File size: 21,745 Bytes
e67043b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
import requests
from pydantic import BaseModel
import numpy as np
from bs4 import BeautifulSoup
import json
from ..tool import Tool
from typing import List, Optional, Union
from tenacity import retry, wait_random_exponential, stop_after_attempt
from numpy import dot
from numpy.linalg import norm
import openai
import pickle


@retry(wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(6))
def generate_response(prompt, token=2500):
    response = openai.Completion.create(
        model="text-davinci-003",
        prompt=prompt,
        temperature=0.1,
        max_tokens=min(2500, token),
    )
    return response["choices"][0]["text"]


@retry(wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(6))
def get_embedding(text: str, model="text-embedding-ada-002"):
    return openai.Embedding.create(input=[text], model=model)["data"][0]["embedding"]


standard = [
    "type of study",
    "purpose",
    "challenge",
    "dataset",
    "task",
    "design",
    "method",
    "backbone",
    "baseline",
    "model",
    "participant",
    "patient",
    "intervention",
    "group",
    "duration",
    "measurement",
    "performance",
    "result",
    "conclusion",
    "safety",
]
stan_emb = []
for item in standard:
    stan_emb.append(np.array(get_embedding(item)))


def dense(topic, docs):
    try:
        top_emb = np.array(get_embedding(topic))
    except Exception as e:
        return [-1]
    nm = norm(top_emb)
    doc_sim = []
    for ky in docs.keys():
        try:
            if docs[ky] is None:
                tmp = [0] * len(top_emb)
            elif len(docs[ky].split(" ")) > 100:
                tmp = get_embedding(docs[ky][0])
            else:
                tmp = [0] * len(top_emb)
        except Exception as e:
            tmp = [0] * len(top_emb)
        sim = dot(top_emb, np.array(tmp)) / (nm * norm(np.array(tmp)) + 1e-5)
        doc_sim.append(sim)
    doc_sim = np.array(doc_sim)
    return doc_sim


def semantic_query(term, retmax=100):
    if retmax > 100:
        print("semantic searching fewer than 100!")
        retmax = 100
    for cnt in range(10):
        url = (
            "https://api.semanticscholar.org/graph/v1/paper/search?query="
            + term.replace(" ", "+")
            + "&limit="
            + str(retmax)
            + "&fields=title,authors,abstract"
        )
        re = requests.get(url)
        results = json.loads(re.text)
        docs = {}
        if "data" in results:
            break
        tmp = 0
        while tmp < 10000:
            tmp += 1
    if "data" not in results:
        return docs
    for item in results["data"]:
        if item["abstract"] is not None:
            docs[item["title"]] = item["abstract"]
    return docs


def draw_term(topic):
    prp = (
        """Concatenate the searching keywords (fewer than 5) in the topic with '+'. For example, when given 'experiments about the harmness of using insulin for teenagers to treat diabetes', answer me with 'insulin+harmness+diabetes+teenager'; when given 'The Operational Situation of Bookstores after Digitalization of Reading', answer me with 'bookstore+digitalization'. Topic: """
        + topic
        + ". Give me the answer with no extra words. "
    )
    response = generate_response(prp)
    terms = response.replace("\n", " ").split("+")
    st = ""
    for term in terms[:4]:
        st += term + "+"
    print(st)
    return st[:-1]


def initial(topic, term=None, ret=100):
    if term is None:
        term = draw_term(topic)
    docs = semantic_query(term.replace(" ", "+")[:50], ret)
    sims = dense(topic, docs)
    return docs, sims


def split_question(criteria):
    prp = """Please decompose the complex query into a series of simple questions. You can refer to these examples: [QUERY] Randomized controlled and controlled clinical trials which evaluated individual education for adults with type 2 diabetes. The intervention was individual face-to-face patient education while control individuals received usual care, routine treatment or group education. Only studies that assessed outcome measures at least six months from baseline were included. [QUESTIONS] ###1 Is a randomised controlled trial (RCT) or a controlled clinical trial conducted in the article? ###2 Does the article compare individual face-to-face patient education versus usual care, routine treatment or group education? ###3 Are the patients in the article adults with type 2 diabetes? ###4 Does the article outcome measure at least six months from baseline? [QUERY] Studies were included if they conduct experiments of comparing graph neural networks with other deep learning models. Performance on molecular datasets is reported. [QUESTIONS] ###1 Does the article conduct experiments of graph neural networks? ###2 Does the article compare different deep learning models? ###3 Does the article report performance on molecular datasets?
    Now the QUERY is: 
    """
    prp += criteria
    prp += " What are the decomposed QUESTIONS? "
    response = generate_response(prp)
    orig = response.strip("\n")
    # print('Split Questions: '+orig)
    if orig.find("###") == -1:
        cnt = 1
        while orig.find(str(cnt) + ". ") > -1:
            orig = orig.replace(str(cnt) + ". ", "###" + str(cnt) + " ")
    segs = orig.split("###")
    ques = []
    for seg in segs:
        if len(seg.split(" ")) < 6:
            continue
        if seg[0].isdigit() == False:
            continue
        ques.append(seg[2:])
    return ques


def judge(pred):
    if (
        pred.find("No. ") > -1
        or pred.find("No, ") > -1
        or pred.find("are not") > -1
        or pred.find("is not") > -1
        or pred.find("does not") > -1
        or pred.find("do not") > -1
    ):
        return 0
    else:
        return 1


def check_doc(til, doc, ques):
    string = ""
    for idx, que in enumerate(ques):
        string += str(idx + 1) + ". " + que + " Why? "
    prp = """Read the following article and answer the questions. 
    [Article]

    """
    prp += til + ". " + doc[:10000]
    prp += "[Questions] " + string
    lt = len(prp.split(" "))
    response = generate_response(prp, 4000 - 2 * lt)
    orig = response.strip("\n")
    # print('Title: ', til, ', Check: ', orig.replace('\n', ' '))
    cnt = 2
    preds = []
    orig = " " + orig.replace("\n", " ")
    if orig.find(" 1. ") > -1:
        orig = orig.split(" 1. ")[-1]
        while orig.find(" " + str(cnt) + ". ") > -1:
            pred = orig.split(" " + str(cnt) + ". ")[0]
            preds.append(pred)
            orig = orig.split(" " + str(cnt) + ". ")[-1]
            cnt += 1
        preds.append(orig)
    else:
        preds = [orig]
    sm = 0
    prob = []
    for idx, pred in enumerate(preds):
        if judge(pred):
            sm += 1
        else:
            if idx < len(ques):
                prob.append([ques[idx], pred])
    sm = float(sm) / float(len(preds))
    # print('Score: ', sm)
    return sm, prob


def draw_conclusion(topic, allcon):
    prp = (
        "We want to explore "
        + topic
        + ". Read the analysis table for several articles and summarize your conclusion. # Table: "
        + "\n"
        + allcon
        + "\n # Conclusion: "
    )
    lt = len(prp.split(" "))
    response = generate_response(prp, 4000 - 2 * lt)
    print(allcon)
    print(response)
    return response.replace("\n", " ")


def draw_subtable(pth, topic, docs):
    fw = open(pth, "w")
    cnt = 1
    for ky in docs.keys():
        fw.write("Table #" + str(cnt) + "\n")
        cnt += 1
        prp = (
            "We want to explore "
            + topic
            + ". Read the following article and list the key elements and values of the experiment into a concise markdown table. Article: "
        )
        prp += ky + ". " + docs[ky]
        prp += "Table: "
        lt = len(prp.split(" "))
        response = generate_response(prp, 4000 - 2 * lt)
        fw.write(response.strip("\n"))
        fw.write("\n")
        fw.flush()
    fw.close()


def extra_draw(pth, docs, extra_query):
    fw = open(pth, "w")
    cnt = 1
    for idx, ky in enumerate(docs.keys()):
        fw.write("Table #" + str(cnt) + "\n")
        cnt += 1
        if extra_query[idx] != "":
            prp = extra_query[idx] + ky + ". " + docs[ky]
            prp += "Table: "
            lt = len(prp.split(" "))
            response = generate_response(prp, 4000 - 2 * lt)
            fw.write(response.strip("\n"))
            fw.write("\n")
            fw.flush()
    fw.close()


def deep_reduce(item):
    tag = 0
    item_emb = get_embedding(item.lower())
    sims = []
    for stan in stan_emb:
        sims.append(
            dot(stan, np.array(item_emb))
            / (norm(stan) * norm(np.array(item_emb)) + 1e-5)
        )
    sims = np.array(sims)
    sr = np.argmax(sims)
    if sims[sr] > 0.85:
        item = standard[sr]
        tag = 1
    return item, tag


def convert(table0):
    dic = {}
    table = []
    for tab in table0:
        if tab.find("|") == -1:
            if len(tab.split(":")) == 2:
                tab = "| " + tab.split(":")[0] + " | " + tab.split(":")[1] + " |"
            else:
                continue
        if tab.strip(" ")[0] != "|":
            tab = "|" + tab
        if tab.strip(" ")[-1] != "|":
            tab = tab + "|"
        table.append(tab)
    if len(table) < 2:
        return dic
    segs = table[0].strip("\n").strip(" ")[1:-1].split("|")
    if len(segs) < 2:
        return dic
    tag = 1
    for seg in segs:
        wd, tmptag = deep_reduce(seg)
        if tmptag == 0:
            tag = 0
            break
    if tag and len(table) > 2:
        vals = table[2].strip("\n").strip(" ")[1:-1].split("|")
        if len(vals) != len(segs):
            return {}
        for idx in range(len(segs)):
            wd, tmptag = deep_reduce(segs[idx])
            dic[wd] = vals[idx]
        return dic
    for line in table:
        wds = line.strip("\n").strip(" ")[1:-1].split("|")
        if len(wds) != 2:
            continue
        wd, tmptag = deep_reduce(wds[0])
        if tmptag:
            dic[wd] = wds[1]
    return dic


def combine(tables, tables1=None, crit=None):
    extra_query = []
    if tables1 is not None:
        if len(tables) != len(tables1):
            print("error")
        else:
            for idx in range(len(tables)):
                if tables1[idx] is not None:
                    tables[idx].update(tables1[idx])
    bigtab = {}
    kys = []
    for tab in tables:
        kys += list(tab.keys())
    kys = set(kys)
    if crit is not None:
        for jdx, tab in enumerate(tables):
            prp = ""
            for ky in kys:
                if ky not in tab:
                    prp += ky + ", "
            if prp == "":
                extra_query.append("")
            else:
                ask = (
                    "We want to explore "
                    + crit
                    + ". Read the following article and list the "
                    + prp[:-2]
                    + " of the trial into a concise markdown table. Article: "
                )
                extra_query.append(ask)
    for ky in kys:
        line = " | "
        for tab in tables:
            if ky not in tab:
                line += "N/A"
            else:
                line += tab[ky]
            line += " | "
        bigtab[ky] = line
    return bigtab, extra_query


def get_table(pth, crit):
    lines = open(pth).readlines()[1:]
    tmprec = []
    rec = []
    for line in lines:
        if line[:7] == "Table #":
            rec.append(tmprec)
            tmprec = []
        else:
            tmprec.append(line.strip("\n"))
    rec.append(tmprec)
    dicrec = []
    for tab in rec:
        dicrec.append(convert(tab))
    orig_tab, extra = combine(dicrec, crit=crit)
    return orig_tab, dicrec, extra


def final_table(pth, dicrec):
    lines = open(pth).readlines()[1:]
    tmprec = []
    rec = []
    for line in lines:
        if line[:7] == "Table #":
            rec.append(tmprec)
            tmprec = []
        else:
            tmprec.append(line.strip("\n"))
    rec.append(tmprec)
    dicrec1 = []
    for tab in rec:
        if len(tab) == 0:
            dicrec1.append(None)
        else:
            dicrec1.append(convert(tab))
    final_tab, extra = combine(dicrec, tables1=dicrec1)
    return final_tab


def print_table(tab):
    allcon = ""
    kys = list(tab.keys())
    if len(kys) == 0:
        return allcon
    lt = len(tab[kys[0]].strip(" | ").split("|"))
    header = " | Elements | "
    splitter = " | ----- | "
    for i in range(lt):
        header += str(i + 1) + " | "
        splitter += "---------- | "
    print(header)
    print(splitter)
    allcon += header + "\n"
    allcon += splitter + "\n"
    for ky in kys:
        line = " | " + ky + tab[ky]
        print(line)
        allcon += line + "\n"
    return allcon


class GetNameResponse(BaseModel):

    """name list"""

    names: List[str]


class GetStructureResponse(BaseModel):

    """structure list"""

    state: int
    content: Optional[str] = None


class GetIDResponse(BaseModel):
    state: int
    content: Union[str, List[str]]


def build_tool(config) -> Tool:
    tool = Tool(
        "Meta Analysis Plugin",
        description="Analyzing literatures",
        name_for_model="Meta Analysis",
        description_for_model="Plugin for searching and analyzing literatures. All input should be a json like {'input': 'some input'}. Please use the provided questions and search step by step.",
        logo_url="https://your-app-url.com/.well-known/logo.png",
        contact_email="[email protected]",
        legal_info_url="[email protected]",
    )
    QRY = "https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/"

    @tool.get("/search_literature")
    def search_literature(topic: str, maxnum: int, term: str):
        """search for the given topic literatures in the database and return the path of literatures file and the number of literatures. the searching term should be key words in the topic (2-5 words). the number of literatures will be less than maxnum (recommend 30)"""
        topic = topic.replace("AND", "").replace("OR", "")
        if len(topic) < 4:
            term = topic
        else:
            term = term.replace("AND", "").replace("OR", "")
        if len(term.split(" ")) > 4:
            term = None
        retmax = min(maxnum, 50)
        if retmax == 1:
            newdocs, sims = initial(topic, term, 1)
        else:
            docs, sims = initial(topic, term)
            srts = np.argsort(-sims)
            kys = list(docs.keys())
            newdocs = {}
            for sr in srts:
                if sims[sr] < 0.72 and len(newdocs) > 0:
                    break
                if len(newdocs) >= retmax:
                    break
                newdocs[kys[sr]] = docs[kys[sr]]
        pickle.dump(
            newdocs, open("searchdoc_" + topic.replace(" ", "_")[:50] + ".pkl", "wb")
        )
        js = {}
        js["literature_path"] = "searchdoc_" + topic.replace(" ", "_")[:50] + ".pkl"
        js["literature_number"] = len(newdocs)
        return js

    @tool.get("/split_criteria")
    def split_criteria(criteria: str):
        """split the screening requirements in the criteria of the literatures into a series of simple yes/no problems, and return the path of the splitted questions."""
        ques = split_question(criteria)
        np.save("split_ques_" + criteria.replace(" ", "_")[:50] + ".npy", ques)
        js = {
            "question number": len(ques),
            "question_path": "split_ques_" + criteria.replace(" ", "_")[:50] + ".npy",
        }
        return js

    @tool.get("/literature_filter")
    def literature_filter(concat_path: str):
        """Check each literatures saved in the literature path according to the questions saved in the question path, and return the literatures that match the requirements. Concat path is the concatenated string of literature path and question path connected with '&&&'."""
        if len(concat_path.split("&&&")) != 2:
            js = {
                "error": "input path cannot recognize the literature path and the question path. please input 'LITERATURE_PATH&&&QUESTION_PATH'. "
            }
            return js
        liter_pth = concat_path.split("&&&")[0].strip(" ")
        try:
            docs = pickle.load(open(liter_pth, "rb"))
        except Exception as e:
            js = {"error": "cannot open the given literature path!"}
            return js
        ques_pth = concat_path.split("&&&")[1].strip(" ")
        try:
            ques = np.load(ques_pth, allow_pickle=True)
        except Exception as e:
            js = {"error": "cannot open the given question path!"}
            return js
        tmp = []
        for ky in docs:
            sm, prob = check_doc(ky, docs[ky], ques)
            tmp.append(sm)
        tmp = np.array(tmp)
        srts = np.argsort(-tmp)
        finalrecs = []
        kys = list(docs.keys())
        for sr in srts:
            if tmp[sr] < 0.6 and len(finalrecs) > 0:
                break
            if len(finalrecs) > 9:
                break
            finalrecs.append(kys[sr])
        finaldocs = {}
        for ky in finalrecs:
            finaldocs[ky] = docs[ky]
        pickle.dump(finaldocs, open("final_" + liter_pth, "wb"))
        js = {
            "number of matched literatures": len(finaldocs),
            "matched_literature_path": "final_" + liter_pth,
        }
        return js

    @tool.get("/draw_table")
    def draw_table(literature_path_and_topic: str):
        """extract the important elements of the literatures recorded in the literature path and return the path of table records. concatenate the literature path and the analysis topic with '&&&' as the input."""
        if len(literature_path_and_topic.split("&&&")) != 2:
            js = {
                "error": "input path cannot recognize the literature path and the topic. please input 'LITERATURE_PATH&&&TOPIC'. "
            }
            return js
        literature_path, topic = literature_path_and_topic.split("&&&")
        try:
            finaldocs = pickle.load(open(literature_path.strip(" "), "rb"))
        except Exception as e:
            js = {"error": "cannot open the given literature path!"}
            return js
        draw_subtable(
            "subtable_" + literature_path.strip(" ").strip(".pkl") + ".txt",
            topic,
            finaldocs,
        )
        js = {"table_path": "subtable_" + literature_path.strip(".pkl") + ".txt"}
        return js

    @tool.get("/combine_table")
    def combine_table(
        literature_path: str, table_path: str, topic: str
    ):  # ( table_path_and_topic: str ):
        """combine several tables recorded in the table path into one comprehensive record table and return. give the literature path, table path and the exploring topic as the input."""
        # if len(table_path_and_topic.split('&&&'))!=2:
        #    js = {'error': "input path cannot recognize the table path and the topic. please input 'TABLE_PATH&&&TOPIC'. "}
        #    return js
        # table_path, topic = table_path_and_topic.split('&&&')
        try:
            finaldocs = pickle.load(open(literature_path, "rb"))
        except Exception as e:
            js = {"error": "cannot open the given literature path!"}
            return js
        orig_tab, dicrec, extra = get_table(table_path.strip(" "), topic)
        extra_draw("extra_" + table_path.strip(" "), finaldocs, extra)
        final_tab = final_table("extra_" + table_path.strip(" "), dicrec)
        allcon = print_table(final_tab)
        fw = open("big_" + table_path, "w")
        fw.write(allcon)
        fw.close()
        js = {"big table path": "big_" + table_path}
        return js

    @tool.get("/generate_summary")
    def generate_summary(topic: str, table_path: str):
        """given the exploring topic and the record table path of the literatures, this tool generates a paragraph of summary."""
        try:
            table = open(table_path).read()
        except Exception as e:
            js = {"error": "cannot open the table file!"}
            return js
        con = draw_conclusion(topic, table)
        js = {"summary": con}
        return js

    @tool.get("/print_literature")
    def print_literature(literature_path: str, print_num: int):
        """
        given the literature path and number that are required to display, this tool returns the title and abstract of the literature.
        """
        try:
            docs = pickle.load(open(literature_path, "rb"))
        except Exception as e:
            js = {"error": "cannot open the literature file!"}
            return js
        try:
            retmax = max(1, min(5, int(print_num)))
        except Exception as e:
            js = {"error": "illegal number of printing!"}
            return js
        kys = list(docs.keys())[:retmax]
        print_docs = []
        for ky in kys:
            print_docs.append({"Title": ky, "Abstract": docs[ky]})
        js = {"literature_num": len(print_docs), "content": print_docs}
        return js

    @tool.get("/print_tablefile")
    def print_tablefile(table_path: str):
        """
        given the table file path that are required to display, this tool reads the file and returns the string of the table.
        """
        try:
            con = open(table_path).read()
        except Exception as e:
            js = {"error": "cannot open the table file!"}
            return js
        js = {"table string": con}
        return js

    return tool