File size: 5,048 Bytes
f34acd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
LANGUAGE_VOICE_MAPPING = {
    "Assamese": ["Amit", "Sita"],
    "Bengali": ["Arjun", "Aditi"],
    "Bodo": ["Bikram", "Maya"],
    "Chhattisgarhi": ["Bhanu", "Champa"],
    "Dogri": ["Karan"],
    "English": ["Thoma", "Mary"],
    "Gujarati": ["Yash", "Neha"],
    "Hindi": ["Rohit", "Divya"],
    "Kannada": ["Suresh", "Anu"],
    "Malayalam": ["Anjali", "Harish"],
    "Manipuri": ["Laishram", "Ranjit"],
    "Marathi": ["Sanjay", "Sunita"],
    "Nepali": ["Amrita"],
    "Odia": ["Manas", "Debjani"],
    "Punjabi": ["Divjot", "Gurpreet"],
    "Sanskrit": ["Aryan"],
    "Tamil": ["Jaya", "Kavitha"],
    "Telugu": ["Prakash", "Lalitha"]
}

# Voice characteristics for each speaker
VOICE_CHARACTERISTICS = {
    "Amit": "slightly deep and resonant",
    "Sita": "clear and well-paced",
    "Arjun": "moderate and clear",
    "Aditi": "high-pitched and expressive",
    "Bikram": "higher-pitched and energetic",
    "Maya": "balanced and pleasant",
    "Bhanu": "warm and measured",
    "Champa": "clear and gentle",
    "Karan": "high-pitched and engaging",
    "Thoma": "clear and well-articulated",
    "Mary": "pleasant and measured",
    "Yash": "warm and balanced",
    "Neha": "clear and dynamic",
    "Rohit": "moderate and expressive",
    "Divya": "pleasant and well-paced",
    "Suresh": "clear and precise",
    "Anu": "warm and melodious",
    "Anjali": "high-pitched and pleasant",
    "Harish": "deep and measured",
    "Laishram": "balanced and smooth",
    "Ranjit": "clear and authoritative",
    "Sanjay": "deep and authoritative",
    "Sunita": "high-pitched and pleasant",
    "Amrita": "high-pitched and gentle",
    "Manas": "moderate and measured",
    "Debjani": "clear and pleasant",
    "Divjot": "clear and dynamic",
    "Gurpreet": "warm and balanced",
    "Aryan": "resonant and measured",
    "Jaya": "high-pitched and melodious",
    "Kavitha": "clear and expressive",
    "Prakash": "clear and well-paced",
    "Lalitha": "pleasant and melodious"
}

# Emotion descriptions
EMOTION_DESC = {
    "Neutral": "maintaining a balanced and natural tone",
    "Happy": "with a warm and positive energy",
    "Sad": "with a gentle and somber tone",
    "Angry": "with intense and strong delivery",
    "Highly Expressive": "with dynamic and vibrant emotional delivery",
    "Monotone": "with minimal tonal variation"
}

# Speed descriptions
SPEED_DESC = {
    "Very Slow": "at an extremely measured pace",
    "Slow": "at a measured, deliberate pace",
    "Normal": "at a natural, comfortable pace",
    "Fast": "at a swift, dynamic pace",
    "Very Fast": "at a rapid, accelerated pace"
}

# Pitch modifiers
PITCH_DESC = {
    "Very Low": "in an extremely deep register",
    "Low": "in a deeper register",
    "Medium": "in a natural pitch range",
    "High": "in a higher register",
    "Very High": "in an extremely high register"
}

BACKGROUND_NOISE_DESC = {
    "None": "with absolutely no background noise",
    "Minimal": "with minimal background noise",
    "Moderate": "with moderate ambient noise",
    "Noticeable": "with noticeable background sounds"
}

REVERBERATION_DESC = {
    "Very Close": "in an extremely intimate setting",
    "Close": "in a close-sounding environment",
    "Moderate": "in a moderately spacious environment",
    "Distant": "in a spacious, reverberant setting",
    "Very Distant": "in a very large, echoing space"
}

QUALITY_DESC = {
    "Basic": "in basic audio quality",
    "Good": "in good audio quality",
    "High": "in high audio quality",
    "Studio": "in professional studio quality"
}

def construct_description(
    speaker, 
    language, 
    emotion="Neutral", 
    speed="Normal", 
    pitch="Medium",
    background_noise="Minimal",
    reverberation="Close",
    quality="High"
):
    """
    Constructs a comprehensive description for the TTS model based on all available parameters.
    
    Args:
        speaker (str): The name of the speaker
        language (str): The language being spoken
        emotion (str): The emotional tone
        speed (str): The speaking speed
        pitch (str): The pitch level
        background_noise (str): Level of background noise
        reverberation (str): Distance/space effect
        quality (str): Audio quality level
    
    Returns:
        str: A detailed description for the TTS model
    """
    description = (
        f"{speaker} speaks in {language} {VOICE_CHARACTERISTICS.get(speaker, 'with clear articulation')} "
        f"{PITCH_DESC[pitch]}, {EMOTION_DESC[emotion]} {SPEED_DESC[speed]}. "
        f"The recording is {REVERBERATION_DESC[reverberation]}, {BACKGROUND_NOISE_DESC[background_noise]}, "
        f"captured {QUALITY_DESC[quality]}."
    )
    
    return description

def get_speakers_for_language(language):
    """
    Get the list of recommended speakers for a given language.
    
    Args:
        language (str): The language to get speakers for
    
    Returns:
        list: List of recommended speakers for the language
    """
    return LANGUAGE_VOICE_MAPPING.get(language, [])