abhishekrajpurohit's picture
Upload 39 files
195bb33 verified
raw
history blame
7.76 kB
import os
import re
import shutil
from dataclasses import field
from pathlib import Path
from typing import Dict, List
import torch
from datasets import concatenate_datasets, load_from_disk
from wandb import Audio
from datasets import load_from_disk, concatenate_datasets
def list_field(default=None, metadata=None):
return field(default_factory=lambda: default, metadata=metadata)
_RE_CHECKPOINT = re.compile(r"^checkpoint-(\d+)-epoch-(\d+)$")
CHECKPOINT_CODEC_PREFIX = "checkpoint"
_RE_CODEC_CHECKPOINT = re.compile(r"^checkpoint-(\d+)$")
def get_last_checkpoint(folder):
content = os.listdir(folder)
checkpoints = [
path
for path in content
if _RE_CHECKPOINT.search(path) is not None and os.path.isdir(os.path.join(folder, path))
]
if len(checkpoints) == 0:
return
return os.path.join(folder, max(checkpoints, key=lambda x: int(_RE_CHECKPOINT.search(x).groups()[0])))
def sorted_checkpoints(output_dir=None, checkpoint_prefix="checkpoint") -> List[str]:
"""Helper function to sort saved checkpoints from oldest to newest."""
ordering_and_checkpoint_path = []
glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*") if os.path.isdir(x)]
for path in glob_checkpoints:
regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
if regex_match is not None and regex_match.groups() is not None:
ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))
checkpoints_sorted = sorted(ordering_and_checkpoint_path)
checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
return checkpoints_sorted
def rotate_checkpoints(save_total_limit=None, output_dir=None, checkpoint_prefix="checkpoint", logger=None) -> None:
"""Helper function to delete old checkpoints."""
if save_total_limit is None or save_total_limit <= 0:
return
# Check if we should delete older checkpoint(s)
checkpoints_sorted = sorted_checkpoints(output_dir=output_dir, checkpoint_prefix=checkpoint_prefix)
if len(checkpoints_sorted) <= save_total_limit:
return
number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - save_total_limit)
checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
for checkpoint in checkpoints_to_be_deleted:
logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit")
shutil.rmtree(checkpoint, ignore_errors=True)
def save_codec_checkpoint(output_dir, dataset, step):
checkpoint_path = f"{CHECKPOINT_CODEC_PREFIX}-{step}"
output_path = os.path.join(output_dir, checkpoint_path)
dataset.save_to_disk(output_path)
def load_codec_checkpoint(checkpoint_path):
dataset = load_from_disk(checkpoint_path)
return dataset
def sorted_codec_checkpoints(output_dir=None) -> List[str]:
"""Helper function to sort saved checkpoints from oldest to newest."""
ordering_and_checkpoint_path = []
glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{CHECKPOINT_CODEC_PREFIX}-*")]
for path in glob_checkpoints:
regex_match = re.match(f".*{CHECKPOINT_CODEC_PREFIX}-([0-9]+)", path)
if regex_match is not None and regex_match.groups() is not None:
ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))
checkpoints_sorted = sorted(ordering_and_checkpoint_path)
checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
return checkpoints_sorted
def load_all_codec_checkpoints(output_dir=None) -> List[str]:
"""Helper function to load and concat all checkpoints."""
checkpoints_sorted = sorted_codec_checkpoints(output_dir=output_dir)
datasets = [load_from_disk(checkpoint) for checkpoint in checkpoints_sorted]
datasets = concatenate_datasets(datasets, axis=0)
return datasets
def get_last_codec_checkpoint_step(folder) -> int:
if not os.path.exists(folder) or not os.path.isdir(folder):
os.makedirs(folder, exist_ok=True)
return 0
content = os.listdir(folder)
checkpoints = [path for path in content if _RE_CODEC_CHECKPOINT.search(path) is not None]
if len(checkpoints) == 0:
return 0
last_checkpoint = os.path.join(
folder, max(checkpoints, key=lambda x: int(_RE_CODEC_CHECKPOINT.search(x).groups()[0]))
)
# Find num steps saved state string pattern
pattern = r"checkpoint-(\d+)"
match = re.search(pattern, last_checkpoint)
cur_step = int(match.group(1))
return cur_step
def log_metric(
accelerator,
metrics: Dict,
train_time: float,
step: int,
epoch: int,
learning_rate: float = None,
prefix: str = "train",
):
"""Helper function to log all training/evaluation metrics with the correct prefixes and styling."""
log_metrics = {}
for k, v in metrics.items():
if "codebook" in k:
log_metrics[f"codebook_{prefix}/{k}"] = v
else:
log_metrics[f"{prefix}/{k}"] = v
log_metrics[f"{prefix}/time"] = train_time
log_metrics[f"{prefix}/epoch"] = epoch
if learning_rate is not None:
log_metrics[f"{prefix}/learning_rate"] = learning_rate
accelerator.log(log_metrics, step=step)
def log_pred(
accelerator,
pred_descriptions: List[str],
pred_prompts: List[str],
transcriptions: List[str],
audios: List[torch.Tensor],
si_sdr_measures: List[float],
sampling_rate: int,
step: int,
prefix: str = "eval",
num_lines: int = 200000,
):
"""Helper function to log target/predicted transcriptions to weights and biases (wandb)."""
if accelerator.is_main_process:
wandb_tracker = accelerator.get_tracker("wandb")
# pretty name for current step: step 50000 -> step 50k
cur_step_pretty = f"{int(step // 1000)}k" if step > 1000 else step
prefix_pretty = prefix.replace("/", "-")
if si_sdr_measures is None:
# convert str data to a wandb compatible format
str_data = [
[pred_descriptions[i], pred_prompts[i], transcriptions[i]] for i in range(len(pred_descriptions))
]
# log as a table with the appropriate headers
wandb_tracker.log_table(
table_name=f"predictions/{prefix_pretty}-step-{cur_step_pretty}",
columns=["Target descriptions", "Target prompts", "Predicted transcriptions"],
data=str_data[:num_lines],
step=step,
commit=False,
)
else:
# convert str data to a wandb compatible format
str_data = [
[pred_descriptions[i], pred_prompts[i], transcriptions[i], si_sdr_measures[i]]
for i in range(len(pred_descriptions))
]
# log as a table with the appropriate headers
wandb_tracker.log_table(
table_name=f"predictions/{prefix_pretty}-step-{cur_step_pretty}",
columns=["Target descriptions", "Target prompts", "Predicted transcriptions", "Noise estimation"],
data=str_data[:num_lines],
step=step,
commit=False,
)
# wandb can only loads 100 audios per step
wandb_tracker.log(
{
"Speech samples": [
Audio(
audio,
caption=f"{pred_prompts[i]} --- DESCRIPTION: {pred_descriptions[i]}",
sample_rate=sampling_rate,
)
for (i, audio) in enumerate(audios[: min(len(audios), 100)])
]
},
step=step,
)