File size: 17,080 Bytes
b32e831
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
# -*- coding: utf-8 -*-
# Author: Gaojian Wang@ZJUICSR
# --------------------------------------------------------
# This source code is licensed under the Attribution-NonCommercial 4.0 International License.
# You can find the license in the LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# pip uninstall nvidia_cublas_cu11

import sys
sys.path.append('..')
import os
os.system(f'pip install dlib')
import torch
import numpy as np
from PIL import Image
from torch.nn import functional as F

import gradio as gr

import models_vit
from util.datasets import build_dataset
import argparse
from engine_finetune import test_all
import dlib
from huggingface_hub import hf_hub_download


P = os.path.abspath(__file__)
FRAME_SAVE_PATH = os.path.join(P[:-6], 'frame')
CKPT_SAVE_PATH = os.path.join(P[:-6], 'checkpoints')
CKPT_LIST = ['DfD Checkpoint_Fine-tuned on FF++',
             'FAS Checkpoint_Fine-tuned on MCIO']
CKPT_NAME = {'DfD Checkpoint_Fine-tuned on FF++': 'finetuned_models/FF++_c23_32frames/checkpoint-min_val_loss.pth',
             'FAS Checkpoint_Fine-tuned on MCIO': 'finetuned_models/MCIO_protocol/Both_MCIO/checkpoint-min_val_loss.pth' }
os.makedirs(FRAME_SAVE_PATH, exist_ok=True)
os.makedirs(CKPT_SAVE_PATH, exist_ok=True)


def get_args_parser():
    parser = argparse.ArgumentParser('MAE fine-tuning for image classification', add_help=False)
    parser.add_argument('--batch_size', default=64, type=int,
                        help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
    parser.add_argument('--epochs', default=50, type=int)
    parser.add_argument('--accum_iter', default=1, type=int,
                        help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')

    # Model parameters
    parser.add_argument('--model', default='vit_large_patch16', type=str, metavar='MODEL',
                        help='Name of model to train')

    parser.add_argument('--input_size', default=224, type=int,
                        help='images input size')
    parser.add_argument('--normalize_from_IMN', action='store_true',
                        help='cal mean and std from imagenet, else from pretrain datasets')
    parser.set_defaults(normalize_from_IMN=True)
    parser.add_argument('--apply_simple_augment', action='store_true',
                        help='apply simple data augment')

    parser.add_argument('--drop_path', type=float, default=0.1, metavar='PCT',
                        help='Drop path rate (default: 0.1)')

    # Optimizer parameters
    parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM',
                        help='Clip gradient norm (default: None, no clipping)')
    parser.add_argument('--weight_decay', type=float, default=0.05,
                        help='weight decay (default: 0.05)')

    parser.add_argument('--lr', type=float, default=None, metavar='LR',
                        help='learning rate (absolute lr)')
    parser.add_argument('--blr', type=float, default=1e-3, metavar='LR',
                        help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
    parser.add_argument('--layer_decay', type=float, default=0.75,
                        help='layer-wise lr decay from ELECTRA/BEiT')

    parser.add_argument('--min_lr', type=float, default=1e-6, metavar='LR',
                        help='lower lr bound for cyclic schedulers that hit 0')

    parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N',
                        help='epochs to warmup LR')

    # Augmentation parameters
    parser.add_argument('--color_jitter', type=float, default=None, metavar='PCT',
                        help='Color jitter factor (enabled only when not using Auto/RandAug)')
    parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME',
                        help='Use AutoAugment policy. "v0" or "original". " + "(default: rand-m9-mstd0.5-inc1)'),
    parser.add_argument('--smoothing', type=float, default=0.1,
                        help='Label smoothing (default: 0.1)')

    # * Random Erase params
    parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT',
                        help='Random erase prob (default: 0.25)')
    parser.add_argument('--remode', type=str, default='pixel',
                        help='Random erase mode (default: "pixel")')
    parser.add_argument('--recount', type=int, default=1,
                        help='Random erase count (default: 1)')
    parser.add_argument('--resplit', action='store_true', default=False,
                        help='Do not random erase first (clean) augmentation split')

    # * Mixup params
    parser.add_argument('--mixup', type=float, default=0,
                        help='mixup alpha, mixup enabled if > 0.')
    parser.add_argument('--cutmix', type=float, default=0,
                        help='cutmix alpha, cutmix enabled if > 0.')
    parser.add_argument('--cutmix_minmax', type=float, nargs='+', default=None,
                        help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
    parser.add_argument('--mixup_prob', type=float, default=1.0,
                        help='Probability of performing mixup or cutmix when either/both is enabled')
    parser.add_argument('--mixup_switch_prob', type=float, default=0.5,
                        help='Probability of switching to cutmix when both mixup and cutmix enabled')
    parser.add_argument('--mixup_mode', type=str, default='batch',
                        help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')

    # * Finetuning params
    parser.add_argument('--finetune', default='',
                        help='finetune from checkpoint')
    parser.add_argument('--global_pool', action='store_true')
    parser.set_defaults(global_pool=True)
    parser.add_argument('--cls_token', action='store_false', dest='global_pool',
                        help='Use class token instead of global pool for classification')

    # Dataset parameters
    parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str,
                        help='dataset path')
    parser.add_argument('--nb_classes', default=1000, type=int,
                        help='number of the classification types')

    parser.add_argument('--output_dir', default='',
                        help='path where to save, empty for no saving')
    parser.add_argument('--log_dir', default='',
                        help='path where to tensorboard log')
    parser.add_argument('--device', default='cuda',
                        help='device to use for training / testing')
    parser.add_argument('--seed', default=0, type=int)
    parser.add_argument('--resume', default='',
                        help='resume from checkpoint')

    parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
                        help='start epoch')
    parser.add_argument('--eval', action='store_true',
                        help='Perform evaluation only')
    parser.set_defaults(eval=True)
    parser.add_argument('--dist_eval', action='store_true', default=False,
                        help='Enabling distributed evaluation (recommended during training for faster monitor')
    parser.add_argument('--num_workers', default=10, type=int)
    parser.add_argument('--pin_mem', action='store_true',
                        help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
    parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
    parser.set_defaults(pin_mem=True)

    # distributed training parameters
    parser.add_argument('--world_size', default=1, type=int,
                        help='number of distributed processes')
    parser.add_argument('--local_rank', default=-1, type=int)
    parser.add_argument('--dist_on_itp', action='store_true')
    parser.add_argument('--dist_url', default='env://',
                        help='url used to set up distributed training')

    return parser


args = get_args_parser()
args = args.parse_args()
args.nb_classes = 2

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model = models_vit.__dict__['vit_base_patch16'](
    num_classes=args.nb_classes,
    drop_path_rate=args.drop_path,
    global_pool=args.global_pool,
)

def load_model(ckpt):
    if ckpt=='hoose from here':
        return gr.update()
    args.resume = os.path.join(CKPT_SAVE_PATH, ckpt)
    if os.path.isfile(args.resume) == False:
        hf_hub_download(local_dir=CKPT_SAVE_PATH,
                        repo_id='Wolowolo/fsfm-3c',
                        filename=ckpt)
    checkpoint = torch.load(args.resume, map_location='cpu')
    model.load_state_dict(checkpoint['model'])
    return gr.update()


def get_boundingbox(face, width, height, minsize=None):
    """
    From FF++:
    https://github.com/ondyari/FaceForensics/blob/master/classification/detect_from_video.py
    Expects a dlib face to generate a quadratic bounding box.
    :param face: dlib face class
    :param width: frame width
    :param height: frame height
    :param cfg.face_scale: bounding box size multiplier to get a bigger face region
    :param minsize: set minimum bounding box size
    :return: x, y, bounding_box_size in opencv form
    """
    x1 = face.left()
    y1 = face.top()
    x2 = face.right()
    y2 = face.bottom()
    size_bb = int(max(x2 - x1, y2 - y1) * 1.3)
    if minsize:
        if size_bb < minsize:
            size_bb = minsize
    center_x, center_y = (x1 + x2) // 2, (y1 + y2) // 2

    # Check for out of bounds, x-y top left corner
    x1 = max(int(center_x - size_bb // 2), 0)
    y1 = max(int(center_y - size_bb // 2), 0)
    # Check for too big bb size for given x, y
    size_bb = min(width - x1, size_bb)
    size_bb = min(height - y1, size_bb)

    return x1, y1, size_bb


def extract_face(frame):
    face_detector = dlib.get_frontal_face_detector()
    image = np.array(frame.convert('RGB'))
    faces = face_detector(image, 1)
    if len(faces) > 0:
        # For now only take the biggest face
        face = faces[0]
        # Face crop and rescale(follow FF++)
        x, y, size = get_boundingbox(face, image.shape[1], image.shape[0])
        # Get the landmarks/parts for the face in box d only with the five key points
        cropped_face = image[y:y + size, x:x + size]
        # cropped_face = cv2.resize(cropped_face, (224, 224), interpolation=cv2.INTER_CUBIC)
        return Image.fromarray(cropped_face)
    else:
        return None
    
    
def get_frame_index_uniform_sample(total_frame_num, extract_frame_num):
    interval = np.linspace(0, total_frame_num - 1, num=extract_frame_num, dtype=int)
    return interval.tolist()


import cv2
def extract_face_from_fixed_num_frames(src_video, dst_path, num_frames=None, device='cpu'):
    """
    1) extract specific num of frames from videos in [1st(index 0) frame, last frame] with uniform sample interval
    2) extract face from frame with specific enlarge size
    """
    video_capture = cv2.VideoCapture(src_video)
    total_frames = video_capture.get(7)

    # extract from the 1st(index 0) frame
    if num_frames is not None:
        frame_indices = get_frame_index_uniform_sample(total_frames, num_frames)
    else:
        frame_indices = range(int(total_frames))

    for frame_index in frame_indices:
        video_capture.set(cv2.CAP_PROP_POS_FRAMES, frame_index)
        ret, frame = video_capture.read()
        image = Image.fromarray(cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)) 
        img = extract_face(image)
        if img == None:
            continue
        img = img.resize((224, 224), Image.BICUBIC)
        if not ret:
            continue
        save_img_name = f"frame_{frame_index}.png"
        
        img.save(os.path.join(dst_path, '0', save_img_name))
        # cv2.imwrite(os.path.join(dst_path, '0', save_img_name), frame)
      
    video_capture.release()
    # cv2.destroyAllWindows()


def FSFM3C_video_detection(video):
    model.to(device)
    
    # extract frames
    num_frames = 32
    
    files = os.listdir(FRAME_SAVE_PATH)
    num_files = len(files)
    frame_path = os.path.join(FRAME_SAVE_PATH, str(num_files))
    os.makedirs(frame_path, exist_ok=True)
    os.makedirs(os.path.join(frame_path, '0'), exist_ok=True)
    extract_face_from_fixed_num_frames(video, frame_path, num_frames=num_frames, device=device)
    
    args.data_path = frame_path
    args.batch_size = 32
    dataset_val = build_dataset(is_train=False, args=args)
    sampler_val = torch.utils.data.SequentialSampler(dataset_val)
    data_loader_val = torch.utils.data.DataLoader(
        dataset_val, sampler=sampler_val,
        batch_size=args.batch_size,
        num_workers=args.num_workers,
        pin_memory=args.pin_mem,
        drop_last=False
    )
    
    frame_preds_list, video_y_pred_list = test_all(data_loader_val, model, device)

    return video_y_pred_list


def FSFM3C_image_detection(image):
    model.to(device)
    
    files = os.listdir(FRAME_SAVE_PATH)
    num_files = len(files)
    frame_path = os.path.join(FRAME_SAVE_PATH, str(num_files)) 
    os.makedirs(frame_path, exist_ok=True)
    os.makedirs(os.path.join(frame_path, '0'), exist_ok=True)
    
    save_img_name = f"frame_0.png"
    img = extract_face(image)
    if img is None:
        return ['Invalid Input']
    img = img.resize((224, 224), Image.BICUBIC)
    img.save(os.path.join(frame_path, '0', save_img_name))
    
    args.data_path = frame_path
    args.batch_size = 1
    dataset_val = build_dataset(is_train=False, args=args)
    sampler_val = torch.utils.data.SequentialSampler(dataset_val)
    data_loader_val = torch.utils.data.DataLoader(
        dataset_val, sampler=sampler_val,
        batch_size=args.batch_size,
        num_workers=args.num_workers,
        pin_memory=args.pin_mem,
        drop_last=False
    )
    
    frame_preds_list, video_y_pred_list = test_all(data_loader_val, model, device)

    return video_y_pred_list


# WebUI
with gr.Blocks() as demo:
    gr.HTML("<h1 style='text-align: center;'>🦱 Real Facial Image&Video Detection <br> Against Face Forgery and Spoofing (Deepfake/Diffusion/Presentation-attacks)</h1>")
    gr.Markdown("# ---Based on the fine-tuned model that is pre-trained from [FSFM-3C](https://fsfm-3c.github.io/)")

    gr.Markdown("## Release  <br>"
                "V1.0 [2024-12] (Current): <br>"
                "[1] Create this page with basic detectors (simply fine-tuned models that follow the paper implementation): <br> "
                "   - DfD Checkpoint_Fine-tuned on FF++: FSFM VIT-B fine-tuned on the FF++ (c23, train&val sets, 32 frames per video, 4 manipulations) dataset <br>"
                "   - FAS Checkpoint_Fine-tuned on MCIO: FSFM VIT-B fine-tuned on the MCIO datasets (2 frames per video) <br> "
                "   Performance is limited because no any optimization of data, models, hyperparameters, etc. is done for downstream tasks")

    gr.Markdown("### TODO: We will soon update practical models, and optimized interfaces, and provide more functions such as visualizations, a unified detector, and multi-modal diagnosis.")

    gr.Markdown("> Please provide an <b>image</b> or a <b>video (<100s </b>, default to uniform sampling 32 frames)</b> for detection:")


    with gr.Column():
        ckpt_select_dropdown = gr.Dropdown(
            label = "Select the Model Checkpoint for Detection (🖱️ below)",
            choices = ['choose from here'] + CKPT_LIST + ['Continuously updating...'],
            multiselect = False,
            value = 'choose from here',
            interactive = True,
            )
        with gr.Row(elem_classes="center-align"):
            with gr.Column(scale=5):
                gr.Markdown(
                    "## Image Detection"
                )
                image = gr.Image(label="Upload/Capture/Paste your image", type="pil")
                image_submit_btn = gr.Button("Submit")  
                output_results_image = gr.Textbox(label="Detection Result")
            with gr.Column(scale=5):
                gr.Markdown(
                    "## Video Detection"
                )
                video = gr.Video(label="Upload/Capture your video")
                video_submit_btn = gr.Button("Submit")
                output_results_video = gr.Textbox(label="Detection Result")

    image_submit_btn.click(
        fn=FSFM3C_image_detection,
        inputs=[image],
        outputs=[output_results_image],
    )
    video_submit_btn.click(
        fn=FSFM3C_video_detection,
        inputs=[video],
        outputs=[output_results_video],
    )
    ckpt_select_dropdown.change(
        fn=load_model,
        inputs=[ckpt_select_dropdown],
        outputs=[ckpt_select_dropdown],
    )

    
if __name__ == "__main__":
    gr.close_all()
    demo.queue()
    demo.launch()