ZackBradshaw commited on
Commit
e67043b
1 Parent(s): 086993c

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .env.example +3 -0
  2. BabyagiTools.py +367 -0
  3. README.md +2 -8
  4. __pycache__/BabyagiTools.cpython-310.pyc +0 -0
  5. __pycache__/apitool.cpython-310.pyc +0 -0
  6. __pycache__/executor.cpython-310.pyc +0 -0
  7. __pycache__/logger.cpython-310.pyc +0 -0
  8. __pycache__/logging.cpython-310.pyc +0 -0
  9. __pycache__/registry.cpython-310.pyc +0 -0
  10. __pycache__/retriever.cpython-310.pyc +0 -0
  11. __pycache__/serve.cpython-310.pyc +0 -0
  12. __pycache__/singletool.cpython-310.pyc +0 -0
  13. __pycache__/tool.cpython-310.pyc +0 -0
  14. __pycache__/tool_logging.cpython-310.pyc +0 -0
  15. __pycache__/tool_server.cpython-310.pyc +0 -0
  16. __pycache__/tools_controller.cpython-310.pyc +0 -0
  17. __pycache__/translator.cpython-310.pyc +0 -0
  18. agent/BabyagiTools.py +368 -0
  19. agent/apitool.py +168 -0
  20. agent/autogpt/__init__.py +0 -0
  21. agent/autogpt/agent.py +137 -0
  22. agent/autogpt/output_parser.py +66 -0
  23. agent/autogpt/prompt.py +75 -0
  24. agent/autogpt/prompt_generator.py +189 -0
  25. agent/autogptmulti/__init__.py +0 -0
  26. agent/autogptmulti/agent.py +138 -0
  27. agent/autogptmulti/output_parser.py +66 -0
  28. agent/autogptmulti/prompt.py +68 -0
  29. agent/autogptmulti/prompt_generator.py +191 -0
  30. agent/executor.py +123 -0
  31. agent/singletool.py +270 -0
  32. agent/tools_controller.py +155 -0
  33. agent/translator.py +125 -0
  34. agent_tools.py +59 -0
  35. airbnb/__init__.py +8 -0
  36. airbnb/api.py +354 -0
  37. airbnb/readme.md +29 -0
  38. airbnb/test.py +11 -0
  39. apitool.py +168 -0
  40. app.py +380 -0
  41. arxiv/__init__.py +8 -0
  42. arxiv/api.py +50 -0
  43. arxiv/readme.md +38 -0
  44. arxiv/test.py +11 -0
  45. bing_search/__init__.py +8 -0
  46. bing_search/api.py +201 -0
  47. bing_search/readme.md +3 -0
  48. bing_search/test_bing.py +60 -0
  49. chemical/__init__.py +8 -0
  50. chemical/prop/__init__.py +1 -0
.env.example ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ OPENAI_BASE_URL=https://api.openai.com
2
+ OPENAI_API_KEY=sk-1234567890
3
+
BabyagiTools.py ADDED
@@ -0,0 +1,367 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import deque
2
+ from typing import Dict, List, Optional, Any
3
+ import re
4
+
5
+ from langchain import LLMChain, OpenAI, PromptTemplate, SerpAPIWrapper
6
+ from langchain.embeddings import OpenAIEmbeddings
7
+ from langchain.llms import BaseLLM
8
+ from langchain.vectorstores.base import VectorStore
9
+ from pydantic import BaseModel, Field
10
+ from langchain.chains.base import Chain
11
+
12
+ from langchain.vectorstores import FAISS
13
+ import faiss
14
+ from langchain.docstore import InMemoryDocstore
15
+ from langchain.agents import ZeroShotAgent, Tool, AgentExecutor
16
+ from executor import Executor
17
+
18
+
19
+ class ContextAwareAgent(ZeroShotAgent):
20
+ def get_full_inputs(self, intermediate_steps, **kwargs: Any) -> Dict[str, Any]:
21
+ """Create the full inputs for the LLMChain from intermediate steps."""
22
+ thoughts = self._construct_scratchpad(intermediate_steps)
23
+ new_inputs = {"agent_scratchpad": thoughts, "stop": self._stop}
24
+ full_inputs = {**kwargs, **new_inputs}
25
+ return full_inputs
26
+
27
+ def _construct_scratchpad(self, intermediate_steps):
28
+ """Construct the scratchpad that lets the agent continue its thought process."""
29
+ thoughts = ""
30
+ # only modify the following line, [-2: ]
31
+ for action, observation in intermediate_steps[-2:]:
32
+ thoughts += action.log
33
+ thoughts += f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}"
34
+ if "is not a valid tool, try another one" in observation:
35
+ thoughts += (
36
+ "You should select another tool rather than the invalid one.\n"
37
+ )
38
+ return thoughts
39
+
40
+
41
+ class TaskCreationChain(LLMChain):
42
+ """Chain to generates tasks."""
43
+
44
+ @classmethod
45
+ def from_llm(cls, llm: BaseLLM, verbose: bool = True) -> LLMChain:
46
+ """Get the response parser."""
47
+ task_creation_template = (
48
+ "You are an task creation AI that uses the result of an execution agent"
49
+ " to create new tasks with the following objective: {objective},"
50
+ " The last completed task has the result: {result}."
51
+ " This result was based on this task description: {task_description}."
52
+ " These are incomplete tasks: {incomplete_tasks}."
53
+ " Based on the result, create new tasks to be completed"
54
+ " by the AI system that do not overlap with incomplete tasks."
55
+ " For a simple objective, do not generate complex todo lists."
56
+ " Do not generate repetitive tasks (e.g., tasks that have already been completed)."
57
+ " If there is not futher task needed to complete the objective, return NO TASK."
58
+ " Now return the tasks as an array."
59
+ )
60
+ prompt = PromptTemplate(
61
+ template=task_creation_template,
62
+ input_variables=[
63
+ "result",
64
+ "task_description",
65
+ "incomplete_tasks",
66
+ "objective",
67
+ ],
68
+ )
69
+ return cls(prompt=prompt, llm=llm, verbose=verbose)
70
+
71
+
72
+ class InitialTaskCreationChain(LLMChain):
73
+ """Chain to generates tasks."""
74
+
75
+ @classmethod
76
+ def from_llm(cls, llm: BaseLLM, verbose: bool = True) -> LLMChain:
77
+ """Get the response parser."""
78
+ task_creation_template = "You are a planner who is an expert at coming up with a todo list for a given objective. For a simple objective, do not generate a complex todo list. Generate the first (only one) task needed to do for this objective: {objective}"
79
+ prompt = PromptTemplate(
80
+ template=task_creation_template,
81
+ input_variables=["objective"],
82
+ )
83
+ return cls(prompt=prompt, llm=llm, verbose=verbose)
84
+
85
+
86
+ class TaskPrioritizationChain(LLMChain):
87
+ """Chain to prioritize tasks."""
88
+
89
+ @classmethod
90
+ def from_llm(cls, llm: BaseLLM, verbose: bool = True) -> LLMChain:
91
+ """Get the response parser."""
92
+ task_prioritization_template = (
93
+ "You are an task prioritization AI tasked with cleaning the formatting of and reprioritizing"
94
+ " the following tasks: {task_names}."
95
+ " Consider the ultimate objective of your team: {objective}."
96
+ " Do not make up any tasks, just reorganize the existing tasks."
97
+ " Do not remove any tasks. Return the result as a numbered list, like:"
98
+ " #. First task"
99
+ " #. Second task"
100
+ " Start the task list with number {next_task_id}. (e.g., 2. ***, 3. ***, etc.)"
101
+ )
102
+ prompt = PromptTemplate(
103
+ template=task_prioritization_template,
104
+ input_variables=["task_names", "next_task_id", "objective"],
105
+ )
106
+ return cls(prompt=prompt, llm=llm, verbose=verbose)
107
+
108
+
109
+ def get_next_task(
110
+ task_creation_chain: LLMChain,
111
+ result: Dict,
112
+ task_description: str,
113
+ task_list: List[str],
114
+ objective: str,
115
+ ) -> List[Dict]:
116
+ """Get the next task."""
117
+ incomplete_tasks = ", ".join(task_list)
118
+ response = task_creation_chain.run(
119
+ result=result,
120
+ task_description=task_description,
121
+ incomplete_tasks=incomplete_tasks,
122
+ objective=objective,
123
+ )
124
+ # change the split method to re matching
125
+ # new_tasks = response.split('\n')
126
+ task_pattern = re.compile(r"\d+\. (.+?)\n")
127
+ new_tasks = task_pattern.findall(response)
128
+
129
+ return [{"task_name": task_name} for task_name in new_tasks if task_name.strip()]
130
+
131
+
132
+ def prioritize_tasks(
133
+ task_prioritization_chain: LLMChain,
134
+ this_task_id: int,
135
+ task_list: List[Dict],
136
+ objective: str,
137
+ ) -> List[Dict]:
138
+ """Prioritize tasks."""
139
+ task_names = [t["task_name"] for t in task_list]
140
+ next_task_id = int(this_task_id) + 1
141
+ response = task_prioritization_chain.run(
142
+ task_names=task_names, next_task_id=next_task_id, objective=objective
143
+ )
144
+ new_tasks = response.split("\n")
145
+ prioritized_task_list = []
146
+ for task_string in new_tasks:
147
+ if not task_string.strip():
148
+ continue
149
+ task_parts = task_string.strip().split(".", 1)
150
+ if len(task_parts) == 2:
151
+ task_id = task_parts[0].strip()
152
+ task_name = task_parts[1].strip()
153
+ prioritized_task_list.append({"task_id": task_id, "task_name": task_name})
154
+ return prioritized_task_list
155
+
156
+
157
+ def _get_top_tasks(vectorstore, query: str, k: int) -> List[str]:
158
+ """Get the top k tasks based on the query."""
159
+ results = vectorstore.similarity_search_with_score(query, k=k)
160
+ if not results:
161
+ return []
162
+ sorted_results, _ = zip(*sorted(results, key=lambda x: x[1], reverse=True))
163
+ return [str(item.metadata["task"]) for item in sorted_results]
164
+
165
+
166
+ def execute_task(
167
+ vectorstore, execution_chain: LLMChain, objective: str, task: str, k: int = 5
168
+ ) -> str:
169
+ """Execute a task."""
170
+ context = _get_top_tasks(vectorstore, query=objective, k=k)
171
+ return execution_chain.run(objective=objective, context=context, task=task)
172
+
173
+ class BabyAGI(Chain, BaseModel):
174
+ """Controller model for the BabyAGI agent."""
175
+
176
+ task_list: deque = Field(default_factory=deque)
177
+ task_creation_chain: TaskCreationChain = Field(...)
178
+ task_prioritization_chain: TaskPrioritizationChain = Field(...)
179
+ initial_task_creation_chain: InitialTaskCreationChain = Field(...)
180
+ execution_chain: AgentExecutor = Field(...)
181
+ task_id_counter: int = Field(1)
182
+ vectorstore: VectorStore = Field(init=False)
183
+ max_iterations: Optional[int] = None
184
+
185
+ class Config:
186
+ """Configuration for this pydantic object."""
187
+
188
+ arbitrary_types_allowed = True
189
+
190
+ def add_task(self, task: Dict):
191
+ self.task_list.append(task)
192
+
193
+ def print_task_list(self):
194
+ print("\033[95m\033[1m" + "\n*****TASK LIST*****\n" + "\033[0m\033[0m")
195
+ for t in self.task_list:
196
+ print(str(t["task_id"]) + ": " + t["task_name"])
197
+
198
+ def print_next_task(self, task: Dict):
199
+ print("\033[92m\033[1m" + "\n*****NEXT TASK*****\n" + "\033[0m\033[0m")
200
+ print(str(task["task_id"]) + ": " + task["task_name"])
201
+
202
+ def print_task_result(self, result: str):
203
+ print("\033[93m\033[1m" + "\n*****TASK RESULT*****\n" + "\033[0m\033[0m")
204
+ print(result)
205
+
206
+ @property
207
+ def input_keys(self) -> List[str]:
208
+ return ["objective"]
209
+
210
+ @property
211
+ def output_keys(self) -> List[str]:
212
+ return []
213
+
214
+ def _call(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
215
+ """Run the agent."""
216
+ # not an elegant implementation, but it works for the first task
217
+ objective = inputs["objective"]
218
+ first_task = inputs.get(
219
+ "first_task", self.initial_task_creation_chain.run(objective=objective)
220
+ ) # self.task_creation_chain.llm(initial_task_prompt))
221
+
222
+ self.add_task({"task_id": 1, "task_name": first_task})
223
+ num_iters = 0
224
+ while True:
225
+ if self.task_list:
226
+ self.print_task_list()
227
+
228
+ # Step 1: Pull the first task
229
+ task = self.task_list.popleft()
230
+ self.print_next_task(task)
231
+
232
+ # Step 2: Execute the task
233
+ result = execute_task(
234
+ self.vectorstore, self.execution_chain, objective, task["task_name"]
235
+ )
236
+ this_task_id = int(task["task_id"])
237
+ self.print_task_result(result)
238
+
239
+ # Step 3: Store the result in Pinecone
240
+ result_id = f"result_{task['task_id']}"
241
+ self.vectorstore.add_texts(
242
+ texts=[result],
243
+ metadatas=[{"task": task["task_name"]}],
244
+ ids=[result_id],
245
+ )
246
+
247
+ # Step 4: Create new tasks and reprioritize task list
248
+ new_tasks = get_next_task(
249
+ self.task_creation_chain,
250
+ result,
251
+ task["task_name"],
252
+ [t["task_name"] for t in self.task_list],
253
+ objective,
254
+ )
255
+ for new_task in new_tasks:
256
+ self.task_id_counter += 1
257
+ new_task.update({"task_id": self.task_id_counter})
258
+ self.add_task(new_task)
259
+
260
+ if len(self.task_list) == 0:
261
+ print(
262
+ "\033[91m\033[1m"
263
+ + "\n*****NO TASK, ABORTING*****\n"
264
+ + "\033[0m\033[0m"
265
+ )
266
+ break
267
+
268
+ self.task_list = deque(
269
+ prioritize_tasks(
270
+ self.task_prioritization_chain,
271
+ this_task_id,
272
+ list(self.task_list),
273
+ objective,
274
+ )
275
+ )
276
+ num_iters += 1
277
+ if self.max_iterations is not None and num_iters == self.max_iterations:
278
+ print(
279
+ "\033[91m\033[1m" + "\n*****TASK ENDING*****\n" + "\033[0m\033[0m"
280
+ )
281
+ break
282
+ return {}
283
+
284
+ @classmethod
285
+ def from_llm(
286
+ cls,
287
+ llm: BaseLLM,
288
+ prompt=None,
289
+ verbose: bool = False,
290
+ tools=None,
291
+ stream_output=None,
292
+ **kwargs,
293
+ ) -> "BabyAGI":
294
+ embeddings_model = OpenAIEmbeddings()
295
+ embedding_size = 1536
296
+ index = faiss.IndexFlatL2(embedding_size)
297
+ vectorstore = FAISS(
298
+ embeddings_model.embed_query, index, InMemoryDocstore({}), {}
299
+ )
300
+
301
+ task_creation_chain = TaskCreationChain.from_llm(llm, verbose=verbose)
302
+ initial_task_creation_chain = InitialTaskCreationChain.from_llm(
303
+ llm, verbose=verbose
304
+ )
305
+ task_prioritization_chain = TaskPrioritizationChain.from_llm(
306
+ llm, verbose=verbose
307
+ )
308
+ llm_chain = LLMChain(llm=llm, prompt=prompt)
309
+ tool_names = [tool.name for tool in tools]
310
+ agent = ContextAwareAgent(llm_chain=llm_chain, allowed_tools=tool_names)
311
+
312
+ if stream_output:
313
+ agent_executor = Executor.from_agent_and_tools(
314
+ agent=agent, tools=tools, verbose=True
315
+ )
316
+ else:
317
+ agent_executor = AgentExecutorWithTranslation.from_agent_and_tools(
318
+ agent=agent, tools=tools, verbose=True
319
+ )
320
+
321
+ return cls(
322
+ task_creation_chain=task_creation_chain,
323
+ task_prioritization_chain=task_prioritization_chain,
324
+ initial_task_creation_chain=initial_task_creation_chain,
325
+ execution_chain=agent_executor,
326
+ vectorstore=vectorstore,
327
+ **kwargs,
328
+ )
329
+
330
+
331
+ if __name__ == "__main__":
332
+ todo_prompt = PromptTemplate.from_template(
333
+ "You are a planner who is an expert at coming up with a todo list for a given objective. For a simple objective, do not generate a complex todo list. Come up with a todo list for this objective: {objective}"
334
+ )
335
+ todo_chain = LLMChain(llm=OpenAI(temperature=0), prompt=todo_prompt)
336
+ search = SerpAPIWrapper()
337
+ tools = [
338
+ Tool(
339
+ name="Search",
340
+ func=search.run,
341
+ description="useful for when you need to answer questions about current events",
342
+ ),
343
+ Tool(
344
+ name="TODO",
345
+ func=todo_chain.run,
346
+ description="useful for when you need to come up with todo lists. Input: an objective to create a todo list for. Output: a todo list for that objective. Please be very clear what the objective is!",
347
+ ),
348
+ ]
349
+
350
+ prefix = """You are an AI who performs one task based on the following objective: {objective}. Take into account these previously completed tasks: {context}."""
351
+ suffix = """Question: {task}
352
+ {agent_scratchpad}"""
353
+ prompt = ZeroShotAgent.create_prompt(
354
+ tools,
355
+ prefix=prefix,
356
+ suffix=suffix,
357
+ input_variables=["objective", "task", "context", "agent_scratchpad"],
358
+ )
359
+
360
+ OBJECTIVE = "Write a weather report for SF today"
361
+ llm = OpenAI(temperature=0)
362
+ # Logging of LLMChains
363
+ verbose = False
364
+ # If None, will keep on going forever
365
+ max_iterations: Optional[int] = 10
366
+ baby_agi = BabyAGI.from_llm(llm=llm, verbose=verbose, max_iterations=max_iterations)
367
+ baby_agi({"objective": OBJECTIVE})
README.md CHANGED
@@ -1,12 +1,6 @@
1
  ---
2
- title: Tools
3
- emoji: 🏃
4
- colorFrom: indigo
5
- colorTo: purple
6
  sdk: gradio
7
  sdk_version: 4.19.2
8
- app_file: app.py
9
- pinned: false
10
  ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: tools
3
+ app_file: app.py
 
 
4
  sdk: gradio
5
  sdk_version: 4.19.2
 
 
6
  ---
 
 
__pycache__/BabyagiTools.cpython-310.pyc ADDED
Binary file (12.1 kB). View file
 
__pycache__/apitool.cpython-310.pyc ADDED
Binary file (5.19 kB). View file
 
__pycache__/executor.cpython-310.pyc ADDED
Binary file (3.15 kB). View file
 
__pycache__/logger.cpython-310.pyc ADDED
Binary file (345 Bytes). View file
 
__pycache__/logging.cpython-310.pyc ADDED
Binary file (7.56 kB). View file
 
__pycache__/registry.cpython-310.pyc ADDED
Binary file (1.92 kB). View file
 
__pycache__/retriever.cpython-310.pyc ADDED
Binary file (2.08 kB). View file
 
__pycache__/serve.cpython-310.pyc ADDED
Binary file (3.83 kB). View file
 
__pycache__/singletool.cpython-310.pyc ADDED
Binary file (7.46 kB). View file
 
__pycache__/tool.cpython-310.pyc ADDED
Binary file (3.5 kB). View file
 
__pycache__/tool_logging.cpython-310.pyc ADDED
Binary file (7.59 kB). View file
 
__pycache__/tool_server.cpython-310.pyc ADDED
Binary file (2.33 kB). View file
 
__pycache__/tools_controller.cpython-310.pyc ADDED
Binary file (4.22 kB). View file
 
__pycache__/translator.cpython-310.pyc ADDED
Binary file (6.77 kB). View file
 
agent/BabyagiTools.py ADDED
@@ -0,0 +1,368 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import deque
2
+ from typing import Dict, List, Optional, Any
3
+ import re
4
+
5
+ from langchain import LLMChain, OpenAI, PromptTemplate, SerpAPIWrapper
6
+ from langchain.embeddings import OpenAIEmbeddings
7
+ from langchain.llms import BaseLLM
8
+ from langchain.vectorstores.base import VectorStore
9
+ from pydantic import BaseModel, Field
10
+ from langchain.chains.base import Chain
11
+
12
+ from langchain.vectorstores import FAISS
13
+ import faiss
14
+ from langchain.docstore import InMemoryDocstore
15
+ from langchain.agents import ZeroShotAgent, Tool, AgentExecutor
16
+ from swarms.agent.executor import Executor, AgentExecutorWithTranslation
17
+
18
+
19
+ class ContextAwareAgent(ZeroShotAgent):
20
+ def get_full_inputs(self, intermediate_steps, **kwargs: Any) -> Dict[str, Any]:
21
+ """Create the full inputs for the LLMChain from intermediate steps."""
22
+ thoughts = self._construct_scratchpad(intermediate_steps)
23
+ new_inputs = {"agent_scratchpad": thoughts, "stop": self._stop}
24
+ full_inputs = {**kwargs, **new_inputs}
25
+ return full_inputs
26
+
27
+ def _construct_scratchpad(self, intermediate_steps):
28
+ """Construct the scratchpad that lets the agent continue its thought process."""
29
+ thoughts = ""
30
+ # only modify the following line, [-2: ]
31
+ for action, observation in intermediate_steps[-2:]:
32
+ thoughts += action.log
33
+ thoughts += f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}"
34
+ if "is not a valid tool, try another one" in observation:
35
+ thoughts += (
36
+ "You should select another tool rather than the invalid one.\n"
37
+ )
38
+ return thoughts
39
+
40
+
41
+ class TaskCreationChain(LLMChain):
42
+ """Chain to generates tasks."""
43
+
44
+ @classmethod
45
+ def from_llm(cls, llm: BaseLLM, verbose: bool = True) -> LLMChain:
46
+ """Get the response parser."""
47
+ task_creation_template = (
48
+ "You are an task creation AI that uses the result of an execution agent"
49
+ " to create new tasks with the following objective: {objective},"
50
+ " The last completed task has the result: {result}."
51
+ " This result was based on this task description: {task_description}."
52
+ " These are incomplete tasks: {incomplete_tasks}."
53
+ " Based on the result, create new tasks to be completed"
54
+ " by the AI system that do not overlap with incomplete tasks."
55
+ " For a simple objective, do not generate complex todo lists."
56
+ " Do not generate repetitive tasks (e.g., tasks that have already been completed)."
57
+ " If there is not futher task needed to complete the objective, return NO TASK."
58
+ " Now return the tasks as an array."
59
+ )
60
+ prompt = PromptTemplate(
61
+ template=task_creation_template,
62
+ input_variables=[
63
+ "result",
64
+ "task_description",
65
+ "incomplete_tasks",
66
+ "objective",
67
+ ],
68
+ )
69
+ return cls(prompt=prompt, llm=llm, verbose=verbose)
70
+
71
+
72
+ class InitialTaskCreationChain(LLMChain):
73
+ """Chain to generates tasks."""
74
+
75
+ @classmethod
76
+ def from_llm(cls, llm: BaseLLM, verbose: bool = True) -> LLMChain:
77
+ """Get the response parser."""
78
+ task_creation_template = "You are a planner who is an expert at coming up with a todo list for a given objective. For a simple objective, do not generate a complex todo list. Generate the first (only one) task needed to do for this objective: {objective}"
79
+ prompt = PromptTemplate(
80
+ template=task_creation_template,
81
+ input_variables=["objective"],
82
+ )
83
+ return cls(prompt=prompt, llm=llm, verbose=verbose)
84
+
85
+
86
+ class TaskPrioritizationChain(LLMChain):
87
+ """Chain to prioritize tasks."""
88
+
89
+ @classmethod
90
+ def from_llm(cls, llm: BaseLLM, verbose: bool = True) -> LLMChain:
91
+ """Get the response parser."""
92
+ task_prioritization_template = (
93
+ "You are an task prioritization AI tasked with cleaning the formatting of and reprioritizing"
94
+ " the following tasks: {task_names}."
95
+ " Consider the ultimate objective of your team: {objective}."
96
+ " Do not make up any tasks, just reorganize the existing tasks."
97
+ " Do not remove any tasks. Return the result as a numbered list, like:"
98
+ " #. First task"
99
+ " #. Second task"
100
+ " Start the task list with number {next_task_id}. (e.g., 2. ***, 3. ***, etc.)"
101
+ )
102
+ prompt = PromptTemplate(
103
+ template=task_prioritization_template,
104
+ input_variables=["task_names", "next_task_id", "objective"],
105
+ )
106
+ return cls(prompt=prompt, llm=llm, verbose=verbose)
107
+
108
+
109
+ def get_next_task(
110
+ task_creation_chain: LLMChain,
111
+ result: Dict,
112
+ task_description: str,
113
+ task_list: List[str],
114
+ objective: str,
115
+ ) -> List[Dict]:
116
+ """Get the next task."""
117
+ incomplete_tasks = ", ".join(task_list)
118
+ response = task_creation_chain.run(
119
+ result=result,
120
+ task_description=task_description,
121
+ incomplete_tasks=incomplete_tasks,
122
+ objective=objective,
123
+ )
124
+ # change the split method to re matching
125
+ # new_tasks = response.split('\n')
126
+ task_pattern = re.compile(r"\d+\. (.+?)\n")
127
+ new_tasks = task_pattern.findall(response)
128
+
129
+ return [{"task_name": task_name} for task_name in new_tasks if task_name.strip()]
130
+
131
+
132
+ def prioritize_tasks(
133
+ task_prioritization_chain: LLMChain,
134
+ this_task_id: int,
135
+ task_list: List[Dict],
136
+ objective: str,
137
+ ) -> List[Dict]:
138
+ """Prioritize tasks."""
139
+ task_names = [t["task_name"] for t in task_list]
140
+ next_task_id = int(this_task_id) + 1
141
+ response = task_prioritization_chain.run(
142
+ task_names=task_names, next_task_id=next_task_id, objective=objective
143
+ )
144
+ new_tasks = response.split("\n")
145
+ prioritized_task_list = []
146
+ for task_string in new_tasks:
147
+ if not task_string.strip():
148
+ continue
149
+ task_parts = task_string.strip().split(".", 1)
150
+ if len(task_parts) == 2:
151
+ task_id = task_parts[0].strip()
152
+ task_name = task_parts[1].strip()
153
+ prioritized_task_list.append({"task_id": task_id, "task_name": task_name})
154
+ return prioritized_task_list
155
+
156
+
157
+ def _get_top_tasks(vectorstore, query: str, k: int) -> List[str]:
158
+ """Get the top k tasks based on the query."""
159
+ results = vectorstore.similarity_search_with_score(query, k=k)
160
+ if not results:
161
+ return []
162
+ sorted_results, _ = zip(*sorted(results, key=lambda x: x[1], reverse=True))
163
+ return [str(item.metadata["task"]) for item in sorted_results]
164
+
165
+
166
+ def execute_task(
167
+ vectorstore, execution_chain: LLMChain, objective: str, task: str, k: int = 5
168
+ ) -> str:
169
+ """Execute a task."""
170
+ context = _get_top_tasks(vectorstore, query=objective, k=k)
171
+ return execution_chain.run(objective=objective, context=context, task=task)
172
+
173
+
174
+ class BabyAGI(Chain, BaseModel):
175
+ """Controller model for the BabyAGI agent."""
176
+
177
+ task_list: deque = Field(default_factory=deque)
178
+ task_creation_chain: TaskCreationChain = Field(...)
179
+ task_prioritization_chain: TaskPrioritizationChain = Field(...)
180
+ initial_task_creation_chain: InitialTaskCreationChain = Field(...)
181
+ execution_chain: AgentExecutor = Field(...)
182
+ task_id_counter: int = Field(1)
183
+ vectorstore: VectorStore = Field(init=False)
184
+ max_iterations: Optional[int] = None
185
+
186
+ class Config:
187
+ """Configuration for this pydantic object."""
188
+
189
+ arbitrary_types_allowed = True
190
+
191
+ def add_task(self, task: Dict):
192
+ self.task_list.append(task)
193
+
194
+ def print_task_list(self):
195
+ print("\033[95m\033[1m" + "\n*****TASK LIST*****\n" + "\033[0m\033[0m")
196
+ for t in self.task_list:
197
+ print(str(t["task_id"]) + ": " + t["task_name"])
198
+
199
+ def print_next_task(self, task: Dict):
200
+ print("\033[92m\033[1m" + "\n*****NEXT TASK*****\n" + "\033[0m\033[0m")
201
+ print(str(task["task_id"]) + ": " + task["task_name"])
202
+
203
+ def print_task_result(self, result: str):
204
+ print("\033[93m\033[1m" + "\n*****TASK RESULT*****\n" + "\033[0m\033[0m")
205
+ print(result)
206
+
207
+ @property
208
+ def input_keys(self) -> List[str]:
209
+ return ["objective"]
210
+
211
+ @property
212
+ def output_keys(self) -> List[str]:
213
+ return []
214
+
215
+ def _call(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
216
+ """Run the agent."""
217
+ # not an elegant implementation, but it works for the first task
218
+ objective = inputs["objective"]
219
+ first_task = inputs.get(
220
+ "first_task", self.initial_task_creation_chain.run(objective=objective)
221
+ ) # self.task_creation_chain.llm(initial_task_prompt))
222
+
223
+ self.add_task({"task_id": 1, "task_name": first_task})
224
+ num_iters = 0
225
+ while True:
226
+ if self.task_list:
227
+ self.print_task_list()
228
+
229
+ # Step 1: Pull the first task
230
+ task = self.task_list.popleft()
231
+ self.print_next_task(task)
232
+
233
+ # Step 2: Execute the task
234
+ result = execute_task(
235
+ self.vectorstore, self.execution_chain, objective, task["task_name"]
236
+ )
237
+ this_task_id = int(task["task_id"])
238
+ self.print_task_result(result)
239
+
240
+ # Step 3: Store the result in Pinecone
241
+ result_id = f"result_{task['task_id']}"
242
+ self.vectorstore.add_texts(
243
+ texts=[result],
244
+ metadatas=[{"task": task["task_name"]}],
245
+ ids=[result_id],
246
+ )
247
+
248
+ # Step 4: Create new tasks and reprioritize task list
249
+ new_tasks = get_next_task(
250
+ self.task_creation_chain,
251
+ result,
252
+ task["task_name"],
253
+ [t["task_name"] for t in self.task_list],
254
+ objective,
255
+ )
256
+ for new_task in new_tasks:
257
+ self.task_id_counter += 1
258
+ new_task.update({"task_id": self.task_id_counter})
259
+ self.add_task(new_task)
260
+
261
+ if len(self.task_list) == 0:
262
+ print(
263
+ "\033[91m\033[1m"
264
+ + "\n*****NO TASK, ABORTING*****\n"
265
+ + "\033[0m\033[0m"
266
+ )
267
+ break
268
+
269
+ self.task_list = deque(
270
+ prioritize_tasks(
271
+ self.task_prioritization_chain,
272
+ this_task_id,
273
+ list(self.task_list),
274
+ objective,
275
+ )
276
+ )
277
+ num_iters += 1
278
+ if self.max_iterations is not None and num_iters == self.max_iterations:
279
+ print(
280
+ "\033[91m\033[1m" + "\n*****TASK ENDING*****\n" + "\033[0m\033[0m"
281
+ )
282
+ break
283
+ return {}
284
+
285
+ @classmethod
286
+ def from_llm(
287
+ cls,
288
+ llm: BaseLLM,
289
+ prompt=None,
290
+ verbose: bool = False,
291
+ tools=None,
292
+ stream_output=None,
293
+ **kwargs,
294
+ ) -> "BabyAGI":
295
+ embeddings_model = OpenAIEmbeddings()
296
+ embedding_size = 1536
297
+ index = faiss.IndexFlatL2(embedding_size)
298
+ vectorstore = FAISS(
299
+ embeddings_model.embed_query, index, InMemoryDocstore({}), {}
300
+ )
301
+
302
+ task_creation_chain = TaskCreationChain.from_llm(llm, verbose=verbose)
303
+ initial_task_creation_chain = InitialTaskCreationChain.from_llm(
304
+ llm, verbose=verbose
305
+ )
306
+ task_prioritization_chain = TaskPrioritizationChain.from_llm(
307
+ llm, verbose=verbose
308
+ )
309
+ llm_chain = LLMChain(llm=llm, prompt=prompt)
310
+ tool_names = [tool.name for tool in tools]
311
+ agent = ContextAwareAgent(llm_chain=llm_chain, allowed_tools=tool_names)
312
+
313
+ if stream_output:
314
+ agent_executor = Executor.from_agent_and_tools(
315
+ agent=agent, tools=tools, verbose=True
316
+ )
317
+ else:
318
+ agent_executor = AgentExecutorWithTranslation.from_agent_and_tools(
319
+ agent=agent, tools=tools, verbose=True
320
+ )
321
+
322
+ return cls(
323
+ task_creation_chain=task_creation_chain,
324
+ task_prioritization_chain=task_prioritization_chain,
325
+ initial_task_creation_chain=initial_task_creation_chain,
326
+ execution_chain=agent_executor,
327
+ vectorstore=vectorstore,
328
+ **kwargs,
329
+ )
330
+
331
+
332
+ if __name__ == "__main__":
333
+ todo_prompt = PromptTemplate.from_template(
334
+ "You are a planner who is an expert at coming up with a todo list for a given objective. For a simple objective, do not generate a complex todo list. Come up with a todo list for this objective: {objective}"
335
+ )
336
+ todo_chain = LLMChain(llm=OpenAI(temperature=0), prompt=todo_prompt)
337
+ search = SerpAPIWrapper()
338
+ tools = [
339
+ Tool(
340
+ name="Search",
341
+ func=search.run,
342
+ description="useful for when you need to answer questions about current events",
343
+ ),
344
+ Tool(
345
+ name="TODO",
346
+ func=todo_chain.run,
347
+ description="useful for when you need to come up with todo lists. Input: an objective to create a todo list for. Output: a todo list for that objective. Please be very clear what the objective is!",
348
+ ),
349
+ ]
350
+
351
+ prefix = """You are an AI who performs one task based on the following objective: {objective}. Take into account these previously completed tasks: {context}."""
352
+ suffix = """Question: {task}
353
+ {agent_scratchpad}"""
354
+ prompt = ZeroShotAgent.create_prompt(
355
+ tools,
356
+ prefix=prefix,
357
+ suffix=suffix,
358
+ input_variables=["objective", "task", "context", "agent_scratchpad"],
359
+ )
360
+
361
+ OBJECTIVE = "Write a weather report for SF today"
362
+ llm = OpenAI(temperature=0)
363
+ # Logging of LLMChains
364
+ verbose = False
365
+ # If None, will keep on going forever
366
+ max_iterations: Optional[int] = 10
367
+ baby_agi = BabyAGI.from_llm(llm=llm, verbose=verbose, max_iterations=max_iterations)
368
+ baby_agi({"objective": OBJECTIVE})
agent/apitool.py ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Interface for tools."""
2
+ from inspect import signature
3
+ from typing import Any, Awaitable, Callable, Optional, Union
4
+
5
+ from langchain.agents import Tool as LangChainTool
6
+ from langchain.tools.base import BaseTool
7
+ import requests
8
+ import json
9
+ import aiohttp
10
+ import http.client
11
+
12
+ http.client._MAXLINE = 655360
13
+
14
+ from swarms.utils import get_logger
15
+
16
+ logger = get_logger(__name__)
17
+
18
+
19
+ class Tool(LangChainTool):
20
+ tool_logo_md: str = ""
21
+
22
+
23
+ class RequestTool(BaseTool):
24
+ """Tool that takes in function or coroutine directly."""
25
+
26
+ description: str = ""
27
+ func: Callable[[str], str]
28
+ afunc: Callable[[str], str]
29
+ coroutine: Optional[Callable[[str], Awaitable[str]]] = None
30
+ max_output_len = 4000
31
+ tool_logo_md: str = ""
32
+
33
+ def _run(self, tool_input: str) -> str:
34
+ """Use the tool."""
35
+ return self.func(tool_input)
36
+
37
+ async def _arun(self, tool_input: str) -> str:
38
+ """Use the tool asynchronously."""
39
+ ret = await self.afunc(tool_input)
40
+ return ret
41
+
42
+ def convert_prompt(self, params):
43
+ lines = "Your input should be a json (args json schema): {{"
44
+ for p in params:
45
+ logger.debug(p)
46
+ optional = not p["required"]
47
+ description = p.get("description", "")
48
+ if len(description) > 0:
49
+ description = "(" + description + ")"
50
+
51
+ lines += '"{name}" : {type}{desc}, '.format(
52
+ name=p["name"],
53
+ type=p["schema"]["type"],
54
+ optional=optional,
55
+ desc=description,
56
+ )
57
+
58
+ lines += "}}"
59
+ return lines
60
+
61
+ def __init__(self, root_url, func_url, method, request_info, **kwargs):
62
+ """Store the function, description, and tool_name in a class to store the information"""
63
+ url = root_url + func_url
64
+
65
+ def func(json_args):
66
+ if isinstance(json_args, str):
67
+ try:
68
+ json_args = json.loads(json_args)
69
+ except:
70
+ return "Your input can not be parsed as json, please use thought."
71
+ if "tool_input" in json_args:
72
+ json_args = json_args["tool_input"]
73
+
74
+ # if it's post put patch, then we do json
75
+ if method.lower() in ["post", "put", "patch"]:
76
+ response = getattr(requests, method.lower())(url, json=json_args)
77
+ else:
78
+ # for other methods, we use get, and use json_args as query params
79
+ response = requests.get(url, params=json_args)
80
+ if response.status_code == 200:
81
+ message = response.text
82
+ else:
83
+ message = f"Error code {response.status_code}. You can try (1) Change your input (2) Call another function. (If the same error code is produced more than 4 times, please use Thought: I can not use these APIs, so I will stop. Final Answer: No Answer, please check the APIs.)"
84
+
85
+ message = message[: self.max_output_len] # TODO: not rigorous, to improve
86
+ return message
87
+
88
+ def convert_openapi_to_params(request_body):
89
+ if not request_body:
90
+ return []
91
+ params = []
92
+ for content_type, content in request_body["content"].items():
93
+ schema = content["schema"]
94
+ properties = schema.get("properties", {})
95
+ required = schema.get("required", [])
96
+ for key, value in properties.items():
97
+ param = {
98
+ "name": key,
99
+ "schema": value,
100
+ "required": key in required,
101
+ "description": value.get("description", ""),
102
+ }
103
+ if (
104
+ content_type == "multipart/form-data"
105
+ and value.get("format") == "binary"
106
+ ):
107
+ param["type"] = "file"
108
+ elif content_type in [
109
+ "application/x-www-form-urlencoded",
110
+ "multipart/form-data",
111
+ ]:
112
+ param["type"] = "form"
113
+ else:
114
+ param["type"] = "json"
115
+ params.append(param)
116
+ return params
117
+
118
+ async def afunc(json_args):
119
+ if isinstance(json_args, str):
120
+ try:
121
+ json_args = json.loads(json_args)
122
+ except:
123
+ return "Your input can not be parsed as json, please use thought."
124
+ if "tool_input" in json_args:
125
+ json_args = json_args["tool_input"]
126
+
127
+ async with aiohttp.ClientSession() as session:
128
+ async with session.get(url, params=json_args) as response:
129
+ if response.status == 200:
130
+ message = await response.text()
131
+ else:
132
+ message = f"Error code {response.status_code}. You can try (1) Change your input (2) Call another function. (If the same error code is produced more than 4 times, please use Thought: I can not use these APIs, so I will stop. Final Answer: No Answer, please check the APIs.)"
133
+
134
+ message = message[: self.max_output_len] # TODO: not rigorous, to improve
135
+ return message
136
+
137
+ tool_name = func_url.replace("/", ".").strip(".")
138
+ str_doc = ""
139
+ if "parameters" in request_info[method]:
140
+ str_doc = self.convert_prompt(request_info[method]["parameters"])
141
+
142
+ if "requestBody" in request_info[method]:
143
+ str_doc = (
144
+ str_doc
145
+ + "\n"
146
+ + self.convert_prompt(
147
+ convert_openapi_to_params(request_info[method]["requestBody"])
148
+ )
149
+ )
150
+
151
+ # description = f"- {tool_name}:\n" + \
152
+ # request_info[method].get('summary', '').replace("{", "{{").replace("}", "}}") \
153
+ description = (
154
+ request_info[method]
155
+ .get("description", "")
156
+ .replace("{", "{{")
157
+ .replace("}", "}}")
158
+ + ". "
159
+ + str_doc
160
+ + f" The Action to trigger this API should be {tool_name} and the input parameters should be a json dict string. Pay attention to the type of parameters."
161
+ )
162
+
163
+ logger.info("API Name: {}".format(tool_name))
164
+ logger.info("API Description: {}".format(description))
165
+
166
+ super(RequestTool, self).__init__(
167
+ name=tool_name, func=func, afunc=afunc, description=description, **kwargs
168
+ )
agent/autogpt/__init__.py ADDED
File without changes
agent/autogpt/agent.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from typing import List, Optional
4
+
5
+ from pydantic import ValidationError
6
+
7
+ from langchain.chains.llm import LLMChain
8
+ from langchain.chat_models.base import BaseChatModel
9
+ from langchain.experimental.autonomous_agents.autogpt.output_parser import (
10
+ AutoGPTOutputParser,
11
+ BaseAutoGPTOutputParser,
12
+ )
13
+ from .prompt import AutoGPTPrompt
14
+ from langchain.experimental.autonomous_agents.autogpt.prompt_generator import (
15
+ FINISH_NAME,
16
+ )
17
+ from langchain.schema import (
18
+ AIMessage,
19
+ BaseMessage,
20
+ Document,
21
+ HumanMessage,
22
+ SystemMessage,
23
+ )
24
+ from langchain.tools.base import BaseTool
25
+ from langchain.tools.human.tool import HumanInputRun
26
+ from langchain.vectorstores.base import VectorStoreRetriever
27
+ import json
28
+
29
+
30
+ class AutoGPT:
31
+ """Agent class for interacting with Auto-GPT."""
32
+
33
+ def __init__(
34
+ self,
35
+ ai_name: str,
36
+ memory: VectorStoreRetriever,
37
+ chain: LLMChain,
38
+ output_parser: BaseAutoGPTOutputParser,
39
+ tools: List[BaseTool],
40
+ feedback_tool: Optional[HumanInputRun] = None,
41
+ ):
42
+ self.ai_name = ai_name
43
+ self.memory = memory
44
+ self.full_message_history: List[BaseMessage] = []
45
+ self.next_action_count = 0
46
+ self.chain = chain
47
+ self.output_parser = output_parser
48
+ self.tools = tools
49
+ self.feedback_tool = feedback_tool
50
+
51
+ @classmethod
52
+ def from_llm_and_tools(
53
+ cls,
54
+ ai_name: str,
55
+ ai_role: str,
56
+ memory: VectorStoreRetriever,
57
+ tools: List[BaseTool],
58
+ llm: BaseChatModel,
59
+ human_in_the_loop: bool = False,
60
+ output_parser: Optional[BaseAutoGPTOutputParser] = None,
61
+ ) -> AutoGPT:
62
+ prompt = AutoGPTPrompt(
63
+ ai_name=ai_name,
64
+ ai_role=ai_role,
65
+ tools=tools,
66
+ input_variables=["memory", "messages", "goals", "user_input"],
67
+ token_counter=llm.get_num_tokens,
68
+ )
69
+ human_feedback_tool = HumanInputRun() if human_in_the_loop else None
70
+ chain = LLMChain(llm=llm, prompt=prompt)
71
+ return cls(
72
+ ai_name,
73
+ memory,
74
+ chain,
75
+ output_parser or AutoGPTOutputParser(),
76
+ tools,
77
+ feedback_tool=human_feedback_tool,
78
+ )
79
+
80
+ def run(self, goals: List[str]) -> str:
81
+ user_input = (
82
+ "Determine which next command to use, "
83
+ "and respond using the format specified above:"
84
+ )
85
+ # Interaction Loop
86
+ loop_count = 0
87
+ while True:
88
+ # Discontinue if continuous limit is reached
89
+ loop_count += 1
90
+ # Send message to AI, get response
91
+ assistant_reply = self.chain.run(
92
+ goals=goals,
93
+ messages=self.full_message_history,
94
+ memory=self.memory,
95
+ user_input=user_input,
96
+ )
97
+
98
+ # Print Assistant thoughts
99
+ print(assistant_reply)
100
+ self.full_message_history.append(HumanMessage(content=user_input))
101
+ self.full_message_history.append(AIMessage(content=assistant_reply))
102
+
103
+ # Get command name and arguments
104
+ action = self.output_parser.parse(assistant_reply)
105
+ tools = {t.name: t for t in self.tools}
106
+ if action.name == FINISH_NAME:
107
+ return action.args["response"]
108
+ if action.name in tools:
109
+ tool = tools[action.name]
110
+ try:
111
+ # for tools in swarms.tools, the input should be string, while for default langchain toosl, the input is in json format, here we modify the following code
112
+ json_args = json.dumps(action.args)
113
+ observation = tool.run(json_args)
114
+ except ValidationError as e:
115
+ observation = f"Error in args: {str(e)}"
116
+ result = f"Command {tool.name} returned: {observation}"
117
+ elif action.name == "ERROR":
118
+ result = f"Error: {action.args}. "
119
+ else:
120
+ result = (
121
+ f"Unknown command '{action.name}'. "
122
+ f"Please refer to the 'COMMANDS' list for available "
123
+ f"commands and only respond in the specified JSON format."
124
+ )
125
+
126
+ memory_to_add = (
127
+ f"Assistant Reply: {assistant_reply} " f"\nResult: {result} "
128
+ )
129
+ if self.feedback_tool is not None:
130
+ feedback = f"\n{self.feedback_tool.run('Input: ')}"
131
+ if feedback in {"q", "stop"}:
132
+ print("EXITING")
133
+ return "EXITING"
134
+ memory_to_add += feedback
135
+
136
+ self.memory.add_documents([Document(page_content=memory_to_add)])
137
+ self.full_message_history.append(SystemMessage(content=result))
agent/autogpt/output_parser.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import re
3
+ from abc import abstractmethod
4
+ from typing import Dict, NamedTuple
5
+
6
+ from langchain.schema import BaseOutputParser
7
+
8
+
9
+ class AutoGPTAction(NamedTuple):
10
+ """Action returned by AutoGPTOutputParser."""
11
+
12
+ name: str
13
+ args: Dict
14
+
15
+
16
+ class BaseAutoGPTOutputParser(BaseOutputParser):
17
+ """Base Output parser for AutoGPT."""
18
+
19
+ @abstractmethod
20
+ def parse(self, text: str) -> AutoGPTAction:
21
+ """Return AutoGPTAction"""
22
+
23
+
24
+ def preprocess_json_input(input_str: str) -> str:
25
+ """Preprocesses a string to be parsed as json.
26
+
27
+ Replace single backslashes with double backslashes,
28
+ while leaving already escaped ones intact.
29
+
30
+ Args:
31
+ input_str: String to be preprocessed
32
+
33
+ Returns:
34
+ Preprocessed string
35
+ """
36
+ corrected_str = re.sub(
37
+ r'(?<!\\)\\(?!["\\/bfnrt]|u[0-9a-fA-F]{4})', r"\\\\", input_str
38
+ )
39
+ return corrected_str
40
+
41
+
42
+ class AutoGPTOutputParser(BaseAutoGPTOutputParser):
43
+ """Output parser for AutoGPT."""
44
+
45
+ def parse(self, text: str) -> AutoGPTAction:
46
+ try:
47
+ parsed = json.loads(text, strict=False)
48
+ except json.JSONDecodeError:
49
+ preprocessed_text = preprocess_json_input(text)
50
+ try:
51
+ parsed = json.loads(preprocessed_text, strict=False)
52
+ except Exception:
53
+ return AutoGPTAction(
54
+ name="ERROR",
55
+ args={"error": f"Could not parse invalid json: {text}"},
56
+ )
57
+ try:
58
+ return AutoGPTAction(
59
+ name=parsed["command"]["name"],
60
+ args=parsed["command"]["args"],
61
+ )
62
+ except (KeyError, TypeError):
63
+ # If the command is null or incomplete, return an erroneous tool
64
+ return AutoGPTAction(
65
+ name="ERROR", args={"error": f"Incomplete command args: {parsed}"}
66
+ )
agent/autogpt/prompt.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ from typing import Any, Callable, List
3
+
4
+ from pydantic import BaseModel
5
+
6
+ from .prompt_generator import get_prompt
7
+ from langchain.prompts.chat import (
8
+ BaseChatPromptTemplate,
9
+ )
10
+ from langchain.schema import BaseMessage, HumanMessage, SystemMessage
11
+ from langchain.tools.base import BaseTool
12
+ from langchain.vectorstores.base import VectorStoreRetriever
13
+
14
+
15
+ class AutoGPTPrompt(BaseChatPromptTemplate, BaseModel):
16
+ ai_name: str
17
+ ai_role: str
18
+ tools: List[BaseTool]
19
+ token_counter: Callable[[str], int]
20
+ send_token_limit: int = 4196
21
+
22
+ def construct_full_prompt(self, goals: List[str]) -> str:
23
+ prompt_start = """Your decisions must always be made independently
24
+ without seeking user assistance. Play to your strengths
25
+ as an LLM and pursue simple strategies with no legal complications.
26
+ If you have completed all your tasks,
27
+ make sure to use the "finish" command."""
28
+
29
+ # Construct full prompt
30
+ full_prompt = (
31
+ f"You are {self.ai_name}, {self.ai_role}\n{prompt_start}\n\nGOALS:\n\n"
32
+ )
33
+ for i, goal in enumerate(goals):
34
+ full_prompt += f"{i+1}. {goal}\n"
35
+
36
+ full_prompt += f"\n\n{get_prompt(self.tools)}"
37
+ return full_prompt
38
+
39
+ def format_messages(self, **kwargs: Any) -> List[BaseMessage]:
40
+ base_prompt = SystemMessage(content=self.construct_full_prompt(kwargs["goals"]))
41
+ time_prompt = SystemMessage(
42
+ content=f"The current time and date is {time.strftime('%c')}"
43
+ )
44
+ used_tokens = self.token_counter(base_prompt.content) + self.token_counter(
45
+ time_prompt.content
46
+ )
47
+ memory: VectorStoreRetriever = kwargs["memory"]
48
+ previous_messages = kwargs["messages"]
49
+ relevant_docs = memory.get_relevant_documents(str(previous_messages[-10:]))
50
+ relevant_memory = [d.page_content for d in relevant_docs]
51
+ relevant_memory_tokens = sum(
52
+ [self.token_counter(doc) for doc in relevant_memory]
53
+ )
54
+ while used_tokens + relevant_memory_tokens > 2500:
55
+ relevant_memory = relevant_memory[:-1]
56
+ relevant_memory_tokens = sum(
57
+ [self.token_counter(doc) for doc in relevant_memory]
58
+ )
59
+ content_format = (
60
+ f"This reminds you of these events "
61
+ f"from your past:\n{relevant_memory}\n\n"
62
+ )
63
+ memory_message = SystemMessage(content=content_format)
64
+ used_tokens += len(memory_message.content)
65
+ historical_messages: List[BaseMessage] = []
66
+ for message in previous_messages[-10:][::-1]:
67
+ message_tokens = self.token_counter(message.content)
68
+ if used_tokens + message_tokens > self.send_token_limit - 1000:
69
+ break
70
+ historical_messages = [message] + historical_messages
71
+ input_message = HumanMessage(content=kwargs["user_input"])
72
+ messages: List[BaseMessage] = [base_prompt, time_prompt, memory_message]
73
+ messages += historical_messages
74
+ messages.append(input_message)
75
+ return messages
agent/autogpt/prompt_generator.py ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ from typing import List
3
+
4
+ from langchain.tools.base import BaseTool
5
+
6
+ FINISH_NAME = "finish"
7
+
8
+
9
+ class PromptGenerator:
10
+ """A class for generating custom prompt strings.
11
+
12
+ Does this based on constraints, commands, resources, and performance evaluations.
13
+ """
14
+
15
+ def __init__(self) -> None:
16
+ """Initialize the PromptGenerator object.
17
+
18
+ Starts with empty lists of constraints, commands, resources,
19
+ and performance evaluations.
20
+ """
21
+ self.constraints: List[str] = []
22
+ self.commands: List[BaseTool] = []
23
+ self.resources: List[str] = []
24
+ self.performance_evaluation: List[str] = []
25
+ self.response_format = {
26
+ "thoughts": {
27
+ "text": "thought",
28
+ "reasoning": "reasoning",
29
+ "plan": "- short bulleted\n- list that conveys\n- long-term plan",
30
+ "criticism": "constructive self-criticism",
31
+ "speak": "thoughts summary to say to user",
32
+ },
33
+ "command": {"name": "command name", "args": {"arg name": "value"}},
34
+ }
35
+
36
+ def add_constraint(self, constraint: str) -> None:
37
+ """
38
+ Add a constraint to the constraints list.
39
+
40
+ Args:
41
+ constraint (str): The constraint to be added.
42
+ """
43
+ self.constraints.append(constraint)
44
+
45
+ def add_tool(self, tool: BaseTool) -> None:
46
+ self.commands.append(tool)
47
+
48
+ def _generate_command_string(self, tool: BaseTool) -> str:
49
+ output = f"{tool.name}: {tool.description}"
50
+ # json_args = json.dumps(tool.args) if "tool_input" not in tool.args else tool.args[
51
+ # "tool_input"
52
+ # ]
53
+ # output += f", args json schema: {json_args}"
54
+ return output
55
+
56
+ def add_resource(self, resource: str) -> None:
57
+ """
58
+ Add a resource to the resources list.
59
+
60
+ Args:
61
+ resource (str): The resource to be added.
62
+ """
63
+ self.resources.append(resource)
64
+
65
+ def add_performance_evaluation(self, evaluation: str) -> None:
66
+ """
67
+ Add a performance evaluation item to the performance_evaluation list.
68
+
69
+ Args:
70
+ evaluation (str): The evaluation item to be added.
71
+ """
72
+ self.performance_evaluation.append(evaluation)
73
+
74
+ def _generate_numbered_list(self, items: list, item_type: str = "list") -> str:
75
+ """
76
+ Generate a numbered list from given items based on the item_type.
77
+
78
+ Args:
79
+ items (list): A list of items to be numbered.
80
+ item_type (str, optional): The type of items in the list.
81
+ Defaults to 'list'.
82
+
83
+ Returns:
84
+ str: The formatted numbered list.
85
+ """
86
+ if item_type == "command":
87
+ command_strings = [
88
+ f"{i + 1}. {self._generate_command_string(item)}"
89
+ for i, item in enumerate(items)
90
+ ]
91
+ finish_description = (
92
+ "use this to signal that you have finished all your objectives"
93
+ )
94
+ finish_args = (
95
+ '"response": "final response to let '
96
+ 'people know you have finished your objectives"'
97
+ )
98
+ finish_string = (
99
+ f"{len(items) + 1}. {FINISH_NAME}: "
100
+ f"{finish_description}, args: {finish_args}"
101
+ )
102
+ return "\n".join(command_strings + [finish_string])
103
+ else:
104
+ return "\n".join(f"{i+1}. {item}" for i, item in enumerate(items))
105
+
106
+ def generate_prompt_string(self) -> str:
107
+ """Generate a prompt string.
108
+
109
+ Returns:
110
+ str: The generated prompt string.
111
+ """
112
+ formatted_response_format = json.dumps(self.response_format, indent=4)
113
+ prompt_string = (
114
+ f"Constraints:\n{self._generate_numbered_list(self.constraints)}\n\n"
115
+ f"Commands:\n"
116
+ f"{self._generate_numbered_list(self.commands, item_type='command')}\n\n"
117
+ f"Resources:\n{self._generate_numbered_list(self.resources)}\n\n"
118
+ f"Performance Evaluation:\n"
119
+ f"{self._generate_numbered_list(self.performance_evaluation)}\n\n"
120
+ f"You should only respond in JSON format as described below "
121
+ f"\nResponse Format: \n{formatted_response_format} "
122
+ f"\nEnsure the response can be parsed by Python json.loads"
123
+ )
124
+
125
+ return prompt_string
126
+
127
+
128
+ def get_prompt(tools: List[BaseTool]) -> str:
129
+ """This function generates a prompt string.
130
+
131
+ It includes various constraints, commands, resources, and performance evaluations.
132
+
133
+ Returns:
134
+ str: The generated prompt string.
135
+ """
136
+
137
+ # Initialize the PromptGenerator object
138
+ prompt_generator = PromptGenerator()
139
+
140
+ # Add constraints to the PromptGenerator object
141
+ prompt_generator.add_constraint(
142
+ "~4000 word limit for short term memory. "
143
+ "Your short term memory is short, "
144
+ "so immediately save important information to files."
145
+ )
146
+ prompt_generator.add_constraint(
147
+ "If you are unsure how you previously did something "
148
+ "or want to recall past events, "
149
+ "thinking about similar events will help you remember."
150
+ )
151
+ prompt_generator.add_constraint("No user assistance")
152
+ prompt_generator.add_constraint(
153
+ 'Exclusively use the commands listed in double quotes e.g. "command name"'
154
+ )
155
+
156
+ # Add commands to the PromptGenerator object
157
+ for tool in tools:
158
+ prompt_generator.add_tool(tool)
159
+
160
+ # Add resources to the PromptGenerator object
161
+ prompt_generator.add_resource(
162
+ "Internet access for searches and information gathering."
163
+ )
164
+ prompt_generator.add_resource("Long Term memory management.")
165
+ prompt_generator.add_resource(
166
+ "GPT-3.5 powered Agents for delegation of simple tasks."
167
+ )
168
+ prompt_generator.add_resource("File output.")
169
+
170
+ # Add performance evaluations to the PromptGenerator object
171
+ prompt_generator.add_performance_evaluation(
172
+ "Continuously review and analyze your actions "
173
+ "to ensure you are performing to the best of your abilities."
174
+ )
175
+ prompt_generator.add_performance_evaluation(
176
+ "Constructively self-criticize your big-picture behavior constantly."
177
+ )
178
+ prompt_generator.add_performance_evaluation(
179
+ "Reflect on past decisions and strategies to refine your approach."
180
+ )
181
+ prompt_generator.add_performance_evaluation(
182
+ "Every command has a cost, so be smart and efficient. "
183
+ "Aim to complete tasks in the least number of steps."
184
+ )
185
+
186
+ # Generate the prompt string
187
+ prompt_string = prompt_generator.generate_prompt_string()
188
+
189
+ return prompt_string
agent/autogptmulti/__init__.py ADDED
File without changes
agent/autogptmulti/agent.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from typing import List, Optional
4
+
5
+ from pydantic import ValidationError
6
+
7
+ from langchain.chains.llm import LLMChain
8
+ from langchain.chat_models.base import BaseChatModel
9
+ from .output_parser import (
10
+ AutoGPTOutputParser,
11
+ BaseAutoGPTOutputParser,
12
+ )
13
+ from .prompt import AutoGPTPrompt
14
+ from .prompt_generator import (
15
+ FINISH_NAME,
16
+ )
17
+ from langchain.schema import (
18
+ AIMessage,
19
+ BaseMessage,
20
+ Document,
21
+ HumanMessage,
22
+ SystemMessage,
23
+ )
24
+ from langchain.tools.base import BaseTool
25
+ from langchain.tools.human.tool import HumanInputRun
26
+ from langchain.vectorstores.base import VectorStoreRetriever
27
+ import json
28
+
29
+
30
+ class AutoGPT:
31
+ """Agent class for interacting with Auto-GPT."""
32
+
33
+ def __init__(
34
+ self,
35
+ ai_name: str,
36
+ memory: VectorStoreRetriever,
37
+ chain: LLMChain,
38
+ output_parser: BaseAutoGPTOutputParser,
39
+ tools: List[BaseTool],
40
+ feedback_tool: Optional[HumanInputRun] = None,
41
+ ):
42
+ self.ai_name = ai_name
43
+ self.memory = memory
44
+ self.full_message_history: List[BaseMessage] = []
45
+ self.next_action_count = 0
46
+ self.chain = chain
47
+ self.output_parser = output_parser
48
+ self.tools = tools
49
+ self.feedback_tool = feedback_tool
50
+
51
+ @classmethod
52
+ def from_llm_and_tools(
53
+ cls,
54
+ ai_name: str,
55
+ ai_role: str,
56
+ memory: VectorStoreRetriever,
57
+ tools: List[BaseTool],
58
+ llm: BaseChatModel,
59
+ human_in_the_loop: bool = False,
60
+ output_parser: Optional[BaseAutoGPTOutputParser] = None,
61
+ ) -> AutoGPT:
62
+ prompt = AutoGPTPrompt(
63
+ ai_name=ai_name,
64
+ ai_role=ai_role,
65
+ tools=tools,
66
+ input_variables=["memory", "messages", "goals", "user_input"],
67
+ token_counter=llm.get_num_tokens,
68
+ )
69
+ human_feedback_tool = HumanInputRun() if human_in_the_loop else None
70
+ chain = LLMChain(llm=llm, prompt=prompt)
71
+ return cls(
72
+ ai_name,
73
+ memory,
74
+ chain,
75
+ output_parser or AutoGPTOutputParser(),
76
+ tools,
77
+ feedback_tool=human_feedback_tool,
78
+ )
79
+
80
+ def __call__(self, goals: List[str]) -> str:
81
+ user_input = (
82
+ "Determine which next command to use, "
83
+ "and respond using the format specified above:"
84
+ )
85
+ # Interaction Loop
86
+ loop_count = 0
87
+ history_rec = []
88
+ while True:
89
+ # Discontinue if continuous limit is reached
90
+ loop_count += 1
91
+ # Send message to AI, get response
92
+ assistant_reply = self.chain.run(
93
+ goals=goals,
94
+ messages=self.full_message_history,
95
+ memory=self.memory,
96
+ user_input=user_input,
97
+ )
98
+ pos = assistant_reply.find("{")
99
+ if pos > 0:
100
+ assistant_reply = assistant_reply[pos:]
101
+ # Print Assistant thoughts
102
+ print(assistant_reply)
103
+ self.full_message_history.append(HumanMessage(content=user_input))
104
+ self.full_message_history.append(AIMessage(content=assistant_reply))
105
+
106
+ # Get command name and arguments
107
+ action = self.output_parser.parse(assistant_reply)
108
+ tools = {t.name: t for t in self.tools}
109
+
110
+ if action.name == FINISH_NAME:
111
+ return action.args["response"]
112
+ if action.name in tools:
113
+ tool = tools[action.name]
114
+ try:
115
+ # for tools in swarms.tools, the input should be string, while for default langchain toosl, the input is in json format, here we modify the following code
116
+ tmp_json = action.args.copy()
117
+ tmp_json["history context"] = str(history_rec[-5:])[-500:]
118
+ tmp_json["user message"] = goals[0]
119
+ json_args = str(tmp_json).replace("'", '"')
120
+ observation = tool.run(json_args)
121
+ except ValidationError as e:
122
+ observation = f"Error in args: {str(e)}"
123
+ result = f"Command {tool.name} returned: {observation}"
124
+ if (
125
+ result.find("using the given APIs") == -1
126
+ and result.lower().find("no answer") == -1
127
+ ):
128
+ history_rec.append(f"Tool {action.name} returned: {observation}")
129
+ elif action.name == "ERROR":
130
+ result = f"Error: {action.args}. "
131
+ else:
132
+ result = (
133
+ f"Unknown command '{action.name}'. "
134
+ f"Please refer to the 'COMMANDS' list for available "
135
+ f"commands and only respond in the specified JSON format."
136
+ )
137
+
138
+ self.full_message_history.append(SystemMessage(content=result))
agent/autogptmulti/output_parser.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import re
3
+ from abc import abstractmethod
4
+ from typing import Dict, NamedTuple
5
+
6
+ from langchain.schema import BaseOutputParser
7
+
8
+
9
+ class AutoGPTAction(NamedTuple):
10
+ """Action returned by AutoGPTOutputParser."""
11
+
12
+ name: str
13
+ args: Dict
14
+
15
+
16
+ class BaseAutoGPTOutputParser(BaseOutputParser):
17
+ """Base Output parser for AutoGPT."""
18
+
19
+ @abstractmethod
20
+ def parse(self, text: str) -> AutoGPTAction:
21
+ """Return AutoGPTAction"""
22
+
23
+
24
+ def preprocess_json_input(input_str: str) -> str:
25
+ """Preprocesses a string to be parsed as json.
26
+
27
+ Replace single backslashes with double backslashes,
28
+ while leaving already escaped ones intact.
29
+
30
+ Args:
31
+ input_str: String to be preprocessed
32
+
33
+ Returns:
34
+ Preprocessed string
35
+ """
36
+ corrected_str = re.sub(
37
+ r'(?<!\\)\\(?!["\\/bfnrt]|u[0-9a-fA-F]{4})', r"\\\\", input_str
38
+ )
39
+ return corrected_str
40
+
41
+
42
+ class AutoGPTOutputParser(BaseAutoGPTOutputParser):
43
+ """Output parser for AutoGPT."""
44
+
45
+ def parse(self, text: str) -> AutoGPTAction:
46
+ try:
47
+ parsed = json.loads(text, strict=False)
48
+ except json.JSONDecodeError:
49
+ preprocessed_text = preprocess_json_input(text)
50
+ try:
51
+ parsed = json.loads(preprocessed_text, strict=False)
52
+ except Exception:
53
+ return AutoGPTAction(
54
+ name="ERROR",
55
+ args={"error": f"Could not parse invalid json: {text}"},
56
+ )
57
+ try:
58
+ return AutoGPTAction(
59
+ name=parsed["command"]["name"],
60
+ args=parsed["command"]["args"],
61
+ )
62
+ except (KeyError, TypeError):
63
+ # If the command is null or incomplete, return an erroneous tool
64
+ return AutoGPTAction(
65
+ name="ERROR", args={"error": f"Incomplete command args: {parsed}"}
66
+ )
agent/autogptmulti/prompt.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ from typing import Any, Callable, List
3
+
4
+ from pydantic import BaseModel
5
+
6
+ from .prompt_generator import get_prompt
7
+ from langchain.prompts.chat import (
8
+ BaseChatPromptTemplate,
9
+ )
10
+ from langchain.schema import BaseMessage, HumanMessage, SystemMessage
11
+ from langchain.tools.base import BaseTool
12
+ from langchain.vectorstores.base import VectorStoreRetriever
13
+
14
+
15
+ class AutoGPTPrompt(BaseChatPromptTemplate, BaseModel):
16
+ ai_name: str
17
+ ai_role: str
18
+ tools: List[BaseTool]
19
+ token_counter: Callable[[str], int]
20
+ send_token_limit: int = 4196
21
+
22
+ def construct_full_prompt(self, goals: List[str]) -> str:
23
+ prompt_start = """Your decisions must always be made independently
24
+ without seeking user assistance. Play to your strengths
25
+ as an LLM and pursue simple strategies with no legal complications.
26
+ Once you have completed your goal or have found that it can not be finished with current commands,
27
+ make sure to use the "finish" command immediately."""
28
+
29
+ # Construct full prompt
30
+ full_prompt = (
31
+ f"You are {self.ai_name}, {self.ai_role}\n{prompt_start}\n\nGOALS:\n\n"
32
+ )
33
+ if isinstance(goals, list):
34
+ for i, goal in enumerate(goals):
35
+ full_prompt += f"{i+1}. {goal}\n"
36
+ else:
37
+ full_prompt += f"{goals}\n"
38
+ full_prompt += f"\n\n{get_prompt(self.tools)}"
39
+ return full_prompt
40
+
41
+ def format_messages(self, **kwargs: Any) -> List[BaseMessage]:
42
+ base_prompt = SystemMessage(content=self.construct_full_prompt(kwargs["goals"]))
43
+ time_prompt = SystemMessage(
44
+ content=f"The current time and date is {time.strftime('%c')}"
45
+ )
46
+ used_tokens = self.token_counter(base_prompt.content) + self.token_counter(
47
+ time_prompt.content
48
+ )
49
+ memory: VectorStoreRetriever = kwargs["memory"]
50
+ previous_messages = kwargs["messages"]
51
+
52
+ content_format = (
53
+ f"This reminds you of these events "
54
+ f"you have already used, and NEVER conduct repeated or unrelated commands:\n"
55
+ )
56
+ memory_message = SystemMessage(content=content_format)
57
+ used_tokens += len(memory_message.content)
58
+ historical_messages: List[BaseMessage] = []
59
+ for message in previous_messages[-10:][::-1]:
60
+ message_tokens = self.token_counter(message.content)
61
+ if used_tokens + message_tokens > self.send_token_limit - 1000:
62
+ break
63
+ historical_messages = [message] + historical_messages
64
+ input_message = HumanMessage(content=kwargs["user_input"])
65
+ messages: List[BaseMessage] = [base_prompt, time_prompt, memory_message]
66
+ messages += historical_messages
67
+ messages.append(input_message)
68
+ return messages
agent/autogptmulti/prompt_generator.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ from typing import List
3
+
4
+ from langchain.tools.base import BaseTool
5
+
6
+ FINISH_NAME = "finish"
7
+
8
+
9
+ class PromptGenerator:
10
+ """A class for generating custom prompt strings.
11
+
12
+ Does this based on constraints, commands, resources, and performance evaluations.
13
+ """
14
+
15
+ def __init__(self) -> None:
16
+ """Initialize the PromptGenerator object.
17
+
18
+ Starts with empty lists of constraints, commands, resources,
19
+ and performance evaluations.
20
+ """
21
+ self.constraints: List[str] = []
22
+ self.commands: List[BaseTool] = []
23
+ self.resources: List[str] = []
24
+ self.performance_evaluation: List[str] = []
25
+ self.response_format = {
26
+ "thoughts": {
27
+ "text": "thought",
28
+ "reasoning": "reasoning",
29
+ },
30
+ "command": {
31
+ "name": "command name",
32
+ "args": {
33
+ "goal": "the detailed description and necessary information of the subtask that you hope current command can achieve"
34
+ },
35
+ },
36
+ }
37
+
38
+ def add_constraint(self, constraint: str) -> None:
39
+ """
40
+ Add a constraint to the constraints list.
41
+
42
+ Args:
43
+ constraint (str): The constraint to be added.
44
+ """
45
+ self.constraints.append(constraint)
46
+
47
+ def add_tool(self, tool: BaseTool) -> None:
48
+ self.commands.append(tool)
49
+
50
+ def _generate_command_string(self, tool: BaseTool) -> str:
51
+ output = f"{tool.name}: {tool.description}"
52
+ # json_args = json.dumps(tool.args) if "tool_input" not in tool.args else tool.args[
53
+ # "tool_input"
54
+ # ]
55
+ # output += f", args json schema: {json_args}"
56
+ return output
57
+
58
+ def add_resource(self, resource: str) -> None:
59
+ """
60
+ Add a resource to the resources list.
61
+
62
+ Args:
63
+ resource (str): The resource to be added.
64
+ """
65
+ self.resources.append(resource)
66
+
67
+ def add_performance_evaluation(self, evaluation: str) -> None:
68
+ """
69
+ Add a performance evaluation item to the performance_evaluation list.
70
+
71
+ Args:
72
+ evaluation (str): The evaluation item to be added.
73
+ """
74
+ self.performance_evaluation.append(evaluation)
75
+
76
+ def _generate_numbered_list(self, items: list, item_type: str = "list") -> str:
77
+ """
78
+ Generate a numbered list from given items based on the item_type.
79
+
80
+ Args:
81
+ items (list): A list of items to be numbered.
82
+ item_type (str, optional): The type of items in the list.
83
+ Defaults to 'list'.
84
+
85
+ Returns:
86
+ str: The formatted numbered list.
87
+ """
88
+ if item_type == "command":
89
+ command_strings = [
90
+ f"{i + 1}. {self._generate_command_string(item)}"
91
+ for i, item in enumerate(items)
92
+ ]
93
+ finish_description = (
94
+ "use this to signal that you have finished all your objectives"
95
+ )
96
+ finish_args = (
97
+ '"response": "final response to let '
98
+ 'people know you have finished your objectives"'
99
+ )
100
+ finish_string = (
101
+ f"{len(items) + 1}. {FINISH_NAME}: "
102
+ f"{finish_description}, args: {finish_args}"
103
+ )
104
+ return "\n".join(command_strings + [finish_string])
105
+ else:
106
+ return "\n".join(f"{i+1}. {item}" for i, item in enumerate(items))
107
+
108
+ def generate_prompt_string(self) -> str:
109
+ """Generate a prompt string.
110
+
111
+ Returns:
112
+ str: The generated prompt string.
113
+ """
114
+ formatted_response_format = json.dumps(self.response_format, indent=4)
115
+ prompt_string = (
116
+ # f"Constraints:\n{self._generate_numbered_list(self.constraints)}\n\n"
117
+ f"Commands:\n"
118
+ f"{self._generate_numbered_list(self.commands, item_type='command')}\n\n"
119
+ # f"Resources:\n{self._generate_numbered_list(self.resources)}\n\n"
120
+ f"Performance Evaluation:\n"
121
+ f"{self._generate_numbered_list(self.performance_evaluation)}\n\n"
122
+ f"You should only respond in JSON format as described below "
123
+ f"\nResponse Format: \n{formatted_response_format} "
124
+ f"\nEnsure the response can be parsed by Python json.loads"
125
+ )
126
+
127
+ return prompt_string
128
+
129
+
130
+ def get_prompt(tools: List[BaseTool]) -> str:
131
+ """This function generates a prompt string.
132
+
133
+ It includes various constraints, commands, resources, and performance evaluations.
134
+
135
+ Returns:
136
+ str: The generated prompt string.
137
+ """
138
+
139
+ # Initialize the PromptGenerator object
140
+ prompt_generator = PromptGenerator()
141
+
142
+ # Add constraints to the PromptGenerator object
143
+ prompt_generator.add_constraint(
144
+ "~4000 word limit for short term memory. "
145
+ "Your short term memory is short, "
146
+ "so immediately save important information to files."
147
+ )
148
+ prompt_generator.add_constraint(
149
+ "If you are unsure how you previously did something "
150
+ "or want to recall past events, "
151
+ "thinking about similar events will help you remember."
152
+ )
153
+ prompt_generator.add_constraint("No user assistance")
154
+ prompt_generator.add_constraint(
155
+ 'Exclusively use the commands listed in double quotes e.g. "command name"'
156
+ )
157
+
158
+ # Add commands to the PromptGenerator object
159
+ for tool in tools:
160
+ prompt_generator.add_tool(tool)
161
+
162
+ # Add resources to the PromptGenerator object
163
+ prompt_generator.add_resource(
164
+ "Internet access for searches and information gathering."
165
+ )
166
+ prompt_generator.add_resource("Long Term memory management.")
167
+ prompt_generator.add_resource(
168
+ "GPT-3.5 powered Agents for delegation of simple tasks."
169
+ )
170
+ prompt_generator.add_resource("File output.")
171
+
172
+ # Add performance evaluations to the PromptGenerator object
173
+ prompt_generator.add_performance_evaluation(
174
+ "Continuously review and analyze your actions "
175
+ "to ensure you are performing to the best of your abilities."
176
+ )
177
+ prompt_generator.add_performance_evaluation(
178
+ "Constructively self-criticize your big-picture behavior constantly."
179
+ )
180
+ prompt_generator.add_performance_evaluation(
181
+ "Reflect on past decisions and strategies to refine your approach."
182
+ )
183
+ prompt_generator.add_performance_evaluation(
184
+ "Every command has a cost, so be smart and efficient. "
185
+ "Aim to complete tasks in the least number of steps."
186
+ )
187
+
188
+ # Generate the prompt string
189
+ prompt_string = prompt_generator.generate_prompt_string()
190
+
191
+ return prompt_string
agent/executor.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import types
3
+ from typing import Any, Dict, List, Tuple, Union
4
+ from langchain.agents import AgentExecutor
5
+ from langchain.input import get_color_mapping
6
+ from langchain.schema import AgentAction, AgentFinish
7
+ from .translator import Translator
8
+
9
+
10
+ class AgentExecutorWithTranslation(AgentExecutor):
11
+ translator: Translator = Translator()
12
+
13
+ def prep_outputs(
14
+ self,
15
+ inputs: Dict[str, str],
16
+ outputs: Dict[str, str],
17
+ return_only_outputs: bool = False,
18
+ ) -> Dict[str, str]:
19
+ try:
20
+ outputs = super().prep_outputs(inputs, outputs, return_only_outputs)
21
+ except ValueError as e:
22
+ return outputs
23
+ else:
24
+ if "input" in outputs:
25
+ outputs = self.translator(outputs)
26
+ return outputs
27
+
28
+
29
+ class Executor(AgentExecutorWithTranslation):
30
+ def _call(self, inputs: Dict[str, str]) -> Dict[str, Any]:
31
+ """Run text through and get agent response."""
32
+ # Construct a mapping of tool name to tool for easy lookup
33
+ name_to_tool_map = {tool.name: tool for tool in self.tools}
34
+ # We construct a mapping from each tool to a color, used for logging.
35
+ color_mapping = get_color_mapping(
36
+ [tool.name for tool in self.tools], excluded_colors=["green"]
37
+ )
38
+ intermediate_steps: List[Tuple[AgentAction, str]] = []
39
+ # Let's start tracking the iterations the agent has gone through
40
+ iterations = 0
41
+ time_elapsed = 0.0
42
+ start_time = time.time()
43
+ # We now enter the agent loop (until it returns something).
44
+ while self._should_continue(iterations, time_elapsed):
45
+ next_step_output = self._take_next_step(
46
+ name_to_tool_map, color_mapping, inputs, intermediate_steps
47
+ )
48
+ if isinstance(next_step_output, AgentFinish):
49
+ yield self._return(next_step_output, intermediate_steps)
50
+ return
51
+
52
+ for i, output in enumerate(next_step_output):
53
+ agent_action = output[0]
54
+ tool_logo = None
55
+ for tool in self.tools:
56
+ if tool.name == agent_action.tool:
57
+ tool_logo = tool.tool_logo_md
58
+ if isinstance(output[1], types.GeneratorType):
59
+ logo = f"{tool_logo}" if tool_logo is not None else ""
60
+ yield (
61
+ AgentAction("", agent_action.tool_input, agent_action.log),
62
+ f"Further use other tool {logo} to answer the question.",
63
+ )
64
+ for out in output[1]:
65
+ yield out
66
+ next_step_output[i] = (agent_action, out)
67
+ else:
68
+ for tool in self.tools:
69
+ if tool.name == agent_action.tool:
70
+ yield (
71
+ AgentAction(
72
+ tool_logo, agent_action.tool_input, agent_action.log
73
+ ),
74
+ output[1],
75
+ )
76
+
77
+ intermediate_steps.extend(next_step_output)
78
+ if len(next_step_output) == 1:
79
+ next_step_action = next_step_output[0]
80
+ # See if tool should return directly
81
+ tool_return = self._get_tool_return(next_step_action)
82
+ if tool_return is not None:
83
+ yield self._return(tool_return, intermediate_steps)
84
+ return
85
+ iterations += 1
86
+ time_elapsed = time.time() - start_time
87
+ output = self.agent.return_stopped_response(
88
+ self.early_stopping_method, intermediate_steps, **inputs
89
+ )
90
+ yield self._return(output, intermediate_steps)
91
+ return
92
+
93
+ def __call__(
94
+ self, inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False
95
+ ) -> Dict[str, Any]:
96
+ """Run the logic of this chain and add to output if desired.
97
+
98
+ Args:
99
+ inputs: Dictionary of inputs, or single input if chain expects
100
+ only one param.
101
+ return_only_outputs: boolean for whether to return only outputs in the
102
+ response. If True, only new keys generated by this chain will be
103
+ returned. If False, both input keys and new keys generated by this
104
+ chain will be returned. Defaults to False.
105
+
106
+ """
107
+ inputs = self.prep_inputs(inputs)
108
+ self.callback_manager.on_chain_start(
109
+ {"name": self.__class__.__name__},
110
+ inputs,
111
+ verbose=self.verbose,
112
+ )
113
+ try:
114
+ for output in self._call(inputs):
115
+ if type(output) is dict:
116
+ output = self.prep_outputs(inputs, output, return_only_outputs)
117
+ yield output
118
+ except (KeyboardInterrupt, Exception) as e:
119
+ self.callback_manager.on_chain_error(e, verbose=self.verbose)
120
+ raise e
121
+ self.callback_manager.on_chain_end(output, verbose=self.verbose)
122
+ # return self.prep_outputs(inputs, output, return_only_outputs)
123
+ return output
agent/singletool.py ADDED
@@ -0,0 +1,270 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain.llms import OpenAI
2
+ from langchain import OpenAI, LLMChain, PromptTemplate, SerpAPIWrapper
3
+ from langchain.agents import ZeroShotAgent, AgentExecutor, initialize_agent, Tool
4
+ import importlib
5
+ import json
6
+ import os
7
+ import requests
8
+ import yaml
9
+ from swarms.tools.agent.apitool import RequestTool
10
+ from swarms.tools.agent.executor import Executor, AgentExecutorWithTranslation
11
+ from swarms.tools import get_logger
12
+ from swarms.tools.agent.BabyagiTools import BabyAGI
13
+
14
+ # from swarms.tools
15
+ # .models.customllm import CustomLLM
16
+
17
+
18
+ logger = get_logger(__name__)
19
+
20
+
21
+ def import_all_apis(tool_json):
22
+ """import all apis that is a tool"""
23
+ doc_url = tool_json["api"]["url"]
24
+ response = requests.get(doc_url)
25
+
26
+ logger.info("Doc string URL: {}".format(doc_url))
27
+ if doc_url.endswith("yaml") or doc_url.endswith("yml"):
28
+ plugin = yaml.safe_load(response.text)
29
+ else:
30
+ plugin = json.loads(response.text)
31
+
32
+ server_url = plugin["servers"][0]["url"]
33
+ if server_url.startswith("/"):
34
+ server_url = "http://127.0.0.1:8079" + server_url
35
+ logger.info("server_url {}".format(server_url))
36
+ all_apis = []
37
+ for key in plugin["paths"]:
38
+ value = plugin["paths"][key]
39
+ for method in value:
40
+ api = RequestTool(
41
+ root_url=server_url, func_url=key, method=method, request_info=value
42
+ )
43
+ all_apis.append(api)
44
+ return all_apis
45
+
46
+
47
+ def load_single_tools(tool_name, tool_url):
48
+ # tool_name, tool_url = "datasette", "https://datasette.io/"
49
+ # tool_name, tool_url = "klarna", "https://www.klarna.com/"
50
+ # tool_name, tool_url = 'chemical-prop', "http://127.0.0.1:8079/tools/chemical-prop/"
51
+ # tool_name, tool_url = 'douban-film', "http://127.0.0.1:8079/tools/douban-film/"
52
+ # tool_name, tool_url = 'weather', "http://127.0.0.1:8079/tools/weather/"
53
+ # tool_name, tool_url = 'wikipedia', "http://127.0.0.1:8079/tools/wikipedia/"
54
+ # tool_name, tool_url = 'wolframalpha', "http://127.0.0.1:8079/tools/wolframalpha/"
55
+ # tool_name, tool_url = 'klarna', "https://www.klarna.com/"
56
+
57
+ get_url = tool_url + ".well-known/ai-plugin.json"
58
+ response = requests.get(get_url)
59
+
60
+ if response.status_code == 200:
61
+ tool_config_json = response.json()
62
+ else:
63
+ raise RuntimeError("Your URL of the tool is invalid.")
64
+
65
+ return tool_name, tool_config_json
66
+
67
+
68
+ class STQuestionAnswerer:
69
+ def __init__(self, openai_api_key="", stream_output=False, llm="ChatGPT"):
70
+ if len(openai_api_key) < 3: # not valid key (TODO: more rigorous checking)
71
+ openai_api_key = os.environ.get("OPENAI_API_KEY")
72
+
73
+ self.openai_api_key = openai_api_key
74
+ self.llm_model = llm
75
+
76
+ self.set_openai_api_key(openai_api_key)
77
+ self.stream_output = stream_output
78
+
79
+ def set_openai_api_key(self, key):
80
+ logger.info("Using {}".format(self.llm_model))
81
+
82
+ if self.llm_model == "GPT-3.5":
83
+ self.llm = OpenAI(temperature=0.0, openai_api_key=key) # use text-darvinci
84
+ elif self.llm_model == "ChatGPT":
85
+ self.llm = OpenAI(
86
+ model_name="gpt-3.5-turbo", temperature=0.0, openai_api_key=key
87
+ ) # use chatgpt
88
+ else:
89
+ raise RuntimeError("Your model is not available.")
90
+
91
+ def load_tools(
92
+ self,
93
+ name,
94
+ meta_info,
95
+ prompt_type="react-with-tool-description",
96
+ return_intermediate_steps=True,
97
+ ):
98
+ self.all_tools_map = {}
99
+ self.all_tools_map[name] = import_all_apis(meta_info)
100
+
101
+ logger.info(
102
+ "Tool [{}] has the following apis: {}".format(
103
+ name, self.all_tools_map[name]
104
+ )
105
+ )
106
+
107
+ if prompt_type == "zero-shot-react-description":
108
+ subagent = initialize_agent(
109
+ self.all_tools_map[name],
110
+ self.llm,
111
+ agent="zero-shot-react-description",
112
+ verbose=True,
113
+ return_intermediate_steps=return_intermediate_steps,
114
+ )
115
+ elif prompt_type == "react-with-tool-description":
116
+ # customllm = CustomLLM()
117
+ description_for_model = (
118
+ meta_info["description_for_model"]
119
+ .replace("{", "{{")
120
+ .replace("}", "}}")
121
+ .strip()
122
+ )
123
+
124
+ prefix = f"""Answer the following questions as best you can. General instructions are: {description_for_model}. Specifically, you have access to the following APIs:"""
125
+ # suffix = """Begin! Remember: (1) Follow the format, i.e,\nThought:\nAction:\nAction Input:\nObservation:\nFinal Answer:\n (2) Provide as much as useful information in your Final Answer. (3) YOU MUST INCLUDE all relevant IMAGES in your Final Answer using format ![img](url), and include relevant links. (3) Do not make up anything, and if your Observation has no link, DO NOT hallucihate one. (4) If you have enough information, please use \nThought: I have got enough information\nFinal Answer: \n\nQuestion: {input}\n{agent_scratchpad}"""
126
+ suffix = """Begin! Remember: (1) Follow the format, i.e,\nThought:\nAction:\nAction Input:\nObservation:\nFinal Answer:\n. The action you generate must be exact one of the given API names instead of a sentence or any other redundant text. The action input is one json format dict without any redundant text or bracket descriptions . (2) Provide as much as useful information (such as useful values/file paths in your observation) in your Final Answer. Do not describe the process you achieve the goal, but only provide the detailed answer or response to the task goal. (3) Do not make up anything. DO NOT generate observation content by yourself. (4) Read the observation carefully, and pay attention to the messages even if an error occurs. (5) Once you have enough information, please immediately use \nThought: I have got enough information\nFinal Answer: \n\nTask: {input}\n{agent_scratchpad}"""
127
+
128
+ prompt = ZeroShotAgent.create_prompt(
129
+ self.all_tools_map[name],
130
+ prefix=prefix,
131
+ suffix=suffix,
132
+ input_variables=["input", "agent_scratchpad"],
133
+ )
134
+ llm_chain = LLMChain(llm=self.llm, prompt=prompt)
135
+ # llm_chain = LLMChain(llm=customllm, prompt=prompt)
136
+ logger.info("Full prompt template: {}".format(prompt.template))
137
+ tool_names = [tool.name for tool in self.all_tools_map[name]]
138
+ agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names)
139
+ if self.stream_output:
140
+ agent_executor = Executor.from_agent_and_tools(
141
+ agent=agent,
142
+ tools=self.all_tools_map[name],
143
+ verbose=True,
144
+ return_intermediate_steps=return_intermediate_steps,
145
+ )
146
+ else:
147
+ agent_executor = AgentExecutorWithTranslation.from_agent_and_tools(
148
+ agent=agent,
149
+ tools=self.all_tools_map[name],
150
+ verbose=True,
151
+ return_intermediate_steps=return_intermediate_steps,
152
+ )
153
+ return agent_executor
154
+ elif prompt_type == "babyagi":
155
+ # customllm = CustomLLM()
156
+ tool_str = "; ".join([t.name for t in self.all_tools_map[name]])
157
+ prefix = """You are an AI who performs one task based on the following objective: {objective}. Take into account these previously completed tasks: {context}.\n You have access to the following APIs:"""
158
+ suffix = (
159
+ """YOUR CONSTRAINTS: (1) YOU MUST follow this format:
160
+ \nThought:\nAction:\nAction Input: \n or \nThought:\nFinal Answer:\n (2) Do not make up anything, and if your Observation has no link, DO NOT hallucihate one. (3) The Action: MUST be one of the following: """
161
+ + tool_str
162
+ + """\nQuestion: {task}\n Agent scratchpad (history actions): {agent_scratchpad}."""
163
+ )
164
+
165
+ prompt = ZeroShotAgent.create_prompt(
166
+ self.all_tools_map[name],
167
+ prefix=prefix,
168
+ suffix=suffix,
169
+ input_variables=["objective", "task", "context", "agent_scratchpad"],
170
+ )
171
+
172
+ logger.info("Full prompt template: {}".format(prompt.template))
173
+ # specify the maximum number of iterations you want babyAGI to perform
174
+ max_iterations = 10
175
+ baby_agi = BabyAGI.from_llm(
176
+ llm=self.llm,
177
+ # llm=customllm,
178
+ prompt=prompt,
179
+ verbose=False,
180
+ tools=self.all_tools_map[name],
181
+ stream_output=self.stream_output,
182
+ return_intermediate_steps=return_intermediate_steps,
183
+ max_iterations=max_iterations,
184
+ )
185
+
186
+ return baby_agi
187
+ elif prompt_type == "autogpt":
188
+ from langchain.vectorstores import FAISS
189
+ from langchain.docstore import InMemoryDocstore
190
+ from langchain.embeddings import OpenAIEmbeddings
191
+ from langchain.tools.file_management.write import WriteFileTool
192
+ from langchain.tools.file_management.read import ReadFileTool
193
+
194
+ # Define your embedding model
195
+ embeddings_model = OpenAIEmbeddings()
196
+ # Initialize the vectorstore as empty
197
+ import faiss
198
+
199
+ embedding_size = 1536
200
+ index = faiss.IndexFlatL2(embedding_size)
201
+ vectorstore = FAISS(
202
+ embeddings_model.embed_query, index, InMemoryDocstore({}), {}
203
+ )
204
+
205
+ from .autogpt.agent import AutoGPT
206
+ from langchain.chat_models import ChatOpenAI
207
+ from langchain.schema import (
208
+ AIMessage,
209
+ ChatGeneration,
210
+ ChatMessage,
211
+ ChatResult,
212
+ HumanMessage,
213
+ SystemMessage,
214
+ )
215
+
216
+ # customllm = CustomLLM()
217
+ # class MyChatOpenAI(ChatOpenAI):
218
+ # def _create_chat_result(self, response):
219
+ # generations = []
220
+ # for res in response["choices"]:
221
+ # message = self._convert_dict_to_message(res["message"])
222
+ # gen = ChatGeneration(message=message)
223
+ # generations.append(gen)
224
+ # llm_output = {"token_usage": response["usage"], "model_name": self.model_name}
225
+ # return ChatResult(generations=generations, llm_output=llm_output)
226
+
227
+ # def _generate(self, messages, stop):
228
+ # message_dicts, params = self._create_message_dicts(messages, stop)
229
+ # response = customllm(message_dicts)
230
+ # response = json.loads(response)
231
+ # # response = self.completion_with_retry(messages=message_dicts, **params)
232
+ # return self._create_chat_result(response)
233
+
234
+ # def _convert_dict_to_message(self, _dict: dict):
235
+ # role = _dict["role"]
236
+ # if role == "user":
237
+ # return HumanMessage(content=_dict["content"])
238
+ # elif role == "assistant":
239
+ # return AIMessage(content=_dict["content"])
240
+ # elif role == "system":
241
+ # return SystemMessage(content=_dict["content"])
242
+ # else:
243
+ # return ChatMessage(content=_dict["content"], role=role)
244
+
245
+ # should integrate WriteFile and ReadFile into tools, will fix later.
246
+ # for tool in [WriteFileTool(), ReadFileTool()]:
247
+ # self.all_tools_map[name].append(tool)
248
+
249
+ agent = AutoGPT.from_llm_and_tools(
250
+ ai_name="Tom",
251
+ ai_role="Assistant",
252
+ tools=self.all_tools_map[name],
253
+ llm=ChatOpenAI(temperature=0),
254
+ # llm=MyChatOpenAI(temperature=0),
255
+ memory=vectorstore.as_retriever(),
256
+ )
257
+ # Set verbose to be true
258
+ agent.chain.verbose = True
259
+ return agent
260
+
261
+
262
+ if __name__ == "__main__":
263
+ tools_name, tools_config = load_single_tools()
264
+ print(tools_name, tools_config)
265
+
266
+ qa = STQuestionAnswerer()
267
+
268
+ agent = qa.load_tools(tools_name, tools_config)
269
+
270
+ agent("Calc integral of sin(x)+2x^2+3x+1 from 0 to 1")
agent/tools_controller.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain.llms import OpenAI
2
+ from langchain import OpenAI, LLMChain
3
+ from langchain.agents import ZeroShotAgent, AgentExecutor
4
+ import importlib
5
+ import json
6
+ import os
7
+ import requests
8
+ import yaml
9
+ from swarms.tools.agent.apitool import Tool
10
+ from swarms.tools.agent.singletool import STQuestionAnswerer
11
+ from swarms.tools.agent.executor import Executor, AgentExecutorWithTranslation
12
+ from swarms.tools import get_logger
13
+ from swarms.tools.models.customllm import CustomLLM
14
+
15
+ logger = get_logger(__name__)
16
+
17
+
18
+ def load_valid_tools(tools_mappings):
19
+ tools_to_config = {}
20
+ for key in tools_mappings:
21
+ get_url = tools_mappings[key] + ".well-known/ai-plugin.json"
22
+
23
+ response = requests.get(get_url)
24
+
25
+ if response.status_code == 200:
26
+ tools_to_config[key] = response.json()
27
+ else:
28
+ logger.warning(
29
+ "Load tool {} error, status code {}".format(key, response.status_code)
30
+ )
31
+
32
+ return tools_to_config
33
+
34
+
35
+ class MTQuestionAnswerer:
36
+ """Use multiple tools to answer a question. Basically pass a natural question to"""
37
+
38
+ def __init__(self, openai_api_key, all_tools, stream_output=False, llm="ChatGPT"):
39
+ if len(openai_api_key) < 3: # not valid key (TODO: more rigorous checking)
40
+ openai_api_key = os.environ.get("OPENAI_API_KEY")
41
+ self.openai_api_key = openai_api_key
42
+ self.stream_output = stream_output
43
+ self.llm_model = llm
44
+ self.set_openai_api_key(openai_api_key)
45
+ self.load_tools(all_tools)
46
+
47
+ def set_openai_api_key(self, key):
48
+ logger.info("Using {}".format(self.llm_model))
49
+ if self.llm_model == "GPT-3.5":
50
+ self.llm = OpenAI(temperature=0.0, openai_api_key=key) # use text-darvinci
51
+ elif self.llm_model == "ChatGPT":
52
+ self.llm = OpenAI(
53
+ model_name="gpt-3.5-turbo", temperature=0.0, openai_api_key=key
54
+ ) # use chatgpt
55
+ else:
56
+ raise RuntimeError("Your model is not available.")
57
+
58
+ def load_tools(self, all_tools):
59
+ logger.info("All tools: {}".format(all_tools))
60
+ self.all_tools_map = {}
61
+ self.tools_pool = []
62
+ for name in all_tools:
63
+ meta_info = all_tools[name]
64
+
65
+ question_answer = STQuestionAnswerer(
66
+ self.openai_api_key,
67
+ stream_output=self.stream_output,
68
+ llm=self.llm_model,
69
+ )
70
+ subagent = question_answer.load_tools(
71
+ name,
72
+ meta_info,
73
+ prompt_type="react-with-tool-description",
74
+ return_intermediate_steps=False,
75
+ )
76
+ tool_logo_md = f'<img src="{meta_info["logo_url"]}" width="32" height="32" style="display:inline-block">'
77
+ for tool in subagent.tools:
78
+ tool.tool_logo_md = tool_logo_md
79
+ tool = Tool(
80
+ name=meta_info["name_for_model"],
81
+ description=meta_info["description_for_model"]
82
+ .replace("{", "{{")
83
+ .replace("}", "}}"),
84
+ func=subagent,
85
+ )
86
+ tool.tool_logo_md = tool_logo_md
87
+ self.tools_pool.append(tool)
88
+
89
+ def build_runner(
90
+ self,
91
+ ):
92
+ from langchain.vectorstores import FAISS
93
+ from langchain.docstore import InMemoryDocstore
94
+ from langchain.embeddings import OpenAIEmbeddings
95
+
96
+ embeddings_model = OpenAIEmbeddings()
97
+ import faiss
98
+
99
+ embedding_size = 1536
100
+ index = faiss.IndexFlatL2(embedding_size)
101
+ vectorstore = FAISS(
102
+ embeddings_model.embed_query, index, InMemoryDocstore({}), {}
103
+ )
104
+
105
+ from .autogptmulti.agent import AutoGPT
106
+ from langchain.chat_models import ChatOpenAI
107
+
108
+ agent_executor = AutoGPT.from_llm_and_tools(
109
+ ai_name="Tom",
110
+ ai_role="Assistant",
111
+ tools=self.tools_pool,
112
+ llm=ChatOpenAI(temperature=0),
113
+ memory=vectorstore.as_retriever(),
114
+ )
115
+ '''
116
+ # 可以修改prompt来让模型表现更好,也可以修改tool的doc
117
+ prefix = """Answer the following questions as best you can. In this level, you are calling the tools in natural language format, since the tools are actually an intelligent agent like you, but they expert only in one area. Several things to remember. (1) Remember to follow the format of passing natural language as the Action Input. (2) DO NOT use your imagination, only use concrete information given by the tools. (3) If the observation contains images or urls which has useful information, YOU MUST INCLUDE ALL USEFUL IMAGES and links in your Answer and Final Answers using format ![img](url). BUT DO NOT provide any imaginary links. (4) The information in your Final Answer should include ALL the informations returned by the tools. (5) If a user's query is a language other than English, please translate it to English without tools, and translate it back to the source language in Final Answer. You have access to the following tools (Only use these tools we provide you):"""
118
+ suffix = """\nBegin! Remember to . \nQuestion: {input}\n{agent_scratchpad}"""
119
+
120
+
121
+ prompt = ZeroShotAgent.create_prompt(
122
+ self.tools_pool,
123
+ prefix=prefix,
124
+ suffix=suffix,
125
+ input_variables=["input", "agent_scratchpad"]
126
+ )
127
+ llm_chain = LLMChain(llm=self.llm, prompt=prompt)
128
+ logger.info("Full Prompt Template:\n {}".format(prompt.template))
129
+ tool_names = [tool.name for tool in self.tools_pool]
130
+ agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names)
131
+ if self.stream_output:
132
+ agent_executor = Executor.from_agent_and_tools(agent=agent, tools=self.tools_pool, verbose=True, return_intermediate_steps=True)
133
+ else:
134
+ agent_executor = AgentExecutorWithTranslation.from_agent_and_tools(agent=agent, tools=self.tools_pool, verbose=True, return_intermediate_steps=True)
135
+ '''
136
+ return agent_executor
137
+
138
+
139
+ if __name__ == "__main__":
140
+ tools_mappings = {
141
+ "klarna": "https://www.klarna.com/",
142
+ "chemical-prop": "http://127.0.0.1:8079/tools/chemical-prop/",
143
+ "wolframalpha": "http://127.0.0.1:8079/tools/wolframalpha/",
144
+ "weather": "http://127.0.0.1:8079/tools/weather/",
145
+ }
146
+
147
+ tools = load_valid_tools(tools_mappings)
148
+
149
+ qa = MTQuestionAnswerer(openai_api_key="", all_tools=tools)
150
+
151
+ agent = qa.build_runner()
152
+
153
+ agent(
154
+ "How many carbon elements are there in CH3COOH? How many people are there in China?"
155
+ )
agent/translator.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain.llms import OpenAI
2
+ from langchain.prompts import PromptTemplate
3
+ from langchain.chains import LLMChain
4
+
5
+ import py3langid as langid
6
+ from iso639 import languages
7
+
8
+ from typing import Dict
9
+ from copy import deepcopy
10
+ import os
11
+
12
+
13
+ def detect_lang(text: str):
14
+ lang_code = langid.classify(text)[0]
15
+ lang_name = languages.get(part1=lang_code[:2]).name
16
+ return lang_name
17
+
18
+
19
+ class Translator:
20
+ def __init__(self, openai_api_key: str = None, model_name: str = "gpt-3.5-turbo"):
21
+ self.openai_api_key = openai_api_key
22
+ self.model_name = model_name
23
+ self.init_flag = False
24
+
25
+ def init_model(self):
26
+ llm = self.create_openai_model(self.openai_api_key, self.model_name)
27
+ prompt = self.create_prompt()
28
+ self.chain = LLMChain(llm=llm, prompt=prompt)
29
+ self.init_flag = True
30
+
31
+ def __call__(self, inputs: Dict[str, str]) -> Dict[str, str]:
32
+ if not self.init_flag:
33
+ self.init_model()
34
+
35
+ question = inputs["input"]
36
+ answer = inputs["output"]
37
+
38
+ src_lang = detect_lang(answer)
39
+ tgt_lang = detect_lang(question)
40
+
41
+ if src_lang != tgt_lang:
42
+ translated_answer = self.chain.run(text=answer, language=tgt_lang)
43
+ outputs = deepcopy(inputs)
44
+ outputs["output"] = translated_answer
45
+ return outputs
46
+ else:
47
+ return inputs
48
+
49
+ def create_openai_model(self, openai_api_key: str, model_name: str) -> OpenAI:
50
+ if openai_api_key is None:
51
+ openai_api_key = os.environ.get("OPENAI_API_KEY")
52
+ llm = OpenAI(
53
+ model_name=model_name, temperature=0.0, openai_api_key=openai_api_key
54
+ )
55
+ return llm
56
+
57
+ def create_prompt(self) -> PromptTemplate:
58
+ template = """
59
+ Translate to {language}: {text} =>
60
+ """
61
+ prompt = PromptTemplate(input_variables=["text", "language"], template=template)
62
+ return prompt
63
+
64
+
65
+ if __name__ == "__main__":
66
+ lang = {
67
+ "zh": {
68
+ "question": "帮我介绍下《深海》这部电影",
69
+ "answer": "《深海》是一部中国大陆的动画、奇幻电影,由田晓鹏导演,苏鑫、王亭文、滕奎兴等人主演。剧情简介是在大海的最深处,藏着所有秘密。一位现代少女(参宿)误入梦幻的 深海世界,却因此邂逅了一段独特的生命旅程。![img](https://img3.doubanio.com/view/photo/s_ratio_poster/public/p2635450820.webp)",
70
+ },
71
+ "ja": {
72
+ "question": "映画「深海」について教えてください",
73
+ "answer": "「深海」は、中国本土のアニメーションおよびファンタジー映画で、Tian Xiaopeng が監督し、Su Xin、Wang Tingwen、Teng Kuixing などが出演しています。 あらすじは、海の最深部にはすべての秘密が隠されているというもの。 夢のような深海の世界に迷い込んだ現代少女(さんすけ)は、それをきっかけに独特の人生の旅に出くわす。 ![img](https://img3.doubanio.com/view/photo/s_ratio_poster/public/p2635450820.webp)",
74
+ },
75
+ "ko": {
76
+ "question": "영화 딥씨에 대해 알려주세요",
77
+ "answer": '"Deep Sea"는 Tian Xiaopeng 감독, Su Xin, Wang Tingwen, Teng Kuixing 등이 출연한 중국 본토의 애니메이션 및 판타지 영화입니다. 시놉시스는 바다 가장 깊은 곳에 모든 비밀이 숨겨져 있다는 것입니다. 현대 소녀(산스케)는 꿈 같은 심해 세계로 방황하지만 그것 때문에 독특한 삶의 여정을 만난다. ![img](https://img3.doubanio.com/view/photo/s_ratio_poster/public/p2635450820.webp)',
78
+ },
79
+ "en": {
80
+ "question": "Tell me about the movie '深海'",
81
+ "answer": '"Deep Sea" is an animation and fantasy film in mainland China, directed by Tian Xiaopeng, starring Su Xin, Wang Tingwen, Teng Kuixing and others. The synopsis is that in the deepest part of the sea, all secrets are hidden. A modern girl (Sansuke) strays into the dreamy deep sea world, but encounters a unique journey of life because of it. ![img](https://img3.doubanio.com/view/photo/s_ratio_poster/public/p2635450820.webp)',
82
+ },
83
+ "de": {
84
+ "question": "Erzähl mir von dem Film '深海'",
85
+ "answer": '"Deep Sea" ist ein Animations- und Fantasyfilm in Festlandchina unter der Regie von Tian Xiaopeng mit Su Xin, Wang Tingwen, Teng Kuixing und anderen in den Hauptrollen. Die Zusammenfassung ist, dass im tiefsten Teil des Meeres alle Geheimnisse verborgen sind. Ein modernes Mädchen (Sansuke) verirrt sich in die verträumte Tiefseewelt, trifft dabei aber auf eine einzigartige Lebensreise. ![img](https://img3.doubanio.com/view/photo/s_ratio_poster/public/p2635450820.webp)',
86
+ },
87
+ "fr": {
88
+ "question": "Parlez-moi du film 'Deep Sea'",
89
+ "answer": "\"Deep Sea\" est un film d'animation et fantastique en Chine continentale, réalisé par Tian Xiaopeng, avec Su Xin, Wang Tingwen, Teng Kuixing et d'autres. Le synopsis est que dans la partie la plus profonde de la mer, tous les secrets sont cachés. Une fille moderne (Sansuke) s'égare dans le monde onirique des profondeurs marines, mais rencontre un voyage de vie unique à cause de cela. ![img](https://img3.doubanio.com/view/photo/s_ratio_poster/public/p2635450820.webp)",
90
+ },
91
+ "ru": {
92
+ "question": "Расскажите о фильме 'Глубокое море'",
93
+ "answer": "«Глубокое море» — это анимационный и фэнтезийный фильм в материковом Китае, снятый Тянь Сяопином, в главных ролях Су Синь, Ван Тинвэнь, Тэн Куйсин и другие. Суть в том, что в самой глубокой части моря скрыты все секреты. Современная девушка (Сансукэ) заблудилась в мечтательном глубоководном мире, но из-за этого столкнулась с уникальным жизненным путешествием. ![img](https://img3.doubanio.com/view/photo/s_ratio_poster/public/p2635450820.webp)",
94
+ },
95
+ }
96
+
97
+ translator = Translator()
98
+ for source in lang:
99
+ for target in lang:
100
+ print(source, "=>", target, end=":\t")
101
+ question = lang[target]["question"]
102
+ answer = lang[source]["answer"]
103
+ inputs = {"input": question, "output": answer}
104
+
105
+ result = translator(inputs)
106
+ translated_answer = result["output"]
107
+
108
+ if (
109
+ detect_lang(question)
110
+ == detect_lang(translated_answer)
111
+ == languages.get(part1=target).name
112
+ ):
113
+ print("Y")
114
+ else:
115
+ print("N")
116
+ print("====================")
117
+ print("Question:\t", detect_lang(question), " - ", question)
118
+ print("Answer:\t", detect_lang(answer), " - ", answer)
119
+ print(
120
+ "Translated Anser:\t",
121
+ detect_lang(translated_answer),
122
+ " - ",
123
+ translated_answer,
124
+ )
125
+ print("====================")
agent_tools.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ # ---------- Dependencies ----------
4
+ import os
5
+ import asyncio
6
+ import faiss
7
+ from typing import Any, Optional, List
8
+ from contextlib import contextmanager
9
+
10
+ from pydantic import BaseModel, Field
11
+ from langchain import LLMChain, OpenAI, PromptTemplate
12
+ from langchain.chains.base import Chain
13
+
14
+ from langchain.experimental import BabyAGI
15
+ from langchain.embeddings import OpenAIEmbeddings
16
+ from langchain.vectorstores.base import VectorStore
17
+ from langchain.vectorstores import FAISS
18
+
19
+ from langchain.docstore import InMemoryDocstore
20
+ from langchain.chains.qa_with_sources.loading import load_qa_with_sources_chain
21
+ from langchain.agents import ZeroShotAgent, Tool, AgentExecutor
22
+
23
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
24
+ from langchain.tools import BaseTool, DuckDuckGoSearchRun
25
+ from langchain.tools.file_management.read import ReadFileTool
26
+
27
+ from langchain.tools.file_management.write import WriteFileTool
28
+ from langchain.tools.human.tool import HumanInputRun
29
+ from swarms.tools import Terminal, CodeWriter, CodeEditor, process_csv, WebpageQATool
30
+
31
+ from langchain.experimental.autonomous_agents.autogpt.agent import AutoGPT
32
+ from langchain.chat_models import ChatOpenAI
33
+ from langchain.tools import tool
34
+
35
+ # ---------- Constants ----------
36
+ ROOT_DIR = "./data/"
37
+
38
+ # ---------- Tools ----------
39
+ openai_api_key = os.environ["OPENAI_API_KEY"]
40
+ llm = ChatOpenAI(model_name="gpt-4", temperature=1.0, openai_api_key=openai_api_key)
41
+
42
+ worker_tools = [
43
+ DuckDuckGoSearchRun(),
44
+ WriteFileTool(root_dir=ROOT_DIR),
45
+ ReadFileTool(root_dir=ROOT_DIR),
46
+ process_csv,
47
+
48
+ WebpageQATool(qa_chain=load_qa_with_sources_chain(llm)),
49
+
50
+ # Tool(name='terminal', func=Terminal.execute, description='Operates a terminal'),
51
+ # Tool(name='code_writer', func=CodeWriter(), description='Writes code'),
52
+ # Tool(name='code_editor', func=CodeEditor(), description='Edits code'),#
53
+ ]
54
+
55
+ # ---------- Vector Store ----------
56
+ embeddings_model = OpenAIEmbeddings()
57
+ embedding_size = 1536
58
+ index = faiss.IndexFlatL2(embedding_size)
59
+ vectorstore = FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})
airbnb/__init__.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ from ..registry import register
2
+
3
+
4
+ @register("airbnb")
5
+ def airbnb():
6
+ from .api import build_tool
7
+
8
+ return build_tool
airbnb/api.py ADDED
@@ -0,0 +1,354 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import requests
2
+ import json
3
+ from datetime import date, datetime, timedelta
4
+ import os
5
+ from ..tool import Tool
6
+
7
+ from typing import Optional, Dict, List
8
+
9
+
10
+ def build_tool(config) -> Tool:
11
+ tool = Tool(
12
+ "Short-term rental and housing information",
13
+ "Look up rental and housing information",
14
+ name_for_model="Airbnb",
15
+ description_for_model="Plugin for look up rental and housing information",
16
+ logo_url="https://your-app-url.com/.well-known/logo.png",
17
+ contact_email="[email protected]",
18
+ legal_info_url="[email protected]",
19
+ )
20
+
21
+ BASE_URL = "https://airbnb19.p.rapidapi.com/api/v1"
22
+ KEY = config["subscription_key"]
23
+ HEADERS = {"X-RapidAPI-Key": KEY, "X-RapidAPI-Host": "airbnb19.p.rapidapi.com"}
24
+
25
+ @tool.get("/ssearch_property")
26
+ def search_property(
27
+ _id: str,
28
+ display_name: Optional[str] = None,
29
+ total_records: Optional[str] = "10",
30
+ currency: Optional[str] = "USD",
31
+ offset: Optional[str] = None,
32
+ category: Optional[str] = None,
33
+ adults: Optional[int] = 1,
34
+ children: Optional[int] = None,
35
+ infants: Optional[int] = None,
36
+ pets: Optional[int] = None,
37
+ checkin: Optional[str] = None,
38
+ checkout: Optional[str] = None,
39
+ priceMin: Optional[int] = None,
40
+ priceMax: Optional[int] = None,
41
+ minBedrooms: Optional[int] = None,
42
+ minBeds: Optional[int] = None,
43
+ minBathrooms: Optional[int] = None,
44
+ property_type: Optional[List[str]] = None,
45
+ host_languages: Optional[List[str]] = None,
46
+ amenities: Optional[List[str]] = None,
47
+ type_of_place: Optional[List[str]] = None,
48
+ top_tier_stays: Optional[List[str]] = None,
49
+ self_check_in: Optional[bool] = None,
50
+ instant_book: Optional[bool] = None,
51
+ super_host: Optional[bool] = None,
52
+ languageId: Optional[str] = None,
53
+ ) -> dict:
54
+ """
55
+ This function takes various parameters to search properties on Airbnb.
56
+
57
+ Parameters:
58
+ api_key (str): The RapidAPI Key for Airbnb API.
59
+ id (str): The ID of the destination.
60
+ display_name (Optional[str]): The name of the destination.
61
+ total_records (Optional[str]): The number of records to be retrieved per API call.
62
+ currency (Optional[str]): The currency for the transaction.
63
+ offset (Optional[str]): The offset for the search result.
64
+ category (Optional[str]): The category of the properties.
65
+ adults (Optional[int]): The number of adults.
66
+ children (Optional[int]): The number of children.
67
+ infants (Optional[int]): The number of infants.
68
+ pets (Optional[int]): The number of pets.
69
+ checkin (Optional[str]): The check-in date.
70
+ checkout (Optional[str]): The check-out date.
71
+ priceMin (Optional[int]): The minimum price.
72
+ priceMax (Optional[int]): The maximum price.
73
+ minBedrooms (Optional[int]): The minimum number of bedrooms.
74
+ minBeds (Optional[int]): The minimum number of beds.
75
+ minBathrooms (Optional[int]): The minimum number of bathrooms.
76
+ property_type (Optional[List[str]]): The type of the property.
77
+ host_languages (Optional[List[str]]): The languages that the host can speak.
78
+ amenities (Optional[List[str]]): The amenities provided by the property.
79
+ type_of_place (Optional[List[str]]): The type of the place.
80
+ top_tier_stays (Optional[List[str]]): The list of top-tier stays.
81
+ self_check_in (Optional[bool]): If the property has self check-in feature.
82
+ instant_book (Optional[bool]): If the property can be booked instantly.
83
+ super_host (Optional[bool]): If the host is a super host.
84
+ languageId (Optional[str]): The ID of the language for the response.
85
+
86
+ Returns:
87
+ dict: A dictionary that contains the search results.
88
+ """
89
+
90
+ params = {
91
+ "id": _id,
92
+ "display_name": display_name,
93
+ "totalRecords": total_records,
94
+ "currency": currency,
95
+ "offset": offset,
96
+ "category": category,
97
+ "adults": adults,
98
+ "children": children,
99
+ "infants": infants,
100
+ "pets": pets,
101
+ "checkin": checkin,
102
+ "checkout": checkout,
103
+ "priceMin": priceMin,
104
+ "priceMax": priceMax,
105
+ "minBedrooms": minBedrooms,
106
+ "minBeds": minBeds,
107
+ "minBathrooms": minBathrooms,
108
+ "property_type": property_type,
109
+ "host_languages": host_languages,
110
+ "amenities": amenities,
111
+ "type_of_place": type_of_place,
112
+ "top_tier_stays": top_tier_stays,
113
+ "self_check_in": self_check_in,
114
+ "instant_book": instant_book,
115
+ "super_host": super_host,
116
+ "languageId": languageId,
117
+ }
118
+ response = requests.get(
119
+ f"{BASE_URL}/searchPropertyByPlace", headers=HEADERS, params=params
120
+ )
121
+ return response.json()["data"][0]
122
+
123
+ @tool.get("/search_property_by_coordinates")
124
+ def search_property_by_coordinates(
125
+ neLat: float,
126
+ neLng: float,
127
+ swLat: float,
128
+ swLng: float,
129
+ currency: Optional[str] = "USD",
130
+ nextPageCursor: Optional[str] = None,
131
+ totalRecords: Optional[str] = None,
132
+ infants: Optional[int] = None,
133
+ adults: Optional[int] = 1,
134
+ children: Optional[int] = None,
135
+ pets: Optional[int] = None,
136
+ checkin: Optional[str] = None,
137
+ checkout: Optional[str] = None,
138
+ priceMin: Optional[int] = None,
139
+ priceMax: Optional[int] = None,
140
+ minBedrooms: Optional[int] = None,
141
+ minBeds: Optional[int] = None,
142
+ minBathrooms: Optional[int] = None,
143
+ property_type: Optional[List[str]] = None,
144
+ host_languages: Optional[List[str]] = None,
145
+ amenities: Optional[List[str]] = None,
146
+ type_of_place: Optional[List[str]] = None,
147
+ top_tier_stays: Optional[List[str]] = None,
148
+ super_host: Optional[bool] = None,
149
+ ) -> dict:
150
+ """
151
+ This function takes GEO coordinates and various other parameters to search properties on Airbnb.
152
+
153
+ Parameters:
154
+ neLat (float): Latitude of the northeastern corner of the search area.
155
+ neLng (float): Longitude of the northeastern corner of the search area.
156
+ swLat (float): Latitude of the southwestern corner of the search area.
157
+ swLng (float): Longitude of the southwestern corner of the search area.
158
+ Other parameters are the same as search_property function.
159
+
160
+ Returns:
161
+ dict: A dictionary that contains the search results.
162
+ """
163
+
164
+ params = {
165
+ "neLat": neLat,
166
+ "neLng": neLng,
167
+ "swLat": swLat,
168
+ "swLng": swLng,
169
+ "currency": currency,
170
+ "nextPageCursor": nextPageCursor,
171
+ "totalRecords": totalRecords,
172
+ "infants": infants,
173
+ "adults": adults,
174
+ "children": children,
175
+ "pets": pets,
176
+ "checkin": checkin,
177
+ "checkout": checkout,
178
+ "priceMin": priceMin,
179
+ "priceMax": priceMax,
180
+ "minBedrooms": minBedrooms,
181
+ "minBeds": minBeds,
182
+ "minBathrooms": minBathrooms,
183
+ "property_type": property_type,
184
+ "host_languages": host_languages,
185
+ "amenities": amenities,
186
+ "type_of_place": type_of_place,
187
+ "top_tier_stays": top_tier_stays,
188
+ "super_host": super_host,
189
+ }
190
+ response = requests.get(
191
+ f"https://airbnb19.p.rapidapi.com/api/v2/searchPropertyByGEO",
192
+ headers=HEADERS,
193
+ params=params,
194
+ )
195
+ return response.json()["data"]["list"][0]
196
+
197
+ @tool.get("/search_destination")
198
+ def search_destination(self, query: str, country: Optional[str] = None) -> dict:
199
+ """
200
+ This function performs a destination search given a query and optionally a country. And return positions 'ID' information.
201
+
202
+ Parameters:
203
+ query (str): The search query.
204
+ country (Optional[str]): The country for the search.
205
+
206
+ Returns:
207
+ dict: A dictionary that contains the search results. including ID information for a destination
208
+ """
209
+
210
+ params = {"query": query, "country": country}
211
+ response = requests.get(
212
+ f"{BASE_URL}/searchDestination", headers=HEADERS, params=params
213
+ )
214
+ return response.json()
215
+
216
+ @tool.get("/property_by_coordinates")
217
+ def property_by_coordinates(
218
+ long: float,
219
+ lat: float,
220
+ d: Optional[float] = None,
221
+ includeSold: Optional[bool] = None,
222
+ ):
223
+ """
224
+ Search property by coordinates.
225
+
226
+ Args:
227
+ long (float): Longitude of the property. This is a required parameter.
228
+ lat (float): Latitude of the property. This is a required parameter.
229
+ d (float, optional): Diameter in miles. The max and low values are 0.5 and 0.05 respectively. The default value is 0.1.
230
+ includeSold (bool, optional): Include sold properties in the results. True or 1 to include (default), False or 0 to exclude.
231
+
232
+ Returns:
233
+ A response object from the Zillow API with an array of zpid.
234
+ """
235
+ params = {
236
+ "long": long,
237
+ "lat": lat,
238
+ "d": d,
239
+ "includeSold": includeSold,
240
+ }
241
+
242
+ # Remove parameters that are None
243
+ params = {k: v for k, v in params.items() if v is not None}
244
+ url = BASE_URL + "/propertyByCoordinates"
245
+ # Send GET request to Zillow API endpoint
246
+ response = requests.get(url, headers=HEADERS, params=params)
247
+
248
+ return response.json()
249
+
250
+ @tool.get("/get_property_details")
251
+ def get_property_details(
252
+ propertyId: int,
253
+ currency: Optional[str] = "USD",
254
+ checkIn: Optional[str] = None,
255
+ checkOut: Optional[str] = None,
256
+ adults: Optional[int] = 1,
257
+ children: Optional[int] = None,
258
+ infants: Optional[int] = None,
259
+ pets: Optional[int] = None,
260
+ languageId: Optional[str] = None,
261
+ ) -> dict:
262
+ """
263
+ This function retrieves the details of a property given its ID.
264
+
265
+ Parameters:
266
+ propertyId (int): The ID of the property.
267
+ currency (Optional[str]): The currency for the transaction.
268
+ checkIn (Optional[str]): The check-in date.
269
+ checkOut (Optional[str]): The check-out date.
270
+ adults (Optional[int]): The number of adults.
271
+ children (Optional[int]): The number of children.
272
+ infants (Optional[int]): The number of infants.
273
+ pets (Optional[int]): The number of pets.
274
+ languageId (Optional[str]): The ID of the language for the response.
275
+
276
+ Returns:
277
+ dict: A dictionary that contains the details of the property.
278
+ """
279
+
280
+ params = {
281
+ "propertyId": propertyId,
282
+ "currency": currency,
283
+ "checkIn": checkIn,
284
+ "checkOut": checkOut,
285
+ "adults": adults,
286
+ "children": children,
287
+ "infants": infants,
288
+ "pets": pets,
289
+ "languageId": languageId,
290
+ }
291
+ response = requests.get(
292
+ f"https://airbnb19.p.rapidapi.com/api/v2/getPropertyDetails",
293
+ headers=HEADERS,
294
+ params=params,
295
+ )
296
+ return response.json()
297
+
298
+ @tool.get("/check_availability")
299
+ def check_availability(propertyId: int) -> dict:
300
+ """
301
+ This function checks the availability of a property given its ID.
302
+
303
+ Parameters:
304
+ propertyId (int): The ID of the property.
305
+
306
+ Returns:
307
+ dict: A dictionary that contains the availability of the property.
308
+ """
309
+ params = {
310
+ "propertyId": propertyId,
311
+ }
312
+ response = requests.get(
313
+ f"{BASE_URL}/checkAvailability", headers=HEADERS, params=params
314
+ )
315
+ return response.json()
316
+
317
+ @tool.get("/get_property_reviews")
318
+ def get_property_reviews(propertyId: int) -> dict:
319
+ """
320
+ This function retrieves the reviews of a property given its ID.
321
+
322
+ Parameters:
323
+ propertyId (int): The ID of the property.
324
+
325
+ Returns:
326
+ dict: A dictionary that contains the reviews of the property.
327
+ """
328
+ params = {
329
+ "propertyId": propertyId,
330
+ }
331
+ response = requests.get(
332
+ f"{BASE_URL}/getPropertyReviews", headers=HEADERS, params=params
333
+ )
334
+ return response.json()
335
+
336
+ @tool.get("/get_property_checkout_price")
337
+ def get_property_checkout_price(propertyId: int, checkIn: str) -> dict:
338
+ """
339
+ This function retrieves the checkout cost of a property given its ID and check-in date.
340
+
341
+ Parameters:
342
+ propertyId (int): The ID of the property.
343
+ checkIn (str): The check-in date.
344
+
345
+ Returns:
346
+ dict: A dictionary that contains the checkout price of the property.
347
+ """
348
+ params = {"propertyId": propertyId, "checkIn": checkIn}
349
+ response = requests.get(
350
+ f"{BASE_URL}/getPropertyCheckoutPrice", headers=HEADERS, params=params
351
+ )
352
+ return response.json()
353
+
354
+ return tool
airbnb/readme.md ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Airbnb Service
2
+
3
+ Contributor: [Kunlun Zhu](https://github.com/Kunlun-Zhu)
4
+
5
+ You can get your RAIPID key here: https://rapidapi.com/hub
6
+
7
+ You ought to subscribe 'Airbnb API' in your account to use this tool
8
+
9
+ # Short-term Rental and Housing Information Tool
10
+
11
+ This tool, named `Short-term Rental and Housing Information`, is designed to interact with the Airbnb API to search for properties, get property details, check availability, get property reviews, and retrieve the checkout price. The tool operates by making HTTP requests to the Airbnb API and formatting the responses into an easily usable form.
12
+
13
+ ## Main Functionality
14
+
15
+ 1. **Search for Properties**: This functionality allows you to search for properties based on a variety of parameters like the number of adults, children, and infants, property type, amenities, check-in and check-out dates, and many more. This is done using the `search_property` function.
16
+
17
+ 2. **Search Property by Coordinates**: This function allows you to search for properties in a specific geographic area defined by the northeast and southwest coordinates of the area. This is done using the `search_property_by_coordinates` function.
18
+
19
+ 3. **Search for Destination**: The `search_destination` function helps to perform a destination search given a query and optionally a country. It returns positions 'ID' information.
20
+
21
+ 4. **Get Property Details**: The `get_property_details` function is used to retrieve detailed information about a specific property. This includes the number of rooms, amenities, location, and other relevant information.
22
+
23
+ 5. **Check Property Availability**: This function, `check_availability`, allows you to check if a property is available for booking.
24
+
25
+ 6. **Get Property Reviews**: You can use the `get_property_reviews` function to retrieve reviews of a property.
26
+
27
+ 7. **Get Property Checkout Price**: The `get_property_checkout_price` function is used to get the checkout cost of a property given its ID and check-in date.
28
+
29
+ This tool provides a simple and effective way to interact with the Airbnb API, making it easier for developers to incorporate Airbnb data into their applications.
airbnb/test.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from swarms.tools.agent.singletool import load_single_tools, STQuestionAnswerer
2
+
3
+ tool_name, tool_url = "Airbnb", "http://127.0.0.1:8079/tools/airbnb/"
4
+ tools_name, tools_config = load_single_tools(tool_name, tool_url)
5
+ print(tools_name, tools_config)
6
+
7
+ qa = STQuestionAnswerer()
8
+
9
+ agent = qa.load_tools(tools_name, tools_config)
10
+
11
+ agent("List some houses to rent in Santa Monica, CA.")
apitool.py ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Interface for tools."""
2
+ from inspect import signature
3
+ from typing import Any, Awaitable, Callable, Optional, Union
4
+
5
+ from langchain.agents import Tool as LangChainTool
6
+ from langchain.tools.base import BaseTool
7
+ import requests
8
+ import json
9
+ import aiohttp
10
+ import http.client
11
+
12
+ http.client._MAXLINE = 655360
13
+
14
+ from tool_logging import get_logger
15
+
16
+ logger = get_logger(__name__)
17
+
18
+
19
+ class Tool(LangChainTool):
20
+ tool_logo_md: str = ""
21
+
22
+
23
+ class RequestTool(BaseTool):
24
+ """Tool that takes in function or coroutine directly."""
25
+
26
+ description: str = ""
27
+ func: Callable[[str], str]
28
+ afunc: Callable[[str], str]
29
+ coroutine: Optional[Callable[[str], Awaitable[str]]] = None
30
+ max_output_len = 4000
31
+ tool_logo_md: str = ""
32
+
33
+ def _run(self, tool_input: str) -> str:
34
+ """Use the tool."""
35
+ return self.func(tool_input)
36
+
37
+ async def _arun(self, tool_input: str) -> str:
38
+ """Use the tool asynchronously."""
39
+ ret = await self.afunc(tool_input)
40
+ return ret
41
+
42
+ def convert_prompt(self, params):
43
+ lines = "Your input should be a json (args json schema): {{"
44
+ for p in params:
45
+ logger.debug(p)
46
+ optional = not p["required"]
47
+ description = p.get("description", "")
48
+ if len(description) > 0:
49
+ description = "(" + description + ")"
50
+
51
+ lines += '"{name}" : {type}{desc}, '.format(
52
+ name=p["name"],
53
+ type=p["schema"]["type"],
54
+ optional=optional,
55
+ desc=description,
56
+ )
57
+
58
+ lines += "}}"
59
+ return lines
60
+
61
+ def __init__(self, root_url, func_url, method, request_info, **kwargs):
62
+ """Store the function, description, and tool_name in a class to store the information"""
63
+ url = root_url + func_url
64
+
65
+ def func(json_args):
66
+ if isinstance(json_args, str):
67
+ try:
68
+ json_args = json.loads(json_args)
69
+ except:
70
+ return "Your input can not be parsed as json, please use thought."
71
+ if "tool_input" in json_args:
72
+ json_args = json_args["tool_input"]
73
+
74
+ # if it's post put patch, then we do json
75
+ if method.lower() in ["post", "put", "patch"]:
76
+ response = getattr(requests, method.lower())(url, json=json_args)
77
+ else:
78
+ # for other methods, we use get, and use json_args as query params
79
+ response = requests.get(url, params=json_args)
80
+ if response.status_code == 200:
81
+ message = response.text
82
+ else:
83
+ message = f"Error code {response.status_code}. You can try (1) Change your input (2) Call another function. (If the same error code is produced more than 4 times, please use Thought: I can not use these APIs, so I will stop. Final Answer: No Answer, please check the APIs.)"
84
+
85
+ message = message[: self.max_output_len] # TODO: not rigorous, to improve
86
+ return message
87
+
88
+ def convert_openapi_to_params(request_body):
89
+ if not request_body:
90
+ return []
91
+ params = []
92
+ for content_type, content in request_body["content"].items():
93
+ schema = content["schema"]
94
+ properties = schema.get("properties", {})
95
+ required = schema.get("required", [])
96
+ for key, value in properties.items():
97
+ param = {
98
+ "name": key,
99
+ "schema": value,
100
+ "required": key in required,
101
+ "description": value.get("description", ""),
102
+ }
103
+ if (
104
+ content_type == "multipart/form-data"
105
+ and value.get("format") == "binary"
106
+ ):
107
+ param["type"] = "file"
108
+ elif content_type in [
109
+ "application/x-www-form-urlencoded",
110
+ "multipart/form-data",
111
+ ]:
112
+ param["type"] = "form"
113
+ else:
114
+ param["type"] = "json"
115
+ params.append(param)
116
+ return params
117
+
118
+ async def afunc(json_args):
119
+ if isinstance(json_args, str):
120
+ try:
121
+ json_args = json.loads(json_args)
122
+ except:
123
+ return "Your input can not be parsed as json, please use thought."
124
+ if "tool_input" in json_args:
125
+ json_args = json_args["tool_input"]
126
+
127
+ async with aiohttp.ClientSession() as session:
128
+ async with session.get(url, params=json_args) as response:
129
+ if response.status == 200:
130
+ message = await response.text()
131
+ else:
132
+ message = f"Error code {response.status_code}. You can try (1) Change your input (2) Call another function. (If the same error code is produced more than 4 times, please use Thought: I can not use these APIs, so I will stop. Final Answer: No Answer, please check the APIs.)"
133
+
134
+ message = message[: self.max_output_len] # TODO: not rigorous, to improve
135
+ return message
136
+
137
+ tool_name = func_url.replace("/", ".").strip(".")
138
+ str_doc = ""
139
+ if "parameters" in request_info[method]:
140
+ str_doc = self.convert_prompt(request_info[method]["parameters"])
141
+
142
+ if "requestBody" in request_info[method]:
143
+ str_doc = (
144
+ str_doc
145
+ + "\n"
146
+ + self.convert_prompt(
147
+ convert_openapi_to_params(request_info[method]["requestBody"])
148
+ )
149
+ )
150
+
151
+ # description = f"- {tool_name}:\n" + \
152
+ # request_info[method].get('summary', '').replace("{", "{{").replace("}", "}}") \
153
+ description = (
154
+ request_info[method]
155
+ .get("description", "")
156
+ .replace("{", "{{")
157
+ .replace("}", "}}")
158
+ + ". "
159
+ + str_doc
160
+ + f" The Action to trigger this API should be {tool_name} and the input parameters should be a json dict string. Pay attention to the type of parameters."
161
+ )
162
+
163
+ logger.info("API Name: {}".format(tool_name))
164
+ logger.info("API Description: {}".format(description))
165
+
166
+ super(RequestTool, self).__init__(
167
+ name=tool_name, func=func, afunc=afunc, description=description, **kwargs
168
+ )
app.py ADDED
@@ -0,0 +1,380 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoTokenizer
2
+ from botocore.exceptions import NoCredentialsError
3
+ import tokenize
4
+ import requests
5
+ import os
6
+ import time
7
+ from functools import partial
8
+ from pathlib import Path
9
+ from threading import Lock
10
+ import warnings
11
+ import json
12
+ from vllm import LLM
13
+
14
+ os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
15
+ os.environ['BITSANDBYTES_NOWELCOME'] = '1'
16
+ warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
17
+ warnings.filterwarnings('ignore', category=UserWarning, message='Using the update method is deprecated')
18
+ warnings.filterwarnings('ignore', category=UserWarning, message='Field "model_name" has conflict')
19
+
20
+ import matplotlib
21
+ import gradio as gr
22
+ from tools_controller import MTQuestionAnswerer, load_valid_tools
23
+ from singletool import STQuestionAnswerer
24
+ from langchain.schema import AgentFinish
25
+ import requests
26
+ from tool_server import run_tool_server
27
+ from threading import Thread
28
+ from multiprocessing import Process
29
+ import time
30
+ from langchain.llms import VLLM
31
+ import yaml
32
+
33
+ matplotlib.use('Agg') # This fixes LaTeX rendering on some systems
34
+
35
+ tool_server_flag = False
36
+
37
+ def start_tool_server():
38
+ # server = Thread(target=run_tool_server)
39
+ server = Process(target=run_tool_server)
40
+ server.start()
41
+ global tool_server_flag
42
+ tool_server_flag = True
43
+
44
+
45
+ DEFAULTMODEL = "ChatGPT" # "GPT-3.5"
46
+
47
+ # Read the model/ directory and get the list of models
48
+ available_models = ["ChatGPT", "GPT-3.5"]
49
+
50
+ tools_mappings = {
51
+ "klarna": "https://www.klarna.com/",
52
+ "weather": "http://127.0.0.1:8079/tools/weather/",
53
+ # "database": "http://127.0.0.1:8079/tools/database/",
54
+ # "db_diag": "http://127.0.0.1:8079/tools/db_diag/",
55
+ "chemical-prop": "http://127.0.0.1:8079/tools/chemical-prop/",
56
+ "douban-film": "http://127.0.0.1:8079/tools/douban-film/",
57
+ "wikipedia": "http://127.0.0.1:8079/tools/wikipedia/",
58
+ # "wikidata": "http://127.0.0.1:8079/tools/kg/wikidata/",
59
+ "wolframalpha": "http://127.0.0.1:8079/tools/wolframalpha/",
60
+ "bing_search": "http://127.0.0.1:8079/tools/bing_search/",
61
+ "office-ppt": "http://127.0.0.1:8079/tools/office-ppt/",
62
+ "stock": "http://127.0.0.1:8079/tools/stock/",
63
+ "bing_map": "http://127.0.0.1:8079/tools/map.bing_map/",
64
+ # "baidu_map": "http://127.0.0.1:8079/tools/map/baidu_map/",
65
+ "zillow": "http://127.0.0.1:8079/tools/zillow/",
66
+ "airbnb": "http://127.0.0.1:8079/tools/airbnb/",
67
+ "job_search": "http://127.0.0.1:8079/tools/job_search/",
68
+ # "baidu-translation": "http://127.0.0.1:8079/tools/translation/baidu-translation/",
69
+ # "nllb-translation": "http://127.0.0.1:8079/tools/translation/nllb-translation/",
70
+ "tutorial": "http://127.0.0.1:8079/tools/tutorial/",
71
+ "file_operation": "http://127.0.0.1:8079/tools/file_operation/",
72
+ "meta_analysis": "http://127.0.0.1:8079/tools/meta_analysis/",
73
+ "code_interpreter": "http://127.0.0.1:8079/tools/code_interpreter/",
74
+ "arxiv": "http://127.0.0.1:8079/tools/arxiv/",
75
+ "google_places": "http://127.0.0.1:8079/tools/google_places/",
76
+ "google_serper": "http://127.0.0.1:8079/tools/google_serper/",
77
+ "google_scholar": "http://127.0.0.1:8079/tools/google_scholar/",
78
+ "python": "http://127.0.0.1:8079/tools/python/",
79
+ "sceneXplain": "http://127.0.0.1:8079/tools/sceneXplain/",
80
+ "shell": "http://127.0.0.1:8079/tools/shell/",
81
+ "image_generation": "http://127.0.0.1:8079/tools/image_generation/",
82
+ "hugging_tools": "http://127.0.0.1:8079/tools/hugging_tools/",
83
+ "gradio_tools": "http://127.0.0.1:8079/tools/gradio_tools/",
84
+ "travel": "http://127.0.0.1:8079/tools/travel",
85
+ "walmart": "http://127.0.0.1:8079/tools/walmart",
86
+ }
87
+
88
+ # data = json.load(open('sourcery-engine/tools/openai.json')) # Load the JSON file
89
+ # items = data['items'] # Get the list of items
90
+
91
+ # for plugin in items: # Iterate over items, not data
92
+ # url = plugin['manifest']['api']['url']
93
+ # tool_name = plugin['namespace']
94
+ # tools_mappings[tool_name] = url[:-len('/.well-known/openai.yaml')]
95
+
96
+ # print(tools_mappings)
97
+
98
+ valid_tools_info = []
99
+ all_tools_list = []
100
+
101
+ gr.close_all()
102
+
103
+ MAX_TURNS = 30
104
+ MAX_BOXES = MAX_TURNS * 2
105
+
106
+ return_msg = []
107
+ chat_history = ""
108
+
109
+ MAX_SLEEP_TIME = 40
110
+ valid_tools_info = {}
111
+
112
+ import gradio as gr
113
+ from tools_controller import load_valid_tools, tools_mappings
114
+
115
+ def load_tools():
116
+ global valid_tools_info
117
+ global all_tools_list
118
+ try:
119
+ valid_tools_info = load_valid_tools(tools_mappings)
120
+ print(f"valid_tools_info: {valid_tools_info}") # Debugging line
121
+ except BaseException as e:
122
+ print(repr(e))
123
+ all_tools_list = sorted(list(valid_tools_info.keys()))
124
+ print(f"all_tools_list: {all_tools_list}") # Debugging line
125
+ return gr.update(choices=all_tools_list)
126
+
127
+ def set_environ(OPENAI_API_KEY: str = "",
128
+ WOLFRAMALPH_APP_ID: str = "",
129
+ WEATHER_API_KEYS: str = "",
130
+ BING_SUBSCRIPT_KEY: str = "",
131
+ ALPHA_VANTAGE_KEY: str = "",
132
+ BING_MAP_KEY: str = "",
133
+ BAIDU_TRANSLATE_KEY: str = "",
134
+ RAPIDAPI_KEY: str = "",
135
+ SERPER_API_KEY: str = "",
136
+ GPLACES_API_KEY: str = "",
137
+ SCENEX_API_KEY: str = "",
138
+ STEAMSHIP_API_KEY: str = "",
139
+ HUGGINGFACE_API_KEY: str = "",
140
+ AMADEUS_ID: str = "",
141
+ AMADEUS_KEY: str = "",
142
+ AWS_ACCESS_KEY_ID: str = "",
143
+ AWS_SECRET_ACCESS_KEY: str = "",
144
+ AWS_DEFAULT_REGION: str = "",
145
+ ):
146
+ os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
147
+ os.environ["WOLFRAMALPH_APP_ID"] = WOLFRAMALPH_APP_ID
148
+ os.environ["WEATHER_API_KEYS"] = WEATHER_API_KEYS
149
+ os.environ["BING_SUBSCRIPT_KEY"] = BING_SUBSCRIPT_KEY
150
+ os.environ["ALPHA_VANTAGE_KEY"] = ALPHA_VANTAGE_KEY
151
+ os.environ["BING_MAP_KEY"] = BING_MAP_KEY
152
+ os.environ["BAIDU_TRANSLATE_KEY"] = BAIDU_TRANSLATE_KEY
153
+ os.environ["RAPIDAPI_KEY"] = RAPIDAPI_KEY
154
+ os.environ["SERPER_API_KEY"] = SERPER_API_KEY
155
+ os.environ["GPLACES_API_KEY"] = GPLACES_API_KEY
156
+ os.environ["SCENEX_API_KEY"] = SCENEX_API_KEY
157
+ os.environ["STEAMSHIP_API_KEY"] = STEAMSHIP_API_KEY
158
+ os.environ["HUGGINGFACE_API_KEY"] = HUGGINGFACE_API_KEY
159
+ os.environ["AMADEUS_ID"] = AMADEUS_ID
160
+ os.environ["AMADEUS_KEY"] = AMADEUS_KEY
161
+ os.environ["AWS_ACCESS_KEY_ID"] = AWS_ACCESS_KEY_ID
162
+ os.environ["AWS_SECRET_ACCESS_KEY"] = AWS_SECRET_ACCESS_KEY
163
+ os.environ["AWS_DEFAULT_REGION"] = AWS_DEFAULT_REGION
164
+
165
+ if not tool_server_flag:
166
+ start_tool_server()
167
+ time.sleep(MAX_SLEEP_TIME)
168
+
169
+ # Check if AWS keys are set and if so, configure AWS
170
+ if AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY and AWS_DEFAULT_REGION:
171
+ try:
172
+ s3 = boto3.client('s3')
173
+ s3.list_buckets()
174
+ aws_status = "AWS setup successful"
175
+ except NoCredentialsError:
176
+ aws_status = "AWS setup failed: Invalid credentials"
177
+ else:
178
+ aws_status = "Keys set successfully"
179
+
180
+ return gr.update(value="OK!"), aws_status
181
+
182
+ def show_avatar_imgs(tools_chosen):
183
+ if len(tools_chosen) == 0:
184
+ tools_chosen = list(valid_tools_info.keys())
185
+ img_template = '<a href="{}" style="float: left"> <img style="margin:5px" src="{}.png" width="24" height="24" alt="avatar" /> {} </a>'
186
+ imgs = [valid_tools_info[tool]['avatar'] for tool in tools_chosen if valid_tools_info[tool]['avatar'] != None]
187
+ imgs = ' '.join([img_template.format(img, img, tool) for img, tool in zip(imgs, tools_chosen)])
188
+ return [gr.update(value='<span class="">' + imgs + '</span>', visible=True), gr.update(visible=True)]
189
+
190
+ def answer_by_tools(question, tools_chosen, model_chosen):
191
+ global return_msg
192
+ return_msg += [(question, None), (None, '...')]
193
+ yield [gr.update(visible=True, value=return_msg), gr.update(), gr.update()]
194
+ OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY', '')
195
+ OPENAI_BASE_URL = os.environ.get('OPENAI_BASE_URL', 'https://api.openai.com')
196
+
197
+ if len(tools_chosen) == 0: # if there is no tools chosen, we use all todo (TODO: What if the pool is too large.)
198
+ tools_chosen = list(valid_tools_info.keys())
199
+
200
+ if len(tools_chosen) == 1:
201
+ answerer = STQuestionAnswerer(OPENAI_API_KEY.strip(), OPENAI_BASE_URL, stream_output=True, llm=model_chosen)
202
+ agent_executor = answerer.load_tools(tools_chosen[0], valid_tools_info[tools_chosen[0]],
203
+ prompt_type="react-with-tool-description", return_intermediate_steps=True)
204
+ else:
205
+ answerer = MTQuestionAnswerer(OPENAI_API_KEY.strip(), OPENAI_BASE_URL,
206
+ load_valid_tools({k: tools_mappings[k] for k in tools_chosen}),
207
+ stream_output=True, llm=model_chosen)
208
+
209
+ agent_executor = answerer.build_runner()
210
+
211
+ global chat_history
212
+ chat_history += "Question: " + question + "\n"
213
+ question = chat_history
214
+ for inter in agent_executor(question):
215
+ if isinstance(inter, AgentFinish): continue
216
+ result_str = []
217
+ return_msg.pop()
218
+ if isinstance(inter, dict):
219
+ result_str.append("<font color=red>Answer:</font> {}".format(inter['output']))
220
+ chat_history += "Answer:" + inter['output'] + "\n"
221
+ result_str.append("...")
222
+ else:
223
+ try:
224
+ not_observation = inter[0].log
225
+ except:
226
+ print(inter[0])
227
+ not_observation = inter[0]
228
+ if not not_observation.startswith('Thought:'):
229
+ not_observation = "Thought: " + not_observation
230
+ chat_history += not_observation
231
+ not_observation = not_observation.replace('Thought:', '<font color=green>Thought: </font>')
232
+ not_observation = not_observation.replace('Action:', '<font color=purple>Action: </font>')
233
+ not_observation = not_observation.replace('Action Input:', '<font color=purple>Action Input: </font>')
234
+ result_str.append("{}".format(not_observation))
235
+ result_str.append("<font color=blue>Action output:</font>\n{}".format(inter[1]))
236
+ chat_history += "\nAction output:" + inter[1] + "\n"
237
+ result_str.append("...")
238
+ return_msg += [(None, result) for result in result_str]
239
+ yield [gr.update(visible=True, value=return_msg), gr.update(), gr.update()]
240
+ return_msg.pop()
241
+ if return_msg[-1][1].startswith("<font color=red>Answer:</font> "):
242
+ return_msg[-1] = (return_msg[-1][0], return_msg[-1][1].replace("<font color=red>Answer:</font> ",
243
+ "<font color=green>Final Answer:</font> "))
244
+ yield [gr.update(visible=True, value=return_msg), gr.update(visible=True), gr.update(visible=False)]
245
+
246
+
247
+ def retrieve(tools_search):
248
+ if tools_search == "":
249
+ return gr.update(choices=all_tools_list)
250
+ else:
251
+ url = "http://127.0.0.1:8079/retrieve"
252
+ param = {
253
+ "query": tools_search
254
+ }
255
+ response = requests.post(url, json=param)
256
+ result = response.json()
257
+ retrieved_tools = result["tools"]
258
+ return gr.update(choices=retrieved_tools)
259
+
260
+ def clear_retrieve():
261
+ return [gr.update(value=""), gr.update(choices=all_tools_list)]
262
+
263
+
264
+ def clear_history():
265
+ global return_msg
266
+ global chat_history
267
+ return_msg = []
268
+ chat_history = ""
269
+ yield gr.update(visible=True, value=return_msg)
270
+
271
+
272
+
273
+ def fetch_tokenizer(model_name):
274
+ try:
275
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
276
+ return f"Tokenizer for {model_name} loaded successfully."
277
+ except Exception as e:
278
+ return f"Error loading tokenizer: {str(e)}"
279
+
280
+ # Add this function to handle the button click
281
+ import sky
282
+
283
+ # with gr.Blocks(css=css, analytics_enabled=False, title=title, theme=ui.theme) as demo:
284
+ with gr.Blocks() as demo:
285
+ with gr.Row():
286
+ with gr.Column(scale=14):
287
+ gr.Markdown("")
288
+
289
+ with gr.Tab("Key setting"):
290
+ OPENAI_API_KEY = gr.Textbox(label="OpenAI API KEY:", placeholder="sk-...", type="text")
291
+ WOLFRAMALPH_APP_ID = gr.Textbox(label="Wolframalpha app id:", placeholder="Key to use wlframalpha", type="text")
292
+ WEATHER_API_KEYS = gr.Textbox(label="Weather api key:", placeholder="Key to use weather api", type="text")
293
+ BING_SUBSCRIPT_KEY = gr.Textbox(label="Bing subscript key:", placeholder="Key to use bing search", type="text")
294
+ ALPHA_VANTAGE_KEY = gr.Textbox(label="Stock api key:", placeholder="Key to use stock api", type="text")
295
+ BING_MAP_KEY = gr.Textbox(label="Bing map key:", placeholder="Key to use bing map", type="text")
296
+ BAIDU_TRANSLATE_KEY = gr.Textbox(label="Baidu translation key:", placeholder="Key to use baidu translation", type="text")
297
+ RAPIDAPI_KEY = gr.Textbox(label="Rapidapi key:", placeholder="Key to use zillow, airbnb and job search", type="text")
298
+ SERPER_API_KEY = gr.Textbox(label="Serper key:", placeholder="Key to use google serper and google scholar", type="text")
299
+ GPLACES_API_KEY = gr.Textbox(label="Google places key:", placeholder="Key to use google places", type="text")
300
+ SCENEX_API_KEY = gr.Textbox(label="Scenex api key:", placeholder="Key to use sceneXplain", type="text")
301
+ STEAMSHIP_API_KEY = gr.Textbox(label="Steamship api key:", placeholder="Key to use image generation", type="text")
302
+ HUGGINGFACE_API_KEY = gr.Textbox(label="Huggingface api key:", placeholder="Key to use models in huggingface hub", type="text")
303
+ AMADEUS_KEY = gr.Textbox(label="Amadeus key:", placeholder="Key to use Amadeus", type="text")
304
+ AMADEUS_ID = gr.Textbox(label="Amadeus ID:", placeholder="Amadeus ID",
305
+ type="text")
306
+ AWS_ACCESS_KEY_ID = gr.Textbox(label="AWS Access Key ID:", placeholder="AWS Access Key ID", type="text")
307
+ AWS_SECRET_ACCESS_KEY = gr.Textbox(label="AWS Secret Access Key:", placeholder="AWS Secret Access Key", type="text")
308
+ AWS_DEFAULT_REGION = gr.Textbox(label="AWS Default Region:", placeholder="AWS Default Region", type="text")
309
+ key_set_btn = gr.Button(value="Set keys!")
310
+
311
+
312
+ with gr.Tab("Chat with Tool"):
313
+ with gr.Row():
314
+ with gr.Column(scale=4):
315
+ with gr.Row():
316
+ with gr.Column(scale=0.85):
317
+ txt = gr.Textbox(show_label=False, placeholder="Question here. Use Shift+Enter to add new line.",
318
+ lines=1)
319
+ with gr.Column(scale=0.15, min_width=0):
320
+ buttonChat = gr.Button("Chat")
321
+
322
+ chatbot = gr.Chatbot(show_label=False, visible=True)
323
+ buttonClear = gr.Button("Clear History")
324
+ buttonStop = gr.Button("Stop", visible=False)
325
+
326
+ with gr.Column(scale=4):
327
+ with gr.Row():
328
+ tools_search = gr.Textbox(
329
+ lines=1,
330
+ label="Tools Search",
331
+ placeholder="Please input some text to search tools.",
332
+ )
333
+ buttonSearch = gr.Button("Reset search condition")
334
+ tools_chosen = gr.CheckboxGroup(
335
+ choices=all_tools_list,
336
+ # value=["chemical-prop"],
337
+ label="Tools provided",
338
+ info="Choose the tools to solve your question.",
339
+ )
340
+
341
+ # TODO fix webgl galaxy backgroun
342
+ # def serve_iframe():
343
+ # return "<iframe src='http://localhost:8000/shader.html' width='100%' height='400'></iframe>"
344
+
345
+ # iface = gr.Interface(fn=serve_iframe, inputs=[], outputs=gr.outputs.HTML())
346
+
347
+ key_set_btn.click(fn=set_environ, inputs=[
348
+ OPENAI_API_KEY,
349
+ WOLFRAMALPH_APP_ID,
350
+ WEATHER_API_KEYS,
351
+ BING_SUBSCRIPT_KEY,
352
+ ALPHA_VANTAGE_KEY,
353
+ BING_MAP_KEY,
354
+ BAIDU_TRANSLATE_KEY,
355
+ RAPIDAPI_KEY,
356
+ SERPER_API_KEY,
357
+ GPLACES_API_KEY,
358
+ SCENEX_API_KEY,
359
+ STEAMSHIP_API_KEY,
360
+ HUGGINGFACE_API_KEY,
361
+ AMADEUS_ID,
362
+ AMADEUS_KEY,
363
+ ], outputs=key_set_btn)
364
+ key_set_btn.click(fn=load_tools, outputs=tools_chosen)
365
+
366
+ tools_search.change(retrieve, tools_search, tools_chosen)
367
+ buttonSearch.click(clear_retrieve, [], [tools_search, tools_chosen])
368
+
369
+ txt.submit(lambda: [gr.update(value=''), gr.update(visible=False), gr.update(visible=True)], [],
370
+ [txt, buttonClear, buttonStop])
371
+ inference_event = txt.submit(answer_by_tools, [txt, tools_chosen], [chatbot, buttonClear, buttonStop])
372
+ buttonChat.click(answer_by_tools, [txt, tools_chosen], [chatbot, buttonClear, buttonStop])
373
+ buttonStop.click(lambda: [gr.update(visible=True), gr.update(visible=False)], [], [buttonClear, buttonStop],
374
+ cancels=[inference_event])
375
+ buttonClear.click(clear_history, [], chatbot)
376
+
377
+ # demo.queue().launch(share=False, inbrowser=True, server_name="127.0.0.1", server_port=7001)
378
+ demo.queue().launch(share=True)
379
+
380
+
arxiv/__init__.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ from ..registry import register
2
+
3
+
4
+ @register("arxiv")
5
+ def arxiv():
6
+ from .api import build_tool
7
+
8
+ return build_tool
arxiv/api.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from ..tool import Tool
2
+ from typing import Any
3
+ import arxiv
4
+
5
+
6
+ def build_tool(config) -> Tool:
7
+ tool = Tool(
8
+ "Arxiv",
9
+ "Look up for information from scientific articles on arxiv.org",
10
+ name_for_model="Arxiv",
11
+ description_for_model=(
12
+ "Search information from Arxiv.org "
13
+ "Useful for when you need to answer questions about Physics, Mathematics, "
14
+ "Computer Science, Quantitative Biology, Quantitative Finance, Statistics, "
15
+ "Electrical Engineering, and Economics "
16
+ "from scientific articles on arxiv.org. "
17
+ "Input should be a search query."
18
+ ),
19
+ logo_url="https://your-app-url.com/.well-known/logo.png",
20
+ contact_email="[email protected]",
21
+ legal_info_url="[email protected]",
22
+ )
23
+
24
+ arxiv_exceptions: Any # :meta private:
25
+ top_k_results: int = 3
26
+ ARXIV_MAX_QUERY_LENGTH = 300
27
+ doc_content_chars_max: int = 4000
28
+
29
+ @tool.get("/get_arxiv_article_information")
30
+ def get_arxiv_article_information(query: str):
31
+ """Run Arxiv search and get the article meta information."""
32
+ param = {"q": query}
33
+ try:
34
+ results = arxiv.Search( # type: ignore
35
+ query[:ARXIV_MAX_QUERY_LENGTH], max_results=top_k_results
36
+ ).results()
37
+ except arxiv_exceptions as ex:
38
+ return f"Arxiv exception: {ex}"
39
+ docs = [
40
+ f"Published: {result.updated.date()}\nTitle: {result.title}\n"
41
+ f"Authors: {', '.join(a.name for a in result.authors)}\n"
42
+ f"Summary: {result.summary}"
43
+ for result in results
44
+ ]
45
+ if docs:
46
+ return "\n\n".join(docs)[:doc_content_chars_max]
47
+ else:
48
+ return "No good Arxiv Result was found"
49
+
50
+ return tool
arxiv/readme.md ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Arxiv Queries
2
+
3
+ Contributor: [Sihan Zhao](https://github.com/Sarah816)
4
+
5
+ ## Tool Description
6
+ This Python-based tool offers a streamlined way to look up scientific articles on Arxiv.org. Named "Arxiv", this tool is particularly helpful when you need to answer questions about Physics, Mathematics, Computer Science, Quantitative Biology, Quantitative Finance, Statistics, Electrical Engineering, and Economics based on scientific articles from Arxiv.org.
7
+
8
+ ### Tool Specifications
9
+
10
+ - **Name**: Arxiv
11
+ - **Purpose**: Look up for information from scientific articles on arxiv.org
12
+ - **Logo**: ![Arxiv Logo](https://your-app-url.com/.well-known/logo.png)
13
+ - **Contact Email**: [email protected]
14
+ - **Legal Information**: [Legal Information]([email protected])
15
+
16
+ ### Core Functionality
17
+
18
+ 1. `get_arxiv_article_information`
19
+
20
+ This method takes a search query and returns meta-information about the Arxiv articles that match this query. The method uses an API to search articles on Arxiv.org and returns details like the date of publication, title of the article, names of the authors, and the summary of the article.
21
+
22
+ The method follows these steps:
23
+
24
+ - It takes a query as a string input.
25
+ - The query is passed to the Arxiv Search API.
26
+ - The method fetches the top three results.
27
+ - For each result, it collects information about the publication date, title, authors, and summary.
28
+ - It returns this information as a string.
29
+
30
+ If the search operation encounters an error, the method returns a message describing the Arxiv exception. If no suitable articles are found on Arxiv.org that match the query, it returns a message stating that no good Arxiv result was found.
31
+
32
+ ### Constants
33
+
34
+ - **ARXIV_MAX_QUERY_LENGTH**: Maximum length of a query that can be passed to the Arxiv Search API. It's set to 300.
35
+ - **doc_content_chars_max**: Maximum characters of the Arxiv results to be returned. It's set to 4000.
36
+ - **top_k_results**: The maximum number of Arxiv Search results to be returned. It's set to 3.
37
+
38
+ Please note that the parameters can be optional and have their own default values. You should consult the method's documentation to understand the default behavior and the specific role of each parameter.
arxiv/test.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from swarms.tools.agent.singletool import load_single_tools, STQuestionAnswerer
2
+
3
+ tool_name, tool_url = "arxiv", "http://127.0.0.1:8079/tools/arxiv/"
4
+ tools_name, tools_config = load_single_tools(tool_name, tool_url)
5
+ print(tools_name, tools_config)
6
+
7
+ qa = STQuestionAnswerer()
8
+
9
+ agent = qa.load_tools(tools_name, tools_config)
10
+
11
+ agent("List some papers written by Timo Schick")
bing_search/__init__.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ from ..registry import register
2
+
3
+
4
+ @register("bing_search")
5
+ def bing_search():
6
+ from .api import build_tool
7
+
8
+ return build_tool
bing_search/api.py ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import requests
2
+ from bs4 import BeautifulSoup
3
+ from ..tool import Tool
4
+ from enum import Enum
5
+ from typing import Tuple
6
+
7
+
8
+ # search result list chunk size
9
+ SEARCH_RESULT_LIST_CHUNK_SIZE = 3
10
+ # result target page text chunk content length
11
+ RESULT_TARGET_PAGE_PER_TEXT_COUNT = 500
12
+
13
+
14
+ class BingAPI:
15
+ """
16
+ A class for performing searches on the Bing search engine.
17
+
18
+ Attributes
19
+ ----------
20
+ bing_api : BingAPI
21
+ The Bing API to use for performing searches.
22
+
23
+ Methods
24
+ -------
25
+ __init__(self, subscription_key: str) -> None:
26
+ Initialize the BingSearch instance with the given subscription key.
27
+ search_top3(self, key_words: str) -> List[str]:
28
+ Perform a search on the Bing search engine with the given keywords and return the top 3 search results.
29
+ load_page_index(self, idx: int) -> str:
30
+ Load the detailed page of the search result at the given index.
31
+ """
32
+
33
+ def __init__(self, subscription_key: str) -> None:
34
+ """
35
+ Initialize the BingSearch instance with the given subscription key.
36
+
37
+ Parameters
38
+ ----------
39
+ subscription_key : str
40
+ The subscription key to use for the Bing API.
41
+ """
42
+ self._headers = {"Ocp-Apim-Subscription-Key": subscription_key}
43
+ self._endpoint = "https://api.bing.microsoft.com/v7.0/search"
44
+ self._mkt = "en-US"
45
+
46
+ def search(self, key_words: str, max_retry: int = 3):
47
+ for _ in range(max_retry):
48
+ try:
49
+ result = requests.get(
50
+ self._endpoint,
51
+ headers=self._headers,
52
+ params={"q": key_words, "mkt": self._mkt},
53
+ timeout=10,
54
+ )
55
+ except Exception:
56
+ # failed, retry
57
+ continue
58
+
59
+ if result.status_code == 200:
60
+ result = result.json()
61
+ # search result returned here
62
+ return result
63
+ else:
64
+ # failed, retry
65
+ continue
66
+ raise RuntimeError("Failed to access Bing Search API.")
67
+
68
+ def load_page(self, url: str, max_retry: int = 3) -> Tuple[bool, str]:
69
+ for _ in range(max_retry):
70
+ try:
71
+ res = requests.get(url, timeout=15)
72
+ if res.status_code == 200:
73
+ res.raise_for_status()
74
+ else:
75
+ raise RuntimeError(
76
+ "Failed to load page, code {}".format(res.status_code)
77
+ )
78
+ except Exception:
79
+ # failed, retry
80
+ res = None
81
+ continue
82
+ res.encoding = res.apparent_encoding
83
+ content = res.text
84
+ break
85
+ if res is None:
86
+ return (
87
+ False,
88
+ "Timeout for loading this page, Please try to load another one or search again.",
89
+ )
90
+ try:
91
+ soup = BeautifulSoup(content, "html.parser")
92
+ paragraphs = soup.find_all("p")
93
+ page_detail = ""
94
+ for p in paragraphs:
95
+ text = p.get_text().strip()
96
+ page_detail += text
97
+ return True, page_detail
98
+ except Exception:
99
+ return (
100
+ False,
101
+ "Timeout for loading this page, Please try to load another one or search again.",
102
+ )
103
+
104
+
105
+ class CONTENT_TYPE(Enum):
106
+ SEARCH_RESULT = 0
107
+ RESULT_TARGET_PAGE = 1
108
+
109
+
110
+ class ContentItem:
111
+ def __init__(self, type: CONTENT_TYPE, data):
112
+ self.type = type
113
+ self.data = data
114
+
115
+
116
+ class DigestData:
117
+ title: str
118
+ desc: str
119
+ chunkIndex: int
120
+
121
+
122
+ class Digest:
123
+ datas: list
124
+ checked: bool
125
+
126
+
127
+ class SessionData:
128
+ topic = None
129
+ content = []
130
+ digests = []
131
+ curResultChunk = 0
132
+ curTargetPageResultChunk = 0
133
+
134
+
135
+ data = SessionData()
136
+
137
+
138
+ def build_tool(config) -> Tool:
139
+ tool = Tool(
140
+ "Bing_search",
141
+ "Bing_search",
142
+ name_for_model="Bing_search",
143
+ name_for_human="Bing_search",
144
+ description_for_model="""Perform Search on Bing Search engine.
145
+ Use search_top3(key: str) to get top 3 search results after input the key to search.
146
+ Use load_page_index(idx: int) to load the detailed page of the search result.""",
147
+ description_for_human="Bing search API for browsing the internet and search for results.",
148
+ logo_url="https://your-app-url.com/.well-known/logo.png",
149
+ contact_email="[email protected]",
150
+ legal_info_url="[email protected]",
151
+ )
152
+
153
+ if "debug" in config and config["debug"]:
154
+ bing_api = config["bing_api"]
155
+ else:
156
+ bing_api = BingAPI(config["subscription_key"])
157
+
158
+ @tool.get("/search_top3")
159
+ def search_top3(key_words: str) -> str:
160
+ """Search key words, return top 3 search results."""
161
+ top3 = search_all(key_words)[:3]
162
+ output = ""
163
+ for idx, item in enumerate(top3):
164
+ output += "page: " + str(idx + 1) + "\n"
165
+ output += "title: " + item["name"] + "\n"
166
+ output += "summary: " + item["snippet"] + "\n"
167
+ return output
168
+
169
+ def search_all(key_words: str, data: SessionData = data) -> list:
170
+ """Search key_words, return a list of class SearchResult.
171
+ Keyword arguments:
172
+ key_words -- key words want to search
173
+ """
174
+ result = bing_api.search(key_words)
175
+ data.content = []
176
+ data.content.append(ContentItem(CONTENT_TYPE.SEARCH_RESULT, result))
177
+ data.curResultChunk = 0
178
+ return data.content[-1].data["webPages"]["value"]
179
+
180
+ @tool.get("/load_page_index")
181
+ def load_page_index(idx: str) -> str:
182
+ """Load page detail of the search result indexed as 'idx', and return the content of the page."""
183
+ idx = int(idx)
184
+ href, text = load_page(idx - 1)
185
+ if len(text) > 500:
186
+ return text[:500]
187
+ else:
188
+ return text
189
+
190
+ def load_page(idx: int, data: SessionData = data):
191
+ top = data.content[-1].data["webPages"]["value"]
192
+ ok, content = bing_api.load_page(top[idx]["url"])
193
+ if ok:
194
+ return top[idx]["url"], content
195
+ else:
196
+ return (
197
+ " ",
198
+ "Timeout for loading this page, Please try to load another one or search again.",
199
+ )
200
+
201
+ return tool
bing_search/readme.md ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ # Bing search tool
2
+
3
+ Contributor [ChengQian](https://github.com/qiancheng0)
bing_search/test_bing.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi.testclient import TestClient
2
+ from .api import build_tool, BingAPI
3
+ from typing import Tuple
4
+
5
+ BING_TEST_SEARCH = {
6
+ "webPages": {
7
+ "value": [
8
+ {"url": "a", "name": "test a", "snippet": "page a"},
9
+ {"url": "b", "name": "test b", "snippet": "page b"},
10
+ {"url": "c", "name": "test c", "snippet": "page c"},
11
+ ]
12
+ }
13
+ }
14
+
15
+
16
+ class MockBingAPI(BingAPI):
17
+ def __init__(self):
18
+ pass
19
+
20
+ def search(self, key_words: str, max_retry: int = 3):
21
+ return BING_TEST_SEARCH
22
+
23
+ def load_page(self, url: str, max_retry: int = 3) -> Tuple[bool, str]:
24
+ if url == "a":
25
+ return True, "This is page a"
26
+ elif url == "b":
27
+ return True, "This is page b"
28
+ elif url == "c":
29
+ return True, "This is page c"
30
+ else:
31
+ return (
32
+ False,
33
+ "Timeout for loading this page, Please try to load another one or search again.",
34
+ )
35
+
36
+
37
+ app = build_tool({"debug": True, "bing_api": MockBingAPI()})
38
+ client = TestClient(app)
39
+
40
+
41
+ def test_bing():
42
+ # test search top 3
43
+ response = client.get("/search_top3", params={"key_words": "test"})
44
+
45
+ output = ""
46
+ for idx, item in enumerate(BING_TEST_SEARCH["webPages"]["value"]):
47
+ output += "page: " + str(idx + 1) + "\n"
48
+ output += "title: " + item["name"] + "\n"
49
+ output += "summary: " + item["snippet"] + "\n"
50
+ assert response.status_code == 200
51
+ assert response.json() == output
52
+
53
+ # test load page
54
+ response = client.get("/load_page_index", params={"idx": "1"})
55
+ assert response.status_code == 200
56
+ assert response.json() == "This is page a"
57
+
58
+ response = client.get("/load_page_index", params={"idx": "2"})
59
+ assert response.status_code == 200
60
+ assert response.json() == "This is page b"
chemical/__init__.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ from ..registry import register
2
+
3
+
4
+ @register("chemical-prop")
5
+ def chemical_prop():
6
+ from .prop import build_tool
7
+
8
+ return build_tool
chemical/prop/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .api import build_tool