File size: 17,080 Bytes
b32e831 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
# -*- coding: utf-8 -*-
# Author: Gaojian Wang@ZJUICSR
# --------------------------------------------------------
# This source code is licensed under the Attribution-NonCommercial 4.0 International License.
# You can find the license in the LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# pip uninstall nvidia_cublas_cu11
import sys
sys.path.append('..')
import os
os.system(f'pip install dlib')
import torch
import numpy as np
from PIL import Image
from torch.nn import functional as F
import gradio as gr
import models_vit
from util.datasets import build_dataset
import argparse
from engine_finetune import test_all
import dlib
from huggingface_hub import hf_hub_download
P = os.path.abspath(__file__)
FRAME_SAVE_PATH = os.path.join(P[:-6], 'frame')
CKPT_SAVE_PATH = os.path.join(P[:-6], 'checkpoints')
CKPT_LIST = ['DfD Checkpoint_Fine-tuned on FF++',
'FAS Checkpoint_Fine-tuned on MCIO']
CKPT_NAME = {'DfD Checkpoint_Fine-tuned on FF++': 'finetuned_models/FF++_c23_32frames/checkpoint-min_val_loss.pth',
'FAS Checkpoint_Fine-tuned on MCIO': 'finetuned_models/MCIO_protocol/Both_MCIO/checkpoint-min_val_loss.pth' }
os.makedirs(FRAME_SAVE_PATH, exist_ok=True)
os.makedirs(CKPT_SAVE_PATH, exist_ok=True)
def get_args_parser():
parser = argparse.ArgumentParser('MAE fine-tuning for image classification', add_help=False)
parser.add_argument('--batch_size', default=64, type=int,
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
parser.add_argument('--epochs', default=50, type=int)
parser.add_argument('--accum_iter', default=1, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
# Model parameters
parser.add_argument('--model', default='vit_large_patch16', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--input_size', default=224, type=int,
help='images input size')
parser.add_argument('--normalize_from_IMN', action='store_true',
help='cal mean and std from imagenet, else from pretrain datasets')
parser.set_defaults(normalize_from_IMN=True)
parser.add_argument('--apply_simple_augment', action='store_true',
help='apply simple data augment')
parser.add_argument('--drop_path', type=float, default=0.1, metavar='PCT',
help='Drop path rate (default: 0.1)')
# Optimizer parameters
parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1e-3, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--layer_decay', type=float, default=0.75,
help='layer-wise lr decay from ELECTRA/BEiT')
parser.add_argument('--min_lr', type=float, default=1e-6, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N',
help='epochs to warmup LR')
# Augmentation parameters
parser.add_argument('--color_jitter', type=float, default=None, metavar='PCT',
help='Color jitter factor (enabled only when not using Auto/RandAug)')
parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". " + "(default: rand-m9-mstd0.5-inc1)'),
parser.add_argument('--smoothing', type=float, default=0.1,
help='Label smoothing (default: 0.1)')
# * Random Erase params
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT',
help='Random erase prob (default: 0.25)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--resplit', action='store_true', default=False,
help='Do not random erase first (clean) augmentation split')
# * Mixup params
parser.add_argument('--mixup', type=float, default=0,
help='mixup alpha, mixup enabled if > 0.')
parser.add_argument('--cutmix', type=float, default=0,
help='cutmix alpha, cutmix enabled if > 0.')
parser.add_argument('--cutmix_minmax', type=float, nargs='+', default=None,
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
parser.add_argument('--mixup_prob', type=float, default=1.0,
help='Probability of performing mixup or cutmix when either/both is enabled')
parser.add_argument('--mixup_switch_prob', type=float, default=0.5,
help='Probability of switching to cutmix when both mixup and cutmix enabled')
parser.add_argument('--mixup_mode', type=str, default='batch',
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
# * Finetuning params
parser.add_argument('--finetune', default='',
help='finetune from checkpoint')
parser.add_argument('--global_pool', action='store_true')
parser.set_defaults(global_pool=True)
parser.add_argument('--cls_token', action='store_false', dest='global_pool',
help='Use class token instead of global pool for classification')
# Dataset parameters
parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str,
help='dataset path')
parser.add_argument('--nb_classes', default=1000, type=int,
help='number of the classification types')
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default='',
help='path where to tensorboard log')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='',
help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true',
help='Perform evaluation only')
parser.set_defaults(eval=True)
parser.add_argument('--dist_eval', action='store_true', default=False,
help='Enabling distributed evaluation (recommended during training for faster monitor')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
return parser
args = get_args_parser()
args = args.parse_args()
args.nb_classes = 2
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = models_vit.__dict__['vit_base_patch16'](
num_classes=args.nb_classes,
drop_path_rate=args.drop_path,
global_pool=args.global_pool,
)
def load_model(ckpt):
if ckpt=='hoose from here':
return gr.update()
args.resume = os.path.join(CKPT_SAVE_PATH, ckpt)
if os.path.isfile(args.resume) == False:
hf_hub_download(local_dir=CKPT_SAVE_PATH,
repo_id='Wolowolo/fsfm-3c',
filename=ckpt)
checkpoint = torch.load(args.resume, map_location='cpu')
model.load_state_dict(checkpoint['model'])
return gr.update()
def get_boundingbox(face, width, height, minsize=None):
"""
From FF++:
https://github.com/ondyari/FaceForensics/blob/master/classification/detect_from_video.py
Expects a dlib face to generate a quadratic bounding box.
:param face: dlib face class
:param width: frame width
:param height: frame height
:param cfg.face_scale: bounding box size multiplier to get a bigger face region
:param minsize: set minimum bounding box size
:return: x, y, bounding_box_size in opencv form
"""
x1 = face.left()
y1 = face.top()
x2 = face.right()
y2 = face.bottom()
size_bb = int(max(x2 - x1, y2 - y1) * 1.3)
if minsize:
if size_bb < minsize:
size_bb = minsize
center_x, center_y = (x1 + x2) // 2, (y1 + y2) // 2
# Check for out of bounds, x-y top left corner
x1 = max(int(center_x - size_bb // 2), 0)
y1 = max(int(center_y - size_bb // 2), 0)
# Check for too big bb size for given x, y
size_bb = min(width - x1, size_bb)
size_bb = min(height - y1, size_bb)
return x1, y1, size_bb
def extract_face(frame):
face_detector = dlib.get_frontal_face_detector()
image = np.array(frame.convert('RGB'))
faces = face_detector(image, 1)
if len(faces) > 0:
# For now only take the biggest face
face = faces[0]
# Face crop and rescale(follow FF++)
x, y, size = get_boundingbox(face, image.shape[1], image.shape[0])
# Get the landmarks/parts for the face in box d only with the five key points
cropped_face = image[y:y + size, x:x + size]
# cropped_face = cv2.resize(cropped_face, (224, 224), interpolation=cv2.INTER_CUBIC)
return Image.fromarray(cropped_face)
else:
return None
def get_frame_index_uniform_sample(total_frame_num, extract_frame_num):
interval = np.linspace(0, total_frame_num - 1, num=extract_frame_num, dtype=int)
return interval.tolist()
import cv2
def extract_face_from_fixed_num_frames(src_video, dst_path, num_frames=None, device='cpu'):
"""
1) extract specific num of frames from videos in [1st(index 0) frame, last frame] with uniform sample interval
2) extract face from frame with specific enlarge size
"""
video_capture = cv2.VideoCapture(src_video)
total_frames = video_capture.get(7)
# extract from the 1st(index 0) frame
if num_frames is not None:
frame_indices = get_frame_index_uniform_sample(total_frames, num_frames)
else:
frame_indices = range(int(total_frames))
for frame_index in frame_indices:
video_capture.set(cv2.CAP_PROP_POS_FRAMES, frame_index)
ret, frame = video_capture.read()
image = Image.fromarray(cv2.cvtColor(frame,cv2.COLOR_BGR2RGB))
img = extract_face(image)
if img == None:
continue
img = img.resize((224, 224), Image.BICUBIC)
if not ret:
continue
save_img_name = f"frame_{frame_index}.png"
img.save(os.path.join(dst_path, '0', save_img_name))
# cv2.imwrite(os.path.join(dst_path, '0', save_img_name), frame)
video_capture.release()
# cv2.destroyAllWindows()
def FSFM3C_video_detection(video):
model.to(device)
# extract frames
num_frames = 32
files = os.listdir(FRAME_SAVE_PATH)
num_files = len(files)
frame_path = os.path.join(FRAME_SAVE_PATH, str(num_files))
os.makedirs(frame_path, exist_ok=True)
os.makedirs(os.path.join(frame_path, '0'), exist_ok=True)
extract_face_from_fixed_num_frames(video, frame_path, num_frames=num_frames, device=device)
args.data_path = frame_path
args.batch_size = 32
dataset_val = build_dataset(is_train=False, args=args)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False
)
frame_preds_list, video_y_pred_list = test_all(data_loader_val, model, device)
return video_y_pred_list
def FSFM3C_image_detection(image):
model.to(device)
files = os.listdir(FRAME_SAVE_PATH)
num_files = len(files)
frame_path = os.path.join(FRAME_SAVE_PATH, str(num_files))
os.makedirs(frame_path, exist_ok=True)
os.makedirs(os.path.join(frame_path, '0'), exist_ok=True)
save_img_name = f"frame_0.png"
img = extract_face(image)
if img is None:
return ['Invalid Input']
img = img.resize((224, 224), Image.BICUBIC)
img.save(os.path.join(frame_path, '0', save_img_name))
args.data_path = frame_path
args.batch_size = 1
dataset_val = build_dataset(is_train=False, args=args)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False
)
frame_preds_list, video_y_pred_list = test_all(data_loader_val, model, device)
return video_y_pred_list
# WebUI
with gr.Blocks() as demo:
gr.HTML("<h1 style='text-align: center;'>🦱 Real Facial Image&Video Detection <br> Against Face Forgery and Spoofing (Deepfake/Diffusion/Presentation-attacks)</h1>")
gr.Markdown("# ---Based on the fine-tuned model that is pre-trained from [FSFM-3C](https://fsfm-3c.github.io/)")
gr.Markdown("## Release <br>"
"V1.0 [2024-12] (Current): <br>"
"[1] Create this page with basic detectors (simply fine-tuned models that follow the paper implementation): <br> "
" - DfD Checkpoint_Fine-tuned on FF++: FSFM VIT-B fine-tuned on the FF++ (c23, train&val sets, 32 frames per video, 4 manipulations) dataset <br>"
" - FAS Checkpoint_Fine-tuned on MCIO: FSFM VIT-B fine-tuned on the MCIO datasets (2 frames per video) <br> "
" Performance is limited because no any optimization of data, models, hyperparameters, etc. is done for downstream tasks")
gr.Markdown("### TODO: We will soon update practical models, and optimized interfaces, and provide more functions such as visualizations, a unified detector, and multi-modal diagnosis.")
gr.Markdown("> Please provide an <b>image</b> or a <b>video (<100s </b>, default to uniform sampling 32 frames)</b> for detection:")
with gr.Column():
ckpt_select_dropdown = gr.Dropdown(
label = "Select the Model Checkpoint for Detection (🖱️ below)",
choices = ['choose from here'] + CKPT_LIST + ['Continuously updating...'],
multiselect = False,
value = 'choose from here',
interactive = True,
)
with gr.Row(elem_classes="center-align"):
with gr.Column(scale=5):
gr.Markdown(
"## Image Detection"
)
image = gr.Image(label="Upload/Capture/Paste your image", type="pil")
image_submit_btn = gr.Button("Submit")
output_results_image = gr.Textbox(label="Detection Result")
with gr.Column(scale=5):
gr.Markdown(
"## Video Detection"
)
video = gr.Video(label="Upload/Capture your video")
video_submit_btn = gr.Button("Submit")
output_results_video = gr.Textbox(label="Detection Result")
image_submit_btn.click(
fn=FSFM3C_image_detection,
inputs=[image],
outputs=[output_results_image],
)
video_submit_btn.click(
fn=FSFM3C_video_detection,
inputs=[video],
outputs=[output_results_video],
)
ckpt_select_dropdown.change(
fn=load_model,
inputs=[ckpt_select_dropdown],
outputs=[ckpt_select_dropdown],
)
if __name__ == "__main__":
gr.close_all()
demo.queue()
demo.launch() |