epoch}")
1079
+ # safe_serialization=False to avoid shared tensors saving issue (TODO(YL): it's a temporary fix)
1080
+ # https://github.com/huggingface/transformers/issues/27293#issuecomment-1872560074
1081
+ accelerator.save_state(output_dir=intermediate_dir, safe_serialization=False)
1082
+ accelerator.wait_for_everyone()
1083
+ if accelerator.is_main_process:
1084
+ rotate_checkpoints(
1085
+ training_args.save_total_limit, output_dir=training_args.output_dir, logger=logger
1086
+ )
1087
+
1088
+ if cur_step == total_train_steps:
1089
+ # un-wrap student model for save
1090
+ unwrapped_model = accelerator.unwrap_model(model)
1091
+ unwrapped_model.save_pretrained(training_args.output_dir)
1092
+
1093
+ if training_args.push_to_hub:
1094
+ api.upload_folder(
1095
+ repo_id=repo_id,
1096
+ folder_path=training_args.output_dir,
1097
+ commit_message=f"Saving train state of step {cur_step}",
1098
+ run_as_future=True,
1099
+ )
1100
+ accelerator.wait_for_everyone()
1101
+
1102
+ if training_args.do_eval and (cur_step % eval_steps == 0 or cur_step == total_train_steps):
1103
+ train_time += time.time() - train_start
1104
+ # ======================== Evaluating ==============================
1105
+ model.eval()
1106
+ eval_metrics = []
1107
+ eval_preds = []
1108
+ eval_descriptions = []
1109
+ eval_prompts = []
1110
+ eval_start = time.time()
1111
+
1112
+ # release training input batch
1113
+ batch = release_memory(batch)
1114
+
1115
+ validation_dataloader = DataLoader(
1116
+ vectorized_datasets["eval"],
1117
+ collate_fn=data_collator,
1118
+ batch_size=per_device_eval_batch_size,
1119
+ drop_last=False,
1120
+ num_workers=training_args.eval_dataloader_num_workers,
1121
+ pin_memory=training_args.dataloader_pin_memory,
1122
+ )
1123
+ validation_dataloader = accelerator.prepare(validation_dataloader)
1124
+
1125
+ for batch in tqdm(
1126
+ validation_dataloader,
1127
+ desc=f"Evaluating - Inference ...",
1128
+ position=2,
1129
+ disable=not accelerator.is_local_main_process,
1130
+ ):
1131
+ # Model forward
1132
+ eval_metric = eval_step(batch, accelerator, autocast_kwargs)
1133
+ eval_metric = accelerator.gather_for_metrics(eval_metric)
1134
+ eval_metric = {key: val.unsqueeze(0) if val.ndim == 0 else val for (key,val) in eval_metric.items()}
1135
+ eval_metrics.append(eval_metric)
1136
+
1137
+ if training_args.predict_with_generate and (cur_step % eval_generation_steps == 0 or cur_step == total_train_steps):
1138
+ validation_dataloader = DataLoader(
1139
+ vectorized_datasets["eval"],
1140
+ collate_fn=data_collator,
1141
+ batch_size=per_device_eval_batch_size,
1142
+ drop_last=False,
1143
+ num_workers=training_args.eval_dataloader_num_workers,
1144
+ pin_memory=training_args.dataloader_pin_memory,
1145
+ )
1146
+ validation_dataloader = accelerator.prepare(validation_dataloader)
1147
+ # generation
1148
+ for batch in tqdm(
1149
+ validation_dataloader,
1150
+ desc=f"Evaluating - Generation ...",
1151
+ position=2,
1152
+ disable=not accelerator.is_local_main_process,
1153
+ ):
1154
+ generated_audios = generate_step(batch, accelerator)
1155
+ # Gather all predictions and targets
1156
+ generated_audios, input_ids, prompts = accelerator.pad_across_processes(
1157
+ (generated_audios, batch["input_ids"], batch["prompt_input_ids"]), dim=1, pad_index=0
1158
+ )
1159
+ generated_audios, input_ids, prompts = accelerator.gather_for_metrics(
1160
+ (generated_audios, input_ids, prompts)
1161
+ )
1162
+ eval_preds.extend(generated_audios.to("cpu"))
1163
+ eval_descriptions.extend(input_ids.to("cpu"))
1164
+ eval_prompts.extend(prompts.to("cpu"))
1165
+
1166
+ eval_time = time.time() - eval_start
1167
+ # normalize eval metrics
1168
+ eval_metrics = {
1169
+ key: torch.mean(torch.cat([d[key] for d in eval_metrics])).to("cpu") for key in eval_metrics[0]
1170
+ }
1171
+
1172
+ # compute metrics
1173
+ metrics_desc = ""
1174
+ if training_args.predict_with_generate and (cur_step % eval_generation_steps == 0 or cur_step == total_train_steps):
1175
+ if accelerator.is_local_main_process:
1176
+ (
1177
+ metric_values,
1178
+ pred_descriptions,
1179
+ pred_prompts,
1180
+ audios,
1181
+ transcriptions,
1182
+ si_sdr_measures,
1183
+ ) = compute_metrics(
1184
+ eval_preds,
1185
+ eval_descriptions,
1186
+ eval_prompts,
1187
+ accelerator.device,
1188
+ training_args.compute_clap_similarity_metric,
1189
+ training_args.compute_noise_level_metric,
1190
+ training_args.noise_level_to_compute_clean_wer,
1191
+ )
1192
+ eval_metrics.update(metric_values)
1193
+ metrics_desc = " ".join([f"Eval {key}: {value} |" for key, value in metric_values.items()])
1194
+ if "wandb" in training_args.report_to:
1195
+ log_pred(
1196
+ accelerator,
1197
+ pred_descriptions,
1198
+ pred_prompts,
1199
+ transcriptions,
1200
+ audios,
1201
+ si_sdr_measures,
1202
+ sampling_rate=sampling_rate,
1203
+ step=cur_step,
1204
+ prefix="eval",
1205
+ )
1206
+ accelerator.wait_for_everyone()
1207
+
1208
+ # Print metrics and update progress bar
1209
+ if accelerator.is_local_main_process:
1210
+ steps_trained_progress_bar.write(
1211
+ f"Eval results for step ({cur_step} / {total_train_steps} | Eval Loss: {eval_metrics['loss']} |"
1212
+ f" {metrics_desc})"
1213
+ )
1214
+
1215
+ log_metric(
1216
+ accelerator,
1217
+ metrics=eval_metrics,
1218
+ train_time=eval_time,
1219
+ step=cur_step,
1220
+ epoch=epoch,
1221
+ prefix="eval",
1222
+ )
1223
+
1224
+ # release eval batch and relax metrics
1225
+ eval_metrics, eval_preds, eval_descriptions, eval_prompts, batch, eval_metric = release_memory(
1226
+ eval_metrics, eval_preds, eval_descriptions, eval_prompts, batch, eval_metric
1227
+ )
1228
+ if training_args.predict_with_generate and (cur_step % eval_generation_steps == 0 or cur_step == total_train_steps):
1229
+ generated_audios, input_ids, prompts = release_memory(generated_audios, input_ids, prompts)
1230
+
1231
+ # train mode
1232
+ model.train()
1233
+
1234
+ # flush the train metrics
1235
+ train_start = time.time()
1236
+
1237
+ # break condition
1238
+ if cur_step == total_train_steps:
1239
+ continue_training = False
1240
+ break
1241
+
1242
+ if not continue_training:
1243
+ break
1244
+
1245
+ accelerator.end_training()
1246
+
1247
+
1248
+ if __name__ == "__main__":
1249
+ main()
parler-tts/training/utils.py ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ import shutil
4
+ from dataclasses import field
5
+ from pathlib import Path
6
+ from typing import Dict, List
7
+
8
+ import torch
9
+ from datasets import concatenate_datasets, load_from_disk
10
+ from wandb import Audio
11
+ from datasets import load_from_disk, concatenate_datasets
12
+
13
+
14
+ def list_field(default=None, metadata=None):
15
+ return field(default_factory=lambda: default, metadata=metadata)
16
+
17
+
18
+ _RE_CHECKPOINT = re.compile(r"^checkpoint-(\d+)-epoch-(\d+)$")
19
+ CHECKPOINT_CODEC_PREFIX = "checkpoint"
20
+ _RE_CODEC_CHECKPOINT = re.compile(r"^checkpoint-(\d+)$")
21
+
22
+
23
+ def get_last_checkpoint(folder):
24
+ content = os.listdir(folder)
25
+ checkpoints = [
26
+ path
27
+ for path in content
28
+ if _RE_CHECKPOINT.search(path) is not None and os.path.isdir(os.path.join(folder, path))
29
+ ]
30
+ if len(checkpoints) == 0:
31
+ return
32
+ return os.path.join(folder, max(checkpoints, key=lambda x: int(_RE_CHECKPOINT.search(x).groups()[0])))
33
+
34
+
35
+ def sorted_checkpoints(output_dir=None, checkpoint_prefix="checkpoint") -> List[str]:
36
+ """Helper function to sort saved checkpoints from oldest to newest."""
37
+ ordering_and_checkpoint_path = []
38
+
39
+ glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*") if os.path.isdir(x)]
40
+
41
+ for path in glob_checkpoints:
42
+ regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
43
+ if regex_match is not None and regex_match.groups() is not None:
44
+ ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))
45
+
46
+ checkpoints_sorted = sorted(ordering_and_checkpoint_path)
47
+ checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
48
+ return checkpoints_sorted
49
+
50
+
51
+ def rotate_checkpoints(save_total_limit=None, output_dir=None, checkpoint_prefix="checkpoint", logger=None) -> None:
52
+ """Helper function to delete old checkpoints."""
53
+ if save_total_limit is None or save_total_limit <= 0:
54
+ return
55
+ # Check if we should delete older checkpoint(s)
56
+ checkpoints_sorted = sorted_checkpoints(output_dir=output_dir, checkpoint_prefix=checkpoint_prefix)
57
+ if len(checkpoints_sorted) <= save_total_limit:
58
+ return
59
+
60
+ number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - save_total_limit)
61
+ checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
62
+ for checkpoint in checkpoints_to_be_deleted:
63
+ logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit")
64
+ shutil.rmtree(checkpoint, ignore_errors=True)
65
+
66
+
67
+ def save_codec_checkpoint(output_dir, dataset, step):
68
+ checkpoint_path = f"{CHECKPOINT_CODEC_PREFIX}-{step}"
69
+ output_path = os.path.join(output_dir, checkpoint_path)
70
+ dataset.save_to_disk(output_path)
71
+
72
+
73
+ def load_codec_checkpoint(checkpoint_path):
74
+ dataset = load_from_disk(checkpoint_path)
75
+ return dataset
76
+
77
+
78
+ def sorted_codec_checkpoints(output_dir=None) -> List[str]:
79
+ """Helper function to sort saved checkpoints from oldest to newest."""
80
+ ordering_and_checkpoint_path = []
81
+
82
+ glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{CHECKPOINT_CODEC_PREFIX}-*")]
83
+
84
+ for path in glob_checkpoints:
85
+ regex_match = re.match(f".*{CHECKPOINT_CODEC_PREFIX}-([0-9]+)", path)
86
+ if regex_match is not None and regex_match.groups() is not None:
87
+ ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))
88
+
89
+ checkpoints_sorted = sorted(ordering_and_checkpoint_path)
90
+ checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
91
+ return checkpoints_sorted
92
+
93
+
94
+ def load_all_codec_checkpoints(output_dir=None) -> List[str]:
95
+ """Helper function to load and concat all checkpoints."""
96
+ checkpoints_sorted = sorted_codec_checkpoints(output_dir=output_dir)
97
+ datasets = [load_from_disk(checkpoint) for checkpoint in checkpoints_sorted]
98
+ datasets = concatenate_datasets(datasets, axis=0)
99
+ return datasets
100
+
101
+
102
+ def get_last_codec_checkpoint_step(folder) -> int:
103
+ if not os.path.exists(folder) or not os.path.isdir(folder):
104
+ os.makedirs(folder, exist_ok=True)
105
+ return 0
106
+ content = os.listdir(folder)
107
+ checkpoints = [path for path in content if _RE_CODEC_CHECKPOINT.search(path) is not None]
108
+ if len(checkpoints) == 0:
109
+ return 0
110
+ last_checkpoint = os.path.join(
111
+ folder, max(checkpoints, key=lambda x: int(_RE_CODEC_CHECKPOINT.search(x).groups()[0]))
112
+ )
113
+ # Find num steps saved state string pattern
114
+ pattern = r"checkpoint-(\d+)"
115
+ match = re.search(pattern, last_checkpoint)
116
+ cur_step = int(match.group(1))
117
+ return cur_step
118
+
119
+
120
+ def log_metric(
121
+ accelerator,
122
+ metrics: Dict,
123
+ train_time: float,
124
+ step: int,
125
+ epoch: int,
126
+ learning_rate: float = None,
127
+ prefix: str = "train",
128
+ ):
129
+ """Helper function to log all training/evaluation metrics with the correct prefixes and styling."""
130
+ log_metrics = {}
131
+ for k, v in metrics.items():
132
+ if "codebook" in k:
133
+ log_metrics[f"codebook_{prefix}/{k}"] = v
134
+ else:
135
+ log_metrics[f"{prefix}/{k}"] = v
136
+ log_metrics[f"{prefix}/time"] = train_time
137
+ log_metrics[f"{prefix}/epoch"] = epoch
138
+ if learning_rate is not None:
139
+ log_metrics[f"{prefix}/learning_rate"] = learning_rate
140
+ accelerator.log(log_metrics, step=step)
141
+
142
+
143
+ def log_pred(
144
+ accelerator,
145
+ pred_descriptions: List[str],
146
+ pred_prompts: List[str],
147
+ transcriptions: List[str],
148
+ audios: List[torch.Tensor],
149
+ si_sdr_measures: List[float],
150
+ sampling_rate: int,
151
+ step: int,
152
+ prefix: str = "eval",
153
+ num_lines: int = 200000,
154
+ ):
155
+ """Helper function to log target/predicted transcriptions to weights and biases (wandb)."""
156
+ if accelerator.is_main_process:
157
+ wandb_tracker = accelerator.get_tracker("wandb")
158
+ # pretty name for current step: step 50000 -> step 50k
159
+ cur_step_pretty = f"{int(step // 1000)}k" if step > 1000 else step
160
+ prefix_pretty = prefix.replace("/", "-")
161
+
162
+ if si_sdr_measures is None:
163
+ # convert str data to a wandb compatible format
164
+ str_data = [
165
+ [pred_descriptions[i], pred_prompts[i], transcriptions[i]] for i in range(len(pred_descriptions))
166
+ ]
167
+ # log as a table with the appropriate headers
168
+ wandb_tracker.log_table(
169
+ table_name=f"predictions/{prefix_pretty}-step-{cur_step_pretty}",
170
+ columns=["Target descriptions", "Target prompts", "Predicted transcriptions"],
171
+ data=str_data[:num_lines],
172
+ step=step,
173
+ commit=False,
174
+ )
175
+ else:
176
+ # convert str data to a wandb compatible format
177
+ str_data = [
178
+ [pred_descriptions[i], pred_prompts[i], transcriptions[i], si_sdr_measures[i]]
179
+ for i in range(len(pred_descriptions))
180
+ ]
181
+ # log as a table with the appropriate headers
182
+ wandb_tracker.log_table(
183
+ table_name=f"predictions/{prefix_pretty}-step-{cur_step_pretty}",
184
+ columns=["Target descriptions", "Target prompts", "Predicted transcriptions", "Noise estimation"],
185
+ data=str_data[:num_lines],
186
+ step=step,
187
+ commit=False,
188
+ )
189
+
190
+ # wandb can only loads 100 audios per step
191
+ wandb_tracker.log(
192
+ {
193
+ "Speech samples": [
194
+ Audio(
195
+ audio,
196
+ caption=f"{pred_prompts[i]} --- DESCRIPTION: {pred_descriptions[i]}",
197
+ sample_rate=sampling_rate,
198
+ )
199
+ for (i, audio) in enumerate(audios[: min(len(audios), 100)])
200
+ ]
201
+ },
202
+ step=step,
203
+ )
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ transformers==4.37.2
2
+ torch==2.2.0
3
+ gradio==4.19.2
4
+ soundfile==0.12.1
5
+ git+https://github.com/huggingface/parler-tts.git
tts.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from parler_tts import ParlerTTSForConditionalGeneration
3
+ from transformers import AutoTokenizer
4
+ import soundfile as sf
5
+
6
+ class TTSModel:
7
+ def __init__(self):
8
+ self.device = "cuda" if torch.cuda.is_available() else "cpu"
9
+ self.model_name = "ai4bharat/indic-parler-tts"
10
+
11
+ # Print cache directory and model files
12
+ print(f"Loading model on device: {self.device}")
13
+
14
+ # Initialize model and tokenizers exactly as in the documentation
15
+ self.model = ParlerTTSForConditionalGeneration.from_pretrained(self.model_name).to(self.device)
16
+ self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
17
+ self.description_tokenizer = AutoTokenizer.from_pretrained(self.model.config.text_encoder._name_or_path)
18
+
19
+ print("Model loaded successfully")
20
+
21
+ def generate_audio(self, text, description):
22
+ try:
23
+ # Tokenize exactly as shown in the documentation
24
+ description_inputs = self.description_tokenizer(
25
+ description,
26
+ return_tensors="pt"
27
+ ).to(self.device)
28
+
29
+ prompt_inputs = self.tokenizer(
30
+ text,
31
+ return_tensors="pt"
32
+ ).to(self.device)
33
+
34
+ # Generate audio
35
+ with torch.no_grad():
36
+ generation = self.model.generate(
37
+ input_ids=description_inputs.input_ids,
38
+ attention_mask=description_inputs.attention_mask,
39
+ prompt_input_ids=prompt_inputs.input_ids,
40
+ prompt_attention_mask=prompt_inputs.attention_mask
41
+ )
42
+
43
+ # Convert to numpy array
44
+ audio_array = generation.cpu().numpy().squeeze()
45
+
46
+ return audio_array
47
+
48
+ except Exception as e:
49
+ print(f"Error in speech generation: {str(e)}")
50
+ raise