File size: 14,199 Bytes
e67043b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
from collections import deque
from typing import Dict, List, Optional, Any
import re

from langchain import LLMChain, OpenAI, PromptTemplate, SerpAPIWrapper
from langchain.embeddings import OpenAIEmbeddings
from langchain.llms import BaseLLM
from langchain.vectorstores.base import VectorStore
from pydantic import BaseModel, Field
from langchain.chains.base import Chain

from langchain.vectorstores import FAISS
import faiss
from langchain.docstore import InMemoryDocstore
from langchain.agents import ZeroShotAgent, Tool, AgentExecutor
from executor import Executor


class ContextAwareAgent(ZeroShotAgent):
    def get_full_inputs(self, intermediate_steps, **kwargs: Any) -> Dict[str, Any]:
        """Create the full inputs for the LLMChain from intermediate steps."""
        thoughts = self._construct_scratchpad(intermediate_steps)
        new_inputs = {"agent_scratchpad": thoughts, "stop": self._stop}
        full_inputs = {**kwargs, **new_inputs}
        return full_inputs

    def _construct_scratchpad(self, intermediate_steps):
        """Construct the scratchpad that lets the agent continue its thought process."""
        thoughts = ""
        # only modify the following line, [-2: ]
        for action, observation in intermediate_steps[-2:]:
            thoughts += action.log
            thoughts += f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}"
            if "is not a valid tool, try another one" in observation:
                thoughts += (
                    "You should select another tool rather than the invalid one.\n"
                )
        return thoughts


class TaskCreationChain(LLMChain):
    """Chain to generates tasks."""

    @classmethod
    def from_llm(cls, llm: BaseLLM, verbose: bool = True) -> LLMChain:
        """Get the response parser."""
        task_creation_template = (
            "You are an task creation AI that uses the result of an execution agent"
            " to create new tasks with the following objective: {objective},"
            " The last completed task has the result: {result}."
            " This result was based on this task description: {task_description}."
            " These are incomplete tasks: {incomplete_tasks}."
            " Based on the result, create new tasks to be completed"
            " by the AI system that do not overlap with incomplete tasks."
            " For a simple objective, do not generate complex todo lists."
            " Do not generate repetitive tasks (e.g., tasks that have already been completed)."
            " If there is not futher task needed to complete the objective, return NO TASK."
            " Now return the tasks as an array."
        )
        prompt = PromptTemplate(
            template=task_creation_template,
            input_variables=[
                "result",
                "task_description",
                "incomplete_tasks",
                "objective",
            ],
        )
        return cls(prompt=prompt, llm=llm, verbose=verbose)


class InitialTaskCreationChain(LLMChain):
    """Chain to generates tasks."""

    @classmethod
    def from_llm(cls, llm: BaseLLM, verbose: bool = True) -> LLMChain:
        """Get the response parser."""
        task_creation_template = "You are a planner who is an expert at coming up with a todo list for a given objective. For a simple objective, do not generate a complex todo list. Generate the first (only one) task needed to do for this objective: {objective}"
        prompt = PromptTemplate(
            template=task_creation_template,
            input_variables=["objective"],
        )
        return cls(prompt=prompt, llm=llm, verbose=verbose)


class TaskPrioritizationChain(LLMChain):
    """Chain to prioritize tasks."""

    @classmethod
    def from_llm(cls, llm: BaseLLM, verbose: bool = True) -> LLMChain:
        """Get the response parser."""
        task_prioritization_template = (
            "You are an task prioritization AI tasked with cleaning the formatting of and reprioritizing"
            " the following tasks: {task_names}."
            " Consider the ultimate objective of your team: {objective}."
            " Do not make up any tasks, just reorganize the existing tasks."
            " Do not remove any tasks. Return the result as a numbered list, like:"
            " #. First task"
            " #. Second task"
            " Start the task list with number {next_task_id}. (e.g., 2. ***, 3. ***, etc.)"
        )
        prompt = PromptTemplate(
            template=task_prioritization_template,
            input_variables=["task_names", "next_task_id", "objective"],
        )
        return cls(prompt=prompt, llm=llm, verbose=verbose)


def get_next_task(
    task_creation_chain: LLMChain,
    result: Dict,
    task_description: str,
    task_list: List[str],
    objective: str,
) -> List[Dict]:
    """Get the next task."""
    incomplete_tasks = ", ".join(task_list)
    response = task_creation_chain.run(
        result=result,
        task_description=task_description,
        incomplete_tasks=incomplete_tasks,
        objective=objective,
    )
    # change the split method to re matching
    # new_tasks = response.split('\n')
    task_pattern = re.compile(r"\d+\. (.+?)\n")
    new_tasks = task_pattern.findall(response)

    return [{"task_name": task_name} for task_name in new_tasks if task_name.strip()]


def prioritize_tasks(
    task_prioritization_chain: LLMChain,
    this_task_id: int,
    task_list: List[Dict],
    objective: str,
) -> List[Dict]:
    """Prioritize tasks."""
    task_names = [t["task_name"] for t in task_list]
    next_task_id = int(this_task_id) + 1
    response = task_prioritization_chain.run(
        task_names=task_names, next_task_id=next_task_id, objective=objective
    )
    new_tasks = response.split("\n")
    prioritized_task_list = []
    for task_string in new_tasks:
        if not task_string.strip():
            continue
        task_parts = task_string.strip().split(".", 1)
        if len(task_parts) == 2:
            task_id = task_parts[0].strip()
            task_name = task_parts[1].strip()
            prioritized_task_list.append({"task_id": task_id, "task_name": task_name})
    return prioritized_task_list


def _get_top_tasks(vectorstore, query: str, k: int) -> List[str]:
    """Get the top k tasks based on the query."""
    results = vectorstore.similarity_search_with_score(query, k=k)
    if not results:
        return []
    sorted_results, _ = zip(*sorted(results, key=lambda x: x[1], reverse=True))
    return [str(item.metadata["task"]) for item in sorted_results]


def execute_task(
    vectorstore, execution_chain: LLMChain, objective: str, task: str, k: int = 5
) -> str:
    """Execute a task."""
    context = _get_top_tasks(vectorstore, query=objective, k=k)
    return execution_chain.run(objective=objective, context=context, task=task)

class BabyAGI(Chain, BaseModel):
    """Controller model for the BabyAGI agent."""

    task_list: deque = Field(default_factory=deque)
    task_creation_chain: TaskCreationChain = Field(...)
    task_prioritization_chain: TaskPrioritizationChain = Field(...)
    initial_task_creation_chain: InitialTaskCreationChain = Field(...)
    execution_chain: AgentExecutor = Field(...)
    task_id_counter: int = Field(1)
    vectorstore: VectorStore = Field(init=False)
    max_iterations: Optional[int] = None

    class Config:
        """Configuration for this pydantic object."""

        arbitrary_types_allowed = True

    def add_task(self, task: Dict):
        self.task_list.append(task)

    def print_task_list(self):
        print("\033[95m\033[1m" + "\n*****TASK LIST*****\n" + "\033[0m\033[0m")
        for t in self.task_list:
            print(str(t["task_id"]) + ": " + t["task_name"])

    def print_next_task(self, task: Dict):
        print("\033[92m\033[1m" + "\n*****NEXT TASK*****\n" + "\033[0m\033[0m")
        print(str(task["task_id"]) + ": " + task["task_name"])

    def print_task_result(self, result: str):
        print("\033[93m\033[1m" + "\n*****TASK RESULT*****\n" + "\033[0m\033[0m")
        print(result)

    @property
    def input_keys(self) -> List[str]:
        return ["objective"]

    @property
    def output_keys(self) -> List[str]:
        return []

    def _call(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
        """Run the agent."""
        # not an elegant implementation, but it works for the first task
        objective = inputs["objective"]
        first_task = inputs.get(
            "first_task", self.initial_task_creation_chain.run(objective=objective)
        )  # self.task_creation_chain.llm(initial_task_prompt))

        self.add_task({"task_id": 1, "task_name": first_task})
        num_iters = 0
        while True:
            if self.task_list:
                self.print_task_list()

                # Step 1: Pull the first task
                task = self.task_list.popleft()
                self.print_next_task(task)

                # Step 2: Execute the task
                result = execute_task(
                    self.vectorstore, self.execution_chain, objective, task["task_name"]
                )
                this_task_id = int(task["task_id"])
                self.print_task_result(result)

                # Step 3: Store the result in Pinecone
                result_id = f"result_{task['task_id']}"
                self.vectorstore.add_texts(
                    texts=[result],
                    metadatas=[{"task": task["task_name"]}],
                    ids=[result_id],
                )

                # Step 4: Create new tasks and reprioritize task list
                new_tasks = get_next_task(
                    self.task_creation_chain,
                    result,
                    task["task_name"],
                    [t["task_name"] for t in self.task_list],
                    objective,
                )
                for new_task in new_tasks:
                    self.task_id_counter += 1
                    new_task.update({"task_id": self.task_id_counter})
                    self.add_task(new_task)

                if len(self.task_list) == 0:
                    print(
                        "\033[91m\033[1m"
                        + "\n*****NO TASK, ABORTING*****\n"
                        + "\033[0m\033[0m"
                    )
                    break

                self.task_list = deque(
                    prioritize_tasks(
                        self.task_prioritization_chain,
                        this_task_id,
                        list(self.task_list),
                        objective,
                    )
                )
            num_iters += 1
            if self.max_iterations is not None and num_iters == self.max_iterations:
                print(
                    "\033[91m\033[1m" + "\n*****TASK ENDING*****\n" + "\033[0m\033[0m"
                )
                break
        return {}

    @classmethod
    def from_llm(
        cls,
        llm: BaseLLM,
        prompt=None,
        verbose: bool = False,
        tools=None,
        stream_output=None,
        **kwargs,
    ) -> "BabyAGI":
        embeddings_model = OpenAIEmbeddings()
        embedding_size = 1536
        index = faiss.IndexFlatL2(embedding_size)
        vectorstore = FAISS(
            embeddings_model.embed_query, index, InMemoryDocstore({}), {}
        )

        task_creation_chain = TaskCreationChain.from_llm(llm, verbose=verbose)
        initial_task_creation_chain = InitialTaskCreationChain.from_llm(
            llm, verbose=verbose
        )
        task_prioritization_chain = TaskPrioritizationChain.from_llm(
            llm, verbose=verbose
        )
        llm_chain = LLMChain(llm=llm, prompt=prompt)
        tool_names = [tool.name for tool in tools]
        agent = ContextAwareAgent(llm_chain=llm_chain, allowed_tools=tool_names)

        if stream_output:
            agent_executor = Executor.from_agent_and_tools(
                agent=agent, tools=tools, verbose=True
            )
        else:
            agent_executor = AgentExecutorWithTranslation.from_agent_and_tools(
                agent=agent, tools=tools, verbose=True
            )

        return cls(
            task_creation_chain=task_creation_chain,
            task_prioritization_chain=task_prioritization_chain,
            initial_task_creation_chain=initial_task_creation_chain,
            execution_chain=agent_executor,
            vectorstore=vectorstore,
            **kwargs,
        )


if __name__ == "__main__":
    todo_prompt = PromptTemplate.from_template(
        "You are a planner who is an expert at coming up with a todo list for a given objective. For a simple objective, do not generate a complex todo list. Come up with a todo list for this objective: {objective}"
    )
    todo_chain = LLMChain(llm=OpenAI(temperature=0), prompt=todo_prompt)
    search = SerpAPIWrapper()
    tools = [
        Tool(
            name="Search",
            func=search.run,
            description="useful for when you need to answer questions about current events",
        ),
        Tool(
            name="TODO",
            func=todo_chain.run,
            description="useful for when you need to come up with todo lists. Input: an objective to create a todo list for. Output: a todo list for that objective. Please be very clear what the objective is!",
        ),
    ]

    prefix = """You are an AI who performs one task based on the following objective: {objective}. Take into account these previously completed tasks: {context}."""
    suffix = """Question: {task}
    {agent_scratchpad}"""
    prompt = ZeroShotAgent.create_prompt(
        tools,
        prefix=prefix,
        suffix=suffix,
        input_variables=["objective", "task", "context", "agent_scratchpad"],
    )

    OBJECTIVE = "Write a weather report for SF today"
    llm = OpenAI(temperature=0)
    # Logging of LLMChains
    verbose = False
    # If None, will keep on going forever
    max_iterations: Optional[int] = 10
    baby_agi = BabyAGI.from_llm(llm=llm, verbose=verbose, max_iterations=max_iterations)
    baby_agi({"objective": OBJECTIVE})