FSFM-3C
commited on
Commit
·
b32e831
1
Parent(s):
c4644b7
init
Browse files- app.py +398 -0
- engine_finetune.py +323 -0
- models_vit.py +96 -0
- requirements.txt +77 -0
- util/crop.py +43 -0
- util/datasets.py +350 -0
- util/lars.py +44 -0
- util/loss_contrastive.py +360 -0
- util/lr_decay.py +72 -0
- util/lr_sched.py +44 -0
- util/metrics.py +88 -0
- util/misc.py +390 -0
- util/pos_embed.py +118 -0
app.py
ADDED
@@ -0,0 +1,398 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Author: Gaojian Wang@ZJUICSR
|
3 |
+
# --------------------------------------------------------
|
4 |
+
# This source code is licensed under the Attribution-NonCommercial 4.0 International License.
|
5 |
+
# You can find the license in the LICENSE file in the root directory of this source tree.
|
6 |
+
# --------------------------------------------------------
|
7 |
+
# pip uninstall nvidia_cublas_cu11
|
8 |
+
|
9 |
+
import sys
|
10 |
+
sys.path.append('..')
|
11 |
+
import os
|
12 |
+
os.system(f'pip install dlib')
|
13 |
+
import torch
|
14 |
+
import numpy as np
|
15 |
+
from PIL import Image
|
16 |
+
from torch.nn import functional as F
|
17 |
+
|
18 |
+
import gradio as gr
|
19 |
+
|
20 |
+
import models_vit
|
21 |
+
from util.datasets import build_dataset
|
22 |
+
import argparse
|
23 |
+
from engine_finetune import test_all
|
24 |
+
import dlib
|
25 |
+
from huggingface_hub import hf_hub_download
|
26 |
+
|
27 |
+
|
28 |
+
P = os.path.abspath(__file__)
|
29 |
+
FRAME_SAVE_PATH = os.path.join(P[:-6], 'frame')
|
30 |
+
CKPT_SAVE_PATH = os.path.join(P[:-6], 'checkpoints')
|
31 |
+
CKPT_LIST = ['DfD Checkpoint_Fine-tuned on FF++',
|
32 |
+
'FAS Checkpoint_Fine-tuned on MCIO']
|
33 |
+
CKPT_NAME = {'DfD Checkpoint_Fine-tuned on FF++': 'finetuned_models/FF++_c23_32frames/checkpoint-min_val_loss.pth',
|
34 |
+
'FAS Checkpoint_Fine-tuned on MCIO': 'finetuned_models/MCIO_protocol/Both_MCIO/checkpoint-min_val_loss.pth' }
|
35 |
+
os.makedirs(FRAME_SAVE_PATH, exist_ok=True)
|
36 |
+
os.makedirs(CKPT_SAVE_PATH, exist_ok=True)
|
37 |
+
|
38 |
+
|
39 |
+
def get_args_parser():
|
40 |
+
parser = argparse.ArgumentParser('MAE fine-tuning for image classification', add_help=False)
|
41 |
+
parser.add_argument('--batch_size', default=64, type=int,
|
42 |
+
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
|
43 |
+
parser.add_argument('--epochs', default=50, type=int)
|
44 |
+
parser.add_argument('--accum_iter', default=1, type=int,
|
45 |
+
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
|
46 |
+
|
47 |
+
# Model parameters
|
48 |
+
parser.add_argument('--model', default='vit_large_patch16', type=str, metavar='MODEL',
|
49 |
+
help='Name of model to train')
|
50 |
+
|
51 |
+
parser.add_argument('--input_size', default=224, type=int,
|
52 |
+
help='images input size')
|
53 |
+
parser.add_argument('--normalize_from_IMN', action='store_true',
|
54 |
+
help='cal mean and std from imagenet, else from pretrain datasets')
|
55 |
+
parser.set_defaults(normalize_from_IMN=True)
|
56 |
+
parser.add_argument('--apply_simple_augment', action='store_true',
|
57 |
+
help='apply simple data augment')
|
58 |
+
|
59 |
+
parser.add_argument('--drop_path', type=float, default=0.1, metavar='PCT',
|
60 |
+
help='Drop path rate (default: 0.1)')
|
61 |
+
|
62 |
+
# Optimizer parameters
|
63 |
+
parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM',
|
64 |
+
help='Clip gradient norm (default: None, no clipping)')
|
65 |
+
parser.add_argument('--weight_decay', type=float, default=0.05,
|
66 |
+
help='weight decay (default: 0.05)')
|
67 |
+
|
68 |
+
parser.add_argument('--lr', type=float, default=None, metavar='LR',
|
69 |
+
help='learning rate (absolute lr)')
|
70 |
+
parser.add_argument('--blr', type=float, default=1e-3, metavar='LR',
|
71 |
+
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
|
72 |
+
parser.add_argument('--layer_decay', type=float, default=0.75,
|
73 |
+
help='layer-wise lr decay from ELECTRA/BEiT')
|
74 |
+
|
75 |
+
parser.add_argument('--min_lr', type=float, default=1e-6, metavar='LR',
|
76 |
+
help='lower lr bound for cyclic schedulers that hit 0')
|
77 |
+
|
78 |
+
parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N',
|
79 |
+
help='epochs to warmup LR')
|
80 |
+
|
81 |
+
# Augmentation parameters
|
82 |
+
parser.add_argument('--color_jitter', type=float, default=None, metavar='PCT',
|
83 |
+
help='Color jitter factor (enabled only when not using Auto/RandAug)')
|
84 |
+
parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME',
|
85 |
+
help='Use AutoAugment policy. "v0" or "original". " + "(default: rand-m9-mstd0.5-inc1)'),
|
86 |
+
parser.add_argument('--smoothing', type=float, default=0.1,
|
87 |
+
help='Label smoothing (default: 0.1)')
|
88 |
+
|
89 |
+
# * Random Erase params
|
90 |
+
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT',
|
91 |
+
help='Random erase prob (default: 0.25)')
|
92 |
+
parser.add_argument('--remode', type=str, default='pixel',
|
93 |
+
help='Random erase mode (default: "pixel")')
|
94 |
+
parser.add_argument('--recount', type=int, default=1,
|
95 |
+
help='Random erase count (default: 1)')
|
96 |
+
parser.add_argument('--resplit', action='store_true', default=False,
|
97 |
+
help='Do not random erase first (clean) augmentation split')
|
98 |
+
|
99 |
+
# * Mixup params
|
100 |
+
parser.add_argument('--mixup', type=float, default=0,
|
101 |
+
help='mixup alpha, mixup enabled if > 0.')
|
102 |
+
parser.add_argument('--cutmix', type=float, default=0,
|
103 |
+
help='cutmix alpha, cutmix enabled if > 0.')
|
104 |
+
parser.add_argument('--cutmix_minmax', type=float, nargs='+', default=None,
|
105 |
+
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
|
106 |
+
parser.add_argument('--mixup_prob', type=float, default=1.0,
|
107 |
+
help='Probability of performing mixup or cutmix when either/both is enabled')
|
108 |
+
parser.add_argument('--mixup_switch_prob', type=float, default=0.5,
|
109 |
+
help='Probability of switching to cutmix when both mixup and cutmix enabled')
|
110 |
+
parser.add_argument('--mixup_mode', type=str, default='batch',
|
111 |
+
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
|
112 |
+
|
113 |
+
# * Finetuning params
|
114 |
+
parser.add_argument('--finetune', default='',
|
115 |
+
help='finetune from checkpoint')
|
116 |
+
parser.add_argument('--global_pool', action='store_true')
|
117 |
+
parser.set_defaults(global_pool=True)
|
118 |
+
parser.add_argument('--cls_token', action='store_false', dest='global_pool',
|
119 |
+
help='Use class token instead of global pool for classification')
|
120 |
+
|
121 |
+
# Dataset parameters
|
122 |
+
parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str,
|
123 |
+
help='dataset path')
|
124 |
+
parser.add_argument('--nb_classes', default=1000, type=int,
|
125 |
+
help='number of the classification types')
|
126 |
+
|
127 |
+
parser.add_argument('--output_dir', default='',
|
128 |
+
help='path where to save, empty for no saving')
|
129 |
+
parser.add_argument('--log_dir', default='',
|
130 |
+
help='path where to tensorboard log')
|
131 |
+
parser.add_argument('--device', default='cuda',
|
132 |
+
help='device to use for training / testing')
|
133 |
+
parser.add_argument('--seed', default=0, type=int)
|
134 |
+
parser.add_argument('--resume', default='',
|
135 |
+
help='resume from checkpoint')
|
136 |
+
|
137 |
+
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
|
138 |
+
help='start epoch')
|
139 |
+
parser.add_argument('--eval', action='store_true',
|
140 |
+
help='Perform evaluation only')
|
141 |
+
parser.set_defaults(eval=True)
|
142 |
+
parser.add_argument('--dist_eval', action='store_true', default=False,
|
143 |
+
help='Enabling distributed evaluation (recommended during training for faster monitor')
|
144 |
+
parser.add_argument('--num_workers', default=10, type=int)
|
145 |
+
parser.add_argument('--pin_mem', action='store_true',
|
146 |
+
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
|
147 |
+
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
|
148 |
+
parser.set_defaults(pin_mem=True)
|
149 |
+
|
150 |
+
# distributed training parameters
|
151 |
+
parser.add_argument('--world_size', default=1, type=int,
|
152 |
+
help='number of distributed processes')
|
153 |
+
parser.add_argument('--local_rank', default=-1, type=int)
|
154 |
+
parser.add_argument('--dist_on_itp', action='store_true')
|
155 |
+
parser.add_argument('--dist_url', default='env://',
|
156 |
+
help='url used to set up distributed training')
|
157 |
+
|
158 |
+
return parser
|
159 |
+
|
160 |
+
|
161 |
+
args = get_args_parser()
|
162 |
+
args = args.parse_args()
|
163 |
+
args.nb_classes = 2
|
164 |
+
|
165 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
166 |
+
|
167 |
+
model = models_vit.__dict__['vit_base_patch16'](
|
168 |
+
num_classes=args.nb_classes,
|
169 |
+
drop_path_rate=args.drop_path,
|
170 |
+
global_pool=args.global_pool,
|
171 |
+
)
|
172 |
+
|
173 |
+
def load_model(ckpt):
|
174 |
+
if ckpt=='hoose from here':
|
175 |
+
return gr.update()
|
176 |
+
args.resume = os.path.join(CKPT_SAVE_PATH, ckpt)
|
177 |
+
if os.path.isfile(args.resume) == False:
|
178 |
+
hf_hub_download(local_dir=CKPT_SAVE_PATH,
|
179 |
+
repo_id='Wolowolo/fsfm-3c',
|
180 |
+
filename=ckpt)
|
181 |
+
checkpoint = torch.load(args.resume, map_location='cpu')
|
182 |
+
model.load_state_dict(checkpoint['model'])
|
183 |
+
return gr.update()
|
184 |
+
|
185 |
+
|
186 |
+
def get_boundingbox(face, width, height, minsize=None):
|
187 |
+
"""
|
188 |
+
From FF++:
|
189 |
+
https://github.com/ondyari/FaceForensics/blob/master/classification/detect_from_video.py
|
190 |
+
Expects a dlib face to generate a quadratic bounding box.
|
191 |
+
:param face: dlib face class
|
192 |
+
:param width: frame width
|
193 |
+
:param height: frame height
|
194 |
+
:param cfg.face_scale: bounding box size multiplier to get a bigger face region
|
195 |
+
:param minsize: set minimum bounding box size
|
196 |
+
:return: x, y, bounding_box_size in opencv form
|
197 |
+
"""
|
198 |
+
x1 = face.left()
|
199 |
+
y1 = face.top()
|
200 |
+
x2 = face.right()
|
201 |
+
y2 = face.bottom()
|
202 |
+
size_bb = int(max(x2 - x1, y2 - y1) * 1.3)
|
203 |
+
if minsize:
|
204 |
+
if size_bb < minsize:
|
205 |
+
size_bb = minsize
|
206 |
+
center_x, center_y = (x1 + x2) // 2, (y1 + y2) // 2
|
207 |
+
|
208 |
+
# Check for out of bounds, x-y top left corner
|
209 |
+
x1 = max(int(center_x - size_bb // 2), 0)
|
210 |
+
y1 = max(int(center_y - size_bb // 2), 0)
|
211 |
+
# Check for too big bb size for given x, y
|
212 |
+
size_bb = min(width - x1, size_bb)
|
213 |
+
size_bb = min(height - y1, size_bb)
|
214 |
+
|
215 |
+
return x1, y1, size_bb
|
216 |
+
|
217 |
+
|
218 |
+
def extract_face(frame):
|
219 |
+
face_detector = dlib.get_frontal_face_detector()
|
220 |
+
image = np.array(frame.convert('RGB'))
|
221 |
+
faces = face_detector(image, 1)
|
222 |
+
if len(faces) > 0:
|
223 |
+
# For now only take the biggest face
|
224 |
+
face = faces[0]
|
225 |
+
# Face crop and rescale(follow FF++)
|
226 |
+
x, y, size = get_boundingbox(face, image.shape[1], image.shape[0])
|
227 |
+
# Get the landmarks/parts for the face in box d only with the five key points
|
228 |
+
cropped_face = image[y:y + size, x:x + size]
|
229 |
+
# cropped_face = cv2.resize(cropped_face, (224, 224), interpolation=cv2.INTER_CUBIC)
|
230 |
+
return Image.fromarray(cropped_face)
|
231 |
+
else:
|
232 |
+
return None
|
233 |
+
|
234 |
+
|
235 |
+
def get_frame_index_uniform_sample(total_frame_num, extract_frame_num):
|
236 |
+
interval = np.linspace(0, total_frame_num - 1, num=extract_frame_num, dtype=int)
|
237 |
+
return interval.tolist()
|
238 |
+
|
239 |
+
|
240 |
+
import cv2
|
241 |
+
def extract_face_from_fixed_num_frames(src_video, dst_path, num_frames=None, device='cpu'):
|
242 |
+
"""
|
243 |
+
1) extract specific num of frames from videos in [1st(index 0) frame, last frame] with uniform sample interval
|
244 |
+
2) extract face from frame with specific enlarge size
|
245 |
+
"""
|
246 |
+
video_capture = cv2.VideoCapture(src_video)
|
247 |
+
total_frames = video_capture.get(7)
|
248 |
+
|
249 |
+
# extract from the 1st(index 0) frame
|
250 |
+
if num_frames is not None:
|
251 |
+
frame_indices = get_frame_index_uniform_sample(total_frames, num_frames)
|
252 |
+
else:
|
253 |
+
frame_indices = range(int(total_frames))
|
254 |
+
|
255 |
+
for frame_index in frame_indices:
|
256 |
+
video_capture.set(cv2.CAP_PROP_POS_FRAMES, frame_index)
|
257 |
+
ret, frame = video_capture.read()
|
258 |
+
image = Image.fromarray(cv2.cvtColor(frame,cv2.COLOR_BGR2RGB))
|
259 |
+
img = extract_face(image)
|
260 |
+
if img == None:
|
261 |
+
continue
|
262 |
+
img = img.resize((224, 224), Image.BICUBIC)
|
263 |
+
if not ret:
|
264 |
+
continue
|
265 |
+
save_img_name = f"frame_{frame_index}.png"
|
266 |
+
|
267 |
+
img.save(os.path.join(dst_path, '0', save_img_name))
|
268 |
+
# cv2.imwrite(os.path.join(dst_path, '0', save_img_name), frame)
|
269 |
+
|
270 |
+
video_capture.release()
|
271 |
+
# cv2.destroyAllWindows()
|
272 |
+
|
273 |
+
|
274 |
+
def FSFM3C_video_detection(video):
|
275 |
+
model.to(device)
|
276 |
+
|
277 |
+
# extract frames
|
278 |
+
num_frames = 32
|
279 |
+
|
280 |
+
files = os.listdir(FRAME_SAVE_PATH)
|
281 |
+
num_files = len(files)
|
282 |
+
frame_path = os.path.join(FRAME_SAVE_PATH, str(num_files))
|
283 |
+
os.makedirs(frame_path, exist_ok=True)
|
284 |
+
os.makedirs(os.path.join(frame_path, '0'), exist_ok=True)
|
285 |
+
extract_face_from_fixed_num_frames(video, frame_path, num_frames=num_frames, device=device)
|
286 |
+
|
287 |
+
args.data_path = frame_path
|
288 |
+
args.batch_size = 32
|
289 |
+
dataset_val = build_dataset(is_train=False, args=args)
|
290 |
+
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
|
291 |
+
data_loader_val = torch.utils.data.DataLoader(
|
292 |
+
dataset_val, sampler=sampler_val,
|
293 |
+
batch_size=args.batch_size,
|
294 |
+
num_workers=args.num_workers,
|
295 |
+
pin_memory=args.pin_mem,
|
296 |
+
drop_last=False
|
297 |
+
)
|
298 |
+
|
299 |
+
frame_preds_list, video_y_pred_list = test_all(data_loader_val, model, device)
|
300 |
+
|
301 |
+
return video_y_pred_list
|
302 |
+
|
303 |
+
|
304 |
+
def FSFM3C_image_detection(image):
|
305 |
+
model.to(device)
|
306 |
+
|
307 |
+
files = os.listdir(FRAME_SAVE_PATH)
|
308 |
+
num_files = len(files)
|
309 |
+
frame_path = os.path.join(FRAME_SAVE_PATH, str(num_files))
|
310 |
+
os.makedirs(frame_path, exist_ok=True)
|
311 |
+
os.makedirs(os.path.join(frame_path, '0'), exist_ok=True)
|
312 |
+
|
313 |
+
save_img_name = f"frame_0.png"
|
314 |
+
img = extract_face(image)
|
315 |
+
if img is None:
|
316 |
+
return ['Invalid Input']
|
317 |
+
img = img.resize((224, 224), Image.BICUBIC)
|
318 |
+
img.save(os.path.join(frame_path, '0', save_img_name))
|
319 |
+
|
320 |
+
args.data_path = frame_path
|
321 |
+
args.batch_size = 1
|
322 |
+
dataset_val = build_dataset(is_train=False, args=args)
|
323 |
+
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
|
324 |
+
data_loader_val = torch.utils.data.DataLoader(
|
325 |
+
dataset_val, sampler=sampler_val,
|
326 |
+
batch_size=args.batch_size,
|
327 |
+
num_workers=args.num_workers,
|
328 |
+
pin_memory=args.pin_mem,
|
329 |
+
drop_last=False
|
330 |
+
)
|
331 |
+
|
332 |
+
frame_preds_list, video_y_pred_list = test_all(data_loader_val, model, device)
|
333 |
+
|
334 |
+
return video_y_pred_list
|
335 |
+
|
336 |
+
|
337 |
+
# WebUI
|
338 |
+
with gr.Blocks() as demo:
|
339 |
+
gr.HTML("<h1 style='text-align: center;'>🦱 Real Facial Image&Video Detection <br> Against Face Forgery and Spoofing (Deepfake/Diffusion/Presentation-attacks)</h1>")
|
340 |
+
gr.Markdown("# ---Based on the fine-tuned model that is pre-trained from [FSFM-3C](https://fsfm-3c.github.io/)")
|
341 |
+
|
342 |
+
gr.Markdown("## Release <br>"
|
343 |
+
"V1.0 [2024-12] (Current): <br>"
|
344 |
+
"[1] Create this page with basic detectors (simply fine-tuned models that follow the paper implementation): <br> "
|
345 |
+
" - DfD Checkpoint_Fine-tuned on FF++: FSFM VIT-B fine-tuned on the FF++ (c23, train&val sets, 32 frames per video, 4 manipulations) dataset <br>"
|
346 |
+
" - FAS Checkpoint_Fine-tuned on MCIO: FSFM VIT-B fine-tuned on the MCIO datasets (2 frames per video) <br> "
|
347 |
+
" Performance is limited because no any optimization of data, models, hyperparameters, etc. is done for downstream tasks")
|
348 |
+
|
349 |
+
gr.Markdown("### TODO: We will soon update practical models, and optimized interfaces, and provide more functions such as visualizations, a unified detector, and multi-modal diagnosis.")
|
350 |
+
|
351 |
+
gr.Markdown("> Please provide an <b>image</b> or a <b>video (<100s </b>, default to uniform sampling 32 frames)</b> for detection:")
|
352 |
+
|
353 |
+
|
354 |
+
with gr.Column():
|
355 |
+
ckpt_select_dropdown = gr.Dropdown(
|
356 |
+
label = "Select the Model Checkpoint for Detection (🖱️ below)",
|
357 |
+
choices = ['choose from here'] + CKPT_LIST + ['Continuously updating...'],
|
358 |
+
multiselect = False,
|
359 |
+
value = 'choose from here',
|
360 |
+
interactive = True,
|
361 |
+
)
|
362 |
+
with gr.Row(elem_classes="center-align"):
|
363 |
+
with gr.Column(scale=5):
|
364 |
+
gr.Markdown(
|
365 |
+
"## Image Detection"
|
366 |
+
)
|
367 |
+
image = gr.Image(label="Upload/Capture/Paste your image", type="pil")
|
368 |
+
image_submit_btn = gr.Button("Submit")
|
369 |
+
output_results_image = gr.Textbox(label="Detection Result")
|
370 |
+
with gr.Column(scale=5):
|
371 |
+
gr.Markdown(
|
372 |
+
"## Video Detection"
|
373 |
+
)
|
374 |
+
video = gr.Video(label="Upload/Capture your video")
|
375 |
+
video_submit_btn = gr.Button("Submit")
|
376 |
+
output_results_video = gr.Textbox(label="Detection Result")
|
377 |
+
|
378 |
+
image_submit_btn.click(
|
379 |
+
fn=FSFM3C_image_detection,
|
380 |
+
inputs=[image],
|
381 |
+
outputs=[output_results_image],
|
382 |
+
)
|
383 |
+
video_submit_btn.click(
|
384 |
+
fn=FSFM3C_video_detection,
|
385 |
+
inputs=[video],
|
386 |
+
outputs=[output_results_video],
|
387 |
+
)
|
388 |
+
ckpt_select_dropdown.change(
|
389 |
+
fn=load_model,
|
390 |
+
inputs=[ckpt_select_dropdown],
|
391 |
+
outputs=[ckpt_select_dropdown],
|
392 |
+
)
|
393 |
+
|
394 |
+
|
395 |
+
if __name__ == "__main__":
|
396 |
+
gr.close_all()
|
397 |
+
demo.queue()
|
398 |
+
demo.launch()
|
engine_finetune.py
ADDED
@@ -0,0 +1,323 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Author: Gaojian Wang@ZJUICSR
|
3 |
+
# --------------------------------------------------------
|
4 |
+
# This source code is licensed under the Attribution-NonCommercial 4.0 International License.
|
5 |
+
# You can find the license in the LICENSE file in the root directory of this source tree.
|
6 |
+
# --------------------------------------------------------
|
7 |
+
|
8 |
+
import math
|
9 |
+
import sys
|
10 |
+
from typing import Iterable, Optional
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
import torch
|
14 |
+
|
15 |
+
from timm.data import Mixup
|
16 |
+
from timm.utils import accuracy
|
17 |
+
|
18 |
+
import util.misc as misc
|
19 |
+
import util.lr_sched as lr_sched
|
20 |
+
from util.metrics import *
|
21 |
+
|
22 |
+
import torch.nn.functional as F
|
23 |
+
|
24 |
+
|
25 |
+
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
|
26 |
+
data_loader: Iterable, optimizer: torch.optim.Optimizer,
|
27 |
+
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0,
|
28 |
+
mixup_fn: Optional[Mixup] = None, log_writer=None,
|
29 |
+
args=None):
|
30 |
+
model.train(True)
|
31 |
+
metric_logger = misc.MetricLogger(delimiter=" ")
|
32 |
+
metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
|
33 |
+
header = 'Epoch: [{}]'.format(epoch)
|
34 |
+
print_freq = 20
|
35 |
+
|
36 |
+
accum_iter = args.accum_iter
|
37 |
+
|
38 |
+
optimizer.zero_grad()
|
39 |
+
|
40 |
+
if log_writer is not None:
|
41 |
+
print('log_dir: {}'.format(log_writer.log_dir))
|
42 |
+
|
43 |
+
for data_iter_step, (samples, targets) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
|
44 |
+
|
45 |
+
# we use a per iteration (instead of per epoch) lr scheduler
|
46 |
+
if data_iter_step % accum_iter == 0:
|
47 |
+
lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args)
|
48 |
+
|
49 |
+
samples = samples.to(device, non_blocking=True)
|
50 |
+
targets = targets.to(device, non_blocking=True)
|
51 |
+
|
52 |
+
if mixup_fn is not None:
|
53 |
+
samples, targets = mixup_fn(samples, targets)
|
54 |
+
|
55 |
+
with torch.cuda.amp.autocast():
|
56 |
+
# outputs = model(samples)
|
57 |
+
outputs = model(samples).to(device, non_blocking=True) # modified
|
58 |
+
loss = criterion(outputs, targets)
|
59 |
+
|
60 |
+
loss_value = loss.item()
|
61 |
+
|
62 |
+
if not math.isfinite(loss_value):
|
63 |
+
print("Loss is {}, stopping training".format(loss_value))
|
64 |
+
sys.exit(1)
|
65 |
+
|
66 |
+
loss /= accum_iter
|
67 |
+
loss_scaler(loss, optimizer, clip_grad=max_norm,
|
68 |
+
parameters=model.parameters(), create_graph=False,
|
69 |
+
update_grad=(data_iter_step + 1) % accum_iter == 0)
|
70 |
+
if (data_iter_step + 1) % accum_iter == 0:
|
71 |
+
optimizer.zero_grad()
|
72 |
+
|
73 |
+
torch.cuda.synchronize()
|
74 |
+
|
75 |
+
metric_logger.update(loss=loss_value)
|
76 |
+
min_lr = 10.
|
77 |
+
max_lr = 0.
|
78 |
+
for group in optimizer.param_groups:
|
79 |
+
min_lr = min(min_lr, group["lr"])
|
80 |
+
max_lr = max(max_lr, group["lr"])
|
81 |
+
|
82 |
+
metric_logger.update(lr=max_lr)
|
83 |
+
|
84 |
+
loss_value_reduce = misc.all_reduce_mean(loss_value)
|
85 |
+
if log_writer is not None and (data_iter_step + 1) % accum_iter == 0:
|
86 |
+
""" We use epoch_1000x as the x-axis in tensorboard.
|
87 |
+
This calibrates different curves when batch size changes.
|
88 |
+
"""
|
89 |
+
epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000)
|
90 |
+
log_writer.add_scalar('loss', loss_value_reduce, epoch_1000x)
|
91 |
+
log_writer.add_scalar('lr', max_lr, epoch_1000x)
|
92 |
+
|
93 |
+
# gather the stats from all processes
|
94 |
+
metric_logger.synchronize_between_processes()
|
95 |
+
print("Averaged stats:", metric_logger)
|
96 |
+
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
|
97 |
+
|
98 |
+
|
99 |
+
@torch.no_grad()
|
100 |
+
def evaluate(data_loader, model, device):
|
101 |
+
criterion = torch.nn.CrossEntropyLoss()
|
102 |
+
|
103 |
+
metric_logger = misc.MetricLogger(delimiter=" ")
|
104 |
+
header = 'Test:'
|
105 |
+
|
106 |
+
# switch to evaluation mode
|
107 |
+
model.eval()
|
108 |
+
|
109 |
+
for batch in metric_logger.log_every(data_loader, 10, header):
|
110 |
+
images = batch[0]
|
111 |
+
target = batch[-1]
|
112 |
+
images = images.to(device, non_blocking=True)
|
113 |
+
target = target.to(device, non_blocking=True)
|
114 |
+
|
115 |
+
# compute output
|
116 |
+
with torch.cuda.amp.autocast():
|
117 |
+
# output = model(images)
|
118 |
+
output = model(images).to(device, non_blocking=True) # modified
|
119 |
+
loss = criterion(output, target)
|
120 |
+
|
121 |
+
# acc1, acc5 = accuracy(output, target, topk=(1, 5))
|
122 |
+
acc = float(accuracy(output, target, topk=(1,))[0])
|
123 |
+
preds = (F.softmax(output, dim=1)[:, 1].detach().cpu().numpy())
|
124 |
+
trues = (target.detach().cpu().numpy())
|
125 |
+
auc_score = roc_auc_score(trues, preds) * 100.
|
126 |
+
|
127 |
+
batch_size = images.shape[0]
|
128 |
+
metric_logger.update(loss=loss.item())
|
129 |
+
# metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
|
130 |
+
# metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
|
131 |
+
metric_logger.meters['acc'].update(acc, n=batch_size)
|
132 |
+
metric_logger.meters['auc'].update(auc_score, n=batch_size)
|
133 |
+
|
134 |
+
# gather the stats from all processes
|
135 |
+
metric_logger.synchronize_between_processes()
|
136 |
+
# print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}'
|
137 |
+
# .format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss))
|
138 |
+
print('* Acc {acc.global_avg:.3f} Auc {auc.global_avg:.3f} loss {losses.global_avg:.3f}'
|
139 |
+
.format(acc=metric_logger.acc, auc=metric_logger.auc, losses=metric_logger.loss))
|
140 |
+
|
141 |
+
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
|
142 |
+
|
143 |
+
|
144 |
+
@torch.no_grad()
|
145 |
+
def test_ori(data_loader, model, device):
|
146 |
+
criterion = torch.nn.CrossEntropyLoss()
|
147 |
+
|
148 |
+
metric_logger = misc.MetricLogger(delimiter=" ")
|
149 |
+
header = 'Test:'
|
150 |
+
|
151 |
+
# switch to evaluation mode
|
152 |
+
model.eval()
|
153 |
+
|
154 |
+
labels = np.array([])
|
155 |
+
preds = np.array([])
|
156 |
+
|
157 |
+
for batch in metric_logger.log_every(data_loader, 10, header):
|
158 |
+
images = batch[0]
|
159 |
+
target = batch[-1]
|
160 |
+
images = images.to(device, non_blocking=True)
|
161 |
+
target = target.to(device, non_blocking=True)
|
162 |
+
|
163 |
+
# compute output
|
164 |
+
with torch.cuda.amp.autocast():
|
165 |
+
# output = model(images)
|
166 |
+
output = model(images).to(device, non_blocking=True) # modified
|
167 |
+
loss = criterion(output, target)
|
168 |
+
|
169 |
+
# acc1, acc5 = accuracy(output, target, topk=(1, 5))
|
170 |
+
acc = float(accuracy(output, target, topk=(1,))[0])
|
171 |
+
pred = (F.softmax(output, dim=1)[:, 1].detach().cpu().numpy())
|
172 |
+
preds = np.append(preds, pred)
|
173 |
+
label = (target.detach().cpu().numpy())
|
174 |
+
labels = np.append(labels, label)
|
175 |
+
|
176 |
+
batch_size = images.shape[0]
|
177 |
+
metric_logger.update(loss=loss.item())
|
178 |
+
# metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
|
179 |
+
# metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
|
180 |
+
metric_logger.meters['acc'].update(acc, n=batch_size)
|
181 |
+
|
182 |
+
# gather the stats from all processes
|
183 |
+
metric_logger.synchronize_between_processes()
|
184 |
+
# print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}'
|
185 |
+
# .format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss))
|
186 |
+
auc_score = roc_auc_score(labels, preds) * 100.
|
187 |
+
metric_logger.meters['auc'].update(auc_score)
|
188 |
+
print('* Acc {acc.global_avg:.3f} Auc {auc.global_avg:.3f} loss {losses.global_avg:.3f}'
|
189 |
+
.format(acc=metric_logger.acc, auc=metric_logger.auc, losses=metric_logger.loss))
|
190 |
+
|
191 |
+
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
|
192 |
+
|
193 |
+
|
194 |
+
@torch.no_grad()
|
195 |
+
def test(data_loader, model, device):
|
196 |
+
criterion = torch.nn.CrossEntropyLoss()
|
197 |
+
|
198 |
+
metric_logger = misc.MetricLogger(delimiter=" ")
|
199 |
+
header = 'Test:'
|
200 |
+
|
201 |
+
# switch to evaluation mode
|
202 |
+
model.eval()
|
203 |
+
|
204 |
+
frame_labels = np.array([]) # int label
|
205 |
+
frame_preds = np.array([]) # pred logit
|
206 |
+
frame_y_preds = np.array([]) # pred int
|
207 |
+
|
208 |
+
# for batch in metric_logger.log_every(data_loader, print_freq=len(data_loader), header=header):
|
209 |
+
for batch in data_loader:
|
210 |
+
images = batch[0] # torch.Size([BS, C, H, W])
|
211 |
+
target = batch[1] # torch.Size([BS])
|
212 |
+
|
213 |
+
images = images.to(device, non_blocking=True)
|
214 |
+
target = target.to(device, non_blocking=True)
|
215 |
+
|
216 |
+
# compute output
|
217 |
+
with torch.cuda.amp.autocast():
|
218 |
+
# output = model(images)
|
219 |
+
output = model(images).to(device, non_blocking=True) # modified
|
220 |
+
loss = criterion(output, target)
|
221 |
+
|
222 |
+
frame_pred = (F.softmax(output, dim=1)[:, 1].detach().cpu().numpy())
|
223 |
+
frame_preds = np.append(frame_preds, frame_pred)
|
224 |
+
|
225 |
+
frame_y_pred = np.argmax(output.detach().cpu().numpy(), axis=1)
|
226 |
+
frame_y_preds = np.append(frame_y_preds, frame_y_pred)
|
227 |
+
|
228 |
+
frame_label = (target.detach().cpu().numpy())
|
229 |
+
frame_labels = np.append(frame_labels, frame_label)
|
230 |
+
|
231 |
+
metric_logger.update(loss=loss.item())
|
232 |
+
|
233 |
+
# gather the stats from all processes
|
234 |
+
metric_logger.synchronize_between_processes()
|
235 |
+
metric_logger.meters['frame_acc'].update(frame_level_acc(frame_labels, frame_y_preds))
|
236 |
+
metric_logger.meters['frame_balanced_acc'].update(frame_level_balanced_acc(frame_labels, frame_y_preds))
|
237 |
+
metric_logger.meters['frame_auc'].update(frame_level_auc(frame_labels, frame_preds))
|
238 |
+
metric_logger.meters['frame_eer'].update(frame_level_eer(frame_labels, frame_preds))
|
239 |
+
|
240 |
+
print('*[------FRAME-LEVEL------] \n'
|
241 |
+
'Acc {frame_acc.global_avg:.3f} Balanced_Acc {frame_balanced_acc.global_avg:.3f} '
|
242 |
+
'Auc {frame_auc.global_avg:.3f} EER {frame_eer.global_avg:.3f} loss {losses.global_avg:.3f}'
|
243 |
+
.format(frame_acc=metric_logger.frame_acc, frame_balanced_acc=metric_logger.frame_balanced_acc,
|
244 |
+
frame_auc=metric_logger.frame_auc, frame_eer=metric_logger.frame_eer, losses=metric_logger.loss))
|
245 |
+
|
246 |
+
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
|
247 |
+
|
248 |
+
|
249 |
+
@torch.no_grad()
|
250 |
+
def test_all(data_loader, model, device):
|
251 |
+
criterion = torch.nn.CrossEntropyLoss()
|
252 |
+
|
253 |
+
metric_logger = misc.MetricLogger(delimiter=" ")
|
254 |
+
header = 'Test:'
|
255 |
+
|
256 |
+
# switch to evaluation mode
|
257 |
+
model.eval()
|
258 |
+
|
259 |
+
frame_labels = np.array([]) # int label
|
260 |
+
frame_preds = np.array([]) # pred logit
|
261 |
+
frame_y_preds = np.array([]) # pred int
|
262 |
+
video_names_list = list()
|
263 |
+
|
264 |
+
# for batch in metric_logger.log_every(data_loader, print_freq=len(data_loader), header=header):
|
265 |
+
for batch in data_loader:
|
266 |
+
images = batch[0] # torch.Size([BS, C, H, W])
|
267 |
+
target = batch[1] # torch.Size([BS])
|
268 |
+
video_name = batch[-1] # list[BS]
|
269 |
+
|
270 |
+
images = images.to(device, non_blocking=True)
|
271 |
+
target = target.to(device, non_blocking=True)
|
272 |
+
|
273 |
+
# compute output
|
274 |
+
# with torch.cuda.amp.autocast():
|
275 |
+
# output = model(images)
|
276 |
+
output = model(images).to(device, non_blocking=True) # modified
|
277 |
+
loss = criterion(output, target)
|
278 |
+
|
279 |
+
frame_pred = (F.softmax(output, dim=1)[:, 1].detach().cpu().numpy())
|
280 |
+
frame_preds = np.append(frame_preds, frame_pred)
|
281 |
+
|
282 |
+
frame_y_pred = np.argmax(output.detach().cpu().numpy(), axis=1)
|
283 |
+
frame_y_preds = np.append(frame_y_preds, frame_y_pred)
|
284 |
+
|
285 |
+
frame_label = (target.detach().cpu().numpy())
|
286 |
+
frame_labels = np.append(frame_labels, frame_label)
|
287 |
+
|
288 |
+
video_names_list.extend(list(video_name))
|
289 |
+
|
290 |
+
metric_logger.update(loss=loss.item())
|
291 |
+
|
292 |
+
# gather the stats from all processes
|
293 |
+
# metric_logger.synchronize_between_processes()
|
294 |
+
# metric_logger.meters['frame_acc'].update(frame_level_acc(frame_labels, frame_y_preds))
|
295 |
+
# metric_logger.meters['frame_balanced_acc'].update(frame_level_balanced_acc(frame_labels, frame_y_preds))
|
296 |
+
# metric_logger.meters['frame_auc'].update(frame_level_auc(frame_labels, frame_preds))
|
297 |
+
# metric_logger.meters['frame_eer'].update(frame_level_eer(frame_labels, frame_preds))
|
298 |
+
|
299 |
+
# print('*[------FRAME-LEVEL------] \n'
|
300 |
+
# 'Acc {frame_acc.global_avg:.3f} Balanced_Acc {frame_balanced_acc.global_avg:.3f} '
|
301 |
+
# 'Auc {frame_auc.global_avg:.3f} EER {frame_eer.global_avg:.3f} loss {losses.global_avg:.3f}'
|
302 |
+
# .format(frame_acc=metric_logger.frame_acc, frame_balanced_acc=metric_logger.frame_balanced_acc,
|
303 |
+
# frame_auc=metric_logger.frame_auc, frame_eer=metric_logger.frame_eer, losses=metric_logger.loss))
|
304 |
+
|
305 |
+
# video-level metrics:
|
306 |
+
frame_labels_list = frame_labels.tolist()
|
307 |
+
frame_preds_list = frame_preds.tolist()
|
308 |
+
|
309 |
+
video_label_list, video_pred_list, video_y_pred_list = get_video_level_label_pred(frame_labels_list, video_names_list, frame_preds_list)
|
310 |
+
# print(len(video_label_list), len(video_pred_list), len(video_y_pred_list))
|
311 |
+
# metric_logger.meters['video_acc'].update(video_level_acc(video_label_list, video_y_pred_list))
|
312 |
+
# metric_logger.meters['video_balanced_acc'].update(video_level_balanced_acc(video_label_list, video_y_pred_list))
|
313 |
+
# metric_logger.meters['video_auc'].update(video_level_auc(video_label_list, video_pred_list))
|
314 |
+
# metric_logger.meters['video_eer'].update(frame_level_eer(video_label_list, video_pred_list))
|
315 |
+
|
316 |
+
# print('*[------VIDEO-LEVEL------] \n'
|
317 |
+
# 'Acc {video_acc.global_avg:.3f} Balanced_Acc {video_balanced_acc.global_avg:.3f} '
|
318 |
+
# 'Auc {video_auc.global_avg:.3f} EER {video_eer.global_avg:.3f}'
|
319 |
+
# .format(video_acc=metric_logger.video_acc, video_balanced_acc=metric_logger.video_balanced_acc,
|
320 |
+
# video_auc=metric_logger.video_auc, video_eer=metric_logger.video_eer))
|
321 |
+
|
322 |
+
# return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
|
323 |
+
return frame_preds_list, video_y_pred_list
|
models_vit.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Author: Gaojian Wang@ZJUICSR
|
3 |
+
# --------------------------------------------------------
|
4 |
+
# This source code is licensed under the Attribution-NonCommercial 4.0 International License.
|
5 |
+
# You can find the license in the LICENSE file in the root directory of this source tree.
|
6 |
+
# --------------------------------------------------------
|
7 |
+
|
8 |
+
from functools import partial
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
|
13 |
+
import timm.models.vision_transformer
|
14 |
+
|
15 |
+
|
16 |
+
class VisionTransformer(timm.models.vision_transformer.VisionTransformer):
|
17 |
+
""" Vision Transformer with support for global average pooling
|
18 |
+
"""
|
19 |
+
def __init__(self, global_pool=False, **kwargs):
|
20 |
+
super(VisionTransformer, self).__init__(**kwargs)
|
21 |
+
|
22 |
+
self.global_pool = global_pool
|
23 |
+
if self.global_pool:
|
24 |
+
norm_layer = kwargs['norm_layer']
|
25 |
+
embed_dim = kwargs['embed_dim']
|
26 |
+
self.fc_norm = norm_layer(embed_dim)
|
27 |
+
|
28 |
+
del self.norm # remove the original norm
|
29 |
+
|
30 |
+
def forward_features(self, x):
|
31 |
+
B = x.shape[0]
|
32 |
+
x = self.patch_embed(x)
|
33 |
+
|
34 |
+
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
35 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
36 |
+
x = x + self.pos_embed
|
37 |
+
x = self.pos_drop(x)
|
38 |
+
|
39 |
+
for blk in self.blocks:
|
40 |
+
x = blk(x)
|
41 |
+
|
42 |
+
if self.global_pool:
|
43 |
+
x = x[:, 1:, :].mean(dim=1) # global pool without cls token
|
44 |
+
outcome = self.fc_norm(x)
|
45 |
+
else:
|
46 |
+
x = self.norm(x)
|
47 |
+
outcome = x[:, 0]
|
48 |
+
|
49 |
+
return outcome
|
50 |
+
|
51 |
+
|
52 |
+
def vit_small_patch16(**kwargs):
|
53 |
+
model = VisionTransformer(
|
54 |
+
patch_size=16, embed_dim=384, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, # ViT-small config in MOCO_V3
|
55 |
+
# patch_size=16, embed_dim=768, depth=8, num_heads=8, mlp_ratio=3, qkv_bias=True, # ViT-small config in timm
|
56 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
57 |
+
return model
|
58 |
+
|
59 |
+
|
60 |
+
def vit_base_patch16(**kwargs):
|
61 |
+
model = VisionTransformer(
|
62 |
+
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
|
63 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
64 |
+
return model
|
65 |
+
|
66 |
+
|
67 |
+
def vit_large_patch16(**kwargs):
|
68 |
+
model = VisionTransformer(
|
69 |
+
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
70 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
71 |
+
return model
|
72 |
+
|
73 |
+
|
74 |
+
def vit_huge_patch14(**kwargs):
|
75 |
+
model = VisionTransformer(
|
76 |
+
patch_size=14, embed_dim=1280, depth=32, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
77 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
78 |
+
return model
|
79 |
+
|
80 |
+
|
81 |
+
# class VisionTransformerWithProjector(VisionTransformer):
|
82 |
+
# def __init__(self, vit_model, model_encoder, feat_cl_dim=128):
|
83 |
+
# super(VisionTransformerWithProjector, self).__init__()
|
84 |
+
# self.encoder = vit_model
|
85 |
+
# embed_dim = {'vit_base_patch16': 768, 'vit_large_patch16': 1024, 'vit_huge_patch14': 1280}
|
86 |
+
# self.projection_head = nn.Sequential(
|
87 |
+
# nn.Linear(embed_dim[model_encoder], embed_dim[model_encoder]),
|
88 |
+
# nn.ReLU(inplace=True),
|
89 |
+
# nn.Linear(embed_dim[model_encoder], feat_cl_dim)
|
90 |
+
# )
|
91 |
+
#
|
92 |
+
# def forward(self, x):
|
93 |
+
# x = self.encoder(x)
|
94 |
+
# latent_cl = self.projection_head(x) # [N, feat_cl_dim]
|
95 |
+
# features = nn.functional.normalize(latent_cl, dim=-1) # [N, feat_cl_dim]
|
96 |
+
# return features
|
requirements.txt
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiofiles==23.2.1
|
2 |
+
annotated-types==0.7.0
|
3 |
+
anyio==4.6.2.post1
|
4 |
+
certifi==2024.8.30
|
5 |
+
charset-normalizer==3.4.0
|
6 |
+
click==8.1.7
|
7 |
+
contourpy==1.3.0
|
8 |
+
cycler==0.12.1
|
9 |
+
# dlib==19.24.6
|
10 |
+
exceptiongroup==1.2.2
|
11 |
+
fastapi==0.115.5
|
12 |
+
ffmpy==0.4.0
|
13 |
+
filelock==3.16.1
|
14 |
+
fonttools==4.55.0
|
15 |
+
fsspec==2024.10.0
|
16 |
+
gradio==4.44.1
|
17 |
+
gradio_client==1.3.0
|
18 |
+
h11==0.14.0
|
19 |
+
httpcore==1.0.7
|
20 |
+
httpx==0.27.2
|
21 |
+
huggingface-hub==0.26.2
|
22 |
+
idna==3.10
|
23 |
+
imageio==2.36.0
|
24 |
+
importlib_resources==6.4.5
|
25 |
+
Jinja2==3.1.4
|
26 |
+
joblib==1.4.2
|
27 |
+
kiwisolver==1.4.7
|
28 |
+
lazy_loader==0.4
|
29 |
+
markdown-it-py==3.0.0
|
30 |
+
MarkupSafe==2.1.5
|
31 |
+
matplotlib==3.9.2
|
32 |
+
mdurl==0.1.2
|
33 |
+
networkx==3.2.1
|
34 |
+
numpy==1.24.4
|
35 |
+
nvidia-cuda-nvrtc-cu11==11.7.99
|
36 |
+
nvidia-cuda-runtime-cu11==11.7.99
|
37 |
+
nvidia-cudnn-cu11==8.5.0.96
|
38 |
+
opencv-python==4.10.0.84
|
39 |
+
orjson==3.10.11
|
40 |
+
packaging==24.2
|
41 |
+
pandas==2.2.3
|
42 |
+
pillow==10.4.0
|
43 |
+
pydantic==2.9.2
|
44 |
+
pydantic_core==2.23.4
|
45 |
+
pydub==0.25.1
|
46 |
+
Pygments==2.18.0
|
47 |
+
pyparsing==3.2.0
|
48 |
+
python-dateutil==2.9.0.post0
|
49 |
+
python-multipart==0.0.17
|
50 |
+
pytz==2024.2
|
51 |
+
PyYAML==6.0.2
|
52 |
+
requests==2.32.3
|
53 |
+
rich==13.9.4
|
54 |
+
ruff==0.7.4
|
55 |
+
scikit-image==0.24.0
|
56 |
+
scikit-learn==1.5.2
|
57 |
+
scipy==1.13.1
|
58 |
+
semantic-version==2.10.0
|
59 |
+
shellingham==1.5.4
|
60 |
+
six==1.16.0
|
61 |
+
sniffio==1.3.1
|
62 |
+
starlette==0.41.2
|
63 |
+
threadpoolctl==3.5.0
|
64 |
+
tifffile==2024.8.30
|
65 |
+
timm==0.4.5
|
66 |
+
tomlkit==0.12.0
|
67 |
+
torch==1.13.1
|
68 |
+
torchvision==0.14.1
|
69 |
+
tqdm==4.67.0
|
70 |
+
typer==0.13.0
|
71 |
+
typing_extensions==4.12.2
|
72 |
+
tzdata==2024.2
|
73 |
+
urllib3==2.2.3
|
74 |
+
uvicorn==0.32.0
|
75 |
+
validators==0.34.0
|
76 |
+
websockets==12.0
|
77 |
+
zipp==3.21.0
|
util/crop.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Author: Gaojian Wang@ZJUICSR
|
3 |
+
# --------------------------------------------------------
|
4 |
+
# This source code is licensed under the Attribution-NonCommercial 4.0 International License.
|
5 |
+
# You can find the license in the LICENSE file in the root directory of this source tree.
|
6 |
+
# --------------------------------------------------------
|
7 |
+
|
8 |
+
import math
|
9 |
+
|
10 |
+
import torch
|
11 |
+
|
12 |
+
from torchvision import transforms
|
13 |
+
from torchvision.transforms import functional as F
|
14 |
+
|
15 |
+
|
16 |
+
class RandomResizedCrop(transforms.RandomResizedCrop):
|
17 |
+
"""
|
18 |
+
RandomResizedCrop for matching TF/TPU implementation: no for-loop is used.
|
19 |
+
This may lead to results different with torchvision's version.
|
20 |
+
Following BYOL's TF code:
|
21 |
+
https://github.com/deepmind/deepmind-research/blob/master/byol/utils/dataset.py#L206
|
22 |
+
"""
|
23 |
+
@staticmethod
|
24 |
+
def get_params(img, scale, ratio):
|
25 |
+
width, height = F._get_image_size(img)
|
26 |
+
area = height * width
|
27 |
+
|
28 |
+
target_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
|
29 |
+
log_ratio = torch.log(torch.tensor(ratio))
|
30 |
+
aspect_ratio = torch.exp(
|
31 |
+
torch.empty(1).uniform_(log_ratio[0], log_ratio[1])
|
32 |
+
).item()
|
33 |
+
|
34 |
+
w = int(round(math.sqrt(target_area * aspect_ratio)))
|
35 |
+
h = int(round(math.sqrt(target_area / aspect_ratio)))
|
36 |
+
|
37 |
+
w = min(w, width)
|
38 |
+
h = min(h, height)
|
39 |
+
|
40 |
+
i = torch.randint(0, height - h + 1, size=(1,)).item()
|
41 |
+
j = torch.randint(0, width - w + 1, size=(1,)).item()
|
42 |
+
|
43 |
+
return i, j, h, w
|
util/datasets.py
ADDED
@@ -0,0 +1,350 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Author: Gaojian Wang@ZJUICSR
|
3 |
+
# --------------------------------------------------------
|
4 |
+
# This source code is licensed under the Attribution-NonCommercial 4.0 International License.
|
5 |
+
# You can find the license in the LICENSE file in the root directory of this source tree.
|
6 |
+
# --------------------------------------------------------
|
7 |
+
|
8 |
+
import os
|
9 |
+
import json
|
10 |
+
import shutil
|
11 |
+
|
12 |
+
from torchvision import datasets, transforms
|
13 |
+
|
14 |
+
from timm.data import create_transform
|
15 |
+
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
16 |
+
|
17 |
+
import numpy as np
|
18 |
+
from PIL import Image
|
19 |
+
import random
|
20 |
+
import torch
|
21 |
+
from torch.utils.data import DataLoader, Dataset, ConcatDataset
|
22 |
+
from torchvision import transforms
|
23 |
+
from torch.nn import functional as F
|
24 |
+
|
25 |
+
|
26 |
+
class collate_fn_crfrp:
|
27 |
+
def __init__(self, input_size=224, patch_size=16, mask_ratio=0.75):
|
28 |
+
self.img_size = input_size
|
29 |
+
self.patch_size = patch_size
|
30 |
+
self.num_patches_axis = input_size // patch_size
|
31 |
+
self.num_patches = (input_size // patch_size) ** 2
|
32 |
+
self.mask_ratio = mask_ratio
|
33 |
+
|
34 |
+
# --------------------------------------------------------------------------
|
35 |
+
# self.facial_region_group = [
|
36 |
+
# [2], # right eyebrow
|
37 |
+
# [3], # left eyebrow
|
38 |
+
# [4], # right eye
|
39 |
+
# [5], # left eye
|
40 |
+
# [6], # nose
|
41 |
+
# [7, 8], # upper mouth
|
42 |
+
# [8, 9], # lower mouth
|
43 |
+
# [10, 1, 0], # facial boundaries
|
44 |
+
# [10], # hair
|
45 |
+
# [1], # facial skin
|
46 |
+
# [0] # background
|
47 |
+
# ]
|
48 |
+
self.facial_region_group = [
|
49 |
+
[2, 3], # eyebrows
|
50 |
+
[4, 5], # eyes
|
51 |
+
[6], # nose
|
52 |
+
[7, 8, 9], # mouth
|
53 |
+
[10, 1, 0], # face boundaries
|
54 |
+
[10], # hair
|
55 |
+
[1], # facial skin
|
56 |
+
[0] # background
|
57 |
+
] # ['background', 'face', 'rb', 'lb', 're', 'le', 'nose', 'ulip', 'imouth', 'llip', 'hair']
|
58 |
+
|
59 |
+
def __call__(self, samples):
|
60 |
+
image, img_mask, facial_region_mask, random_specific_facial_region \
|
61 |
+
= self.CRFR_P_masking(samples, specified_facial_region=None)
|
62 |
+
|
63 |
+
return {'image': image, 'img_mask': img_mask, 'specific_facial_region_mask': facial_region_mask}
|
64 |
+
|
65 |
+
# # using following code if using different data augmentation for target view
|
66 |
+
# image, img_mask, facial_region_mask, random_specific_facial_region \
|
67 |
+
# = self.CRFR_P_masking(samples, specified_facial_region=None)
|
68 |
+
# image_cl, img_mask_cl, facial_region_mask_cl, random_specific_facial_region_cl \
|
69 |
+
# = self.CRFR_P_masking(samples, specified_facial_region=random_specific_facial_region)
|
70 |
+
#
|
71 |
+
# return {'image': image, 'img_mask': img_mask, 'specific_facial_region_mask': facial_region_mask,
|
72 |
+
# 'image_cl': image_cl, 'img_mask_cl': img_mask_cl, 'specific_facial_region_mask_cl': facial_region_mask_cl}
|
73 |
+
|
74 |
+
def CRFR_P_masking(self, samples, specified_facial_region=None):
|
75 |
+
image = torch.stack([sample['image'] for sample in samples]) # torch.Size([bs, 3, 224, 224])
|
76 |
+
parsing_map = torch.stack([sample['parsing_map'] for sample in samples]) # torch.Size([bs, 1, 224, 224])
|
77 |
+
parsing_map = parsing_map.squeeze(1) # torch.Size([BS, 1, 224, 224]) → torch.Size([BS, 224, 224])
|
78 |
+
|
79 |
+
# covering a randomly select facial_region_group and get fr_mask(masking all patches include this region)
|
80 |
+
facial_region_mask = torch.zeros(parsing_map.size(0), self.num_patches_axis, self.num_patches_axis,
|
81 |
+
dtype=torch.float32) # torch.Size([BS, H/P, W/P])
|
82 |
+
facial_region_mask, random_specific_facial_region \
|
83 |
+
= self.masking_all_patches_in_random_specific_facial_region(parsing_map, facial_region_mask)
|
84 |
+
# torch.Size([num_patches,]), list
|
85 |
+
|
86 |
+
img_mask, facial_region_mask \
|
87 |
+
= self.variable_proportional_masking(parsing_map, facial_region_mask, random_specific_facial_region)
|
88 |
+
# torch.Size([num_patches,]), torch.Size([num_patches,])
|
89 |
+
|
90 |
+
del parsing_map
|
91 |
+
return image, img_mask, facial_region_mask, random_specific_facial_region
|
92 |
+
|
93 |
+
def masking_all_patches_in_random_specific_facial_region(self, parsing_map, facial_region_mask,
|
94 |
+
# specified_facial_region=None
|
95 |
+
):
|
96 |
+
# while True:
|
97 |
+
# random_specific_facial_region = random.choice(self.facial_region_group[:-2])
|
98 |
+
# if random_specific_facial_region != specified_facial_region:
|
99 |
+
# break
|
100 |
+
random_specific_facial_region = random.choice(self.facial_region_group[:-2])
|
101 |
+
if random_specific_facial_region == [10, 1, 0]: # facial boundaries, 10-hair 1-skin 0-background
|
102 |
+
# True for hair(10) or bg(0) patches:
|
103 |
+
patch_hair_bg = F.max_pool2d(((parsing_map == 10) + (parsing_map == 0)).float(),
|
104 |
+
kernel_size=self.patch_size)
|
105 |
+
# True for skin(1) patches:
|
106 |
+
patch_skin = F.max_pool2d((parsing_map == 1).float(), kernel_size=self.patch_size)
|
107 |
+
# skin&hair or skin&bg is defined as facial boundaries:
|
108 |
+
facial_region_mask = (patch_hair_bg.bool() & patch_skin.bool()).float()
|
109 |
+
else:
|
110 |
+
for facial_region_index in random_specific_facial_region:
|
111 |
+
facial_region_mask = torch.maximum(facial_region_mask,
|
112 |
+
F.max_pool2d((parsing_map == facial_region_index).float(),
|
113 |
+
kernel_size=self.patch_size))
|
114 |
+
|
115 |
+
return facial_region_mask.view(parsing_map.size(0), -1), random_specific_facial_region
|
116 |
+
|
117 |
+
def variable_proportional_masking(self, parsing_map, facial_region_mask, random_specific_facial_region):
|
118 |
+
img_mask = facial_region_mask.clone()
|
119 |
+
|
120 |
+
# proportional masking patches in other regions
|
121 |
+
other_facial_region_group = [region for region in self.facial_region_group if
|
122 |
+
region != random_specific_facial_region]
|
123 |
+
# print(other_facial_region_group)
|
124 |
+
for i in range(facial_region_mask.size(0)): # iterate each map in BS
|
125 |
+
num_mask_to_change = (self.mask_ratio * self.num_patches - facial_region_mask[i].sum(dim=-1)).int()
|
126 |
+
# mask_change_to = 1 if num_mask_to_change >= 0 else 0
|
127 |
+
mask_change_to = torch.clamp(num_mask_to_change, 0, 1).item()
|
128 |
+
|
129 |
+
if mask_change_to == 1:
|
130 |
+
# proportional masking patches in other facial regions according to the corresponding ratio
|
131 |
+
mask_ratio_other_fr = (
|
132 |
+
num_mask_to_change / (self.num_patches - facial_region_mask[i].sum(dim=-1)))
|
133 |
+
|
134 |
+
masked_patches = facial_region_mask[i].clone()
|
135 |
+
for other_fr in other_facial_region_group:
|
136 |
+
to_mask_patches = torch.zeros(1, self.num_patches_axis, self.num_patches_axis,
|
137 |
+
dtype=torch.float32)
|
138 |
+
if other_fr == [10, 1, 0]:
|
139 |
+
patch_hair_bg = F.max_pool2d(
|
140 |
+
((parsing_map[i].unsqueeze(0) == 10) + (parsing_map[i].unsqueeze(0) == 0)).float(),
|
141 |
+
kernel_size=self.patch_size)
|
142 |
+
patch_skin = F.max_pool2d((parsing_map[i].unsqueeze(0) == 1).float(),
|
143 |
+
kernel_size=self.patch_size)
|
144 |
+
# skin&hair or skin&bg defined as facial boundaries:
|
145 |
+
to_mask_patches = (patch_hair_bg.bool() & patch_skin.bool()).float()
|
146 |
+
else:
|
147 |
+
for facial_region_index in other_fr:
|
148 |
+
to_mask_patches = torch.maximum(to_mask_patches,
|
149 |
+
F.max_pool2d((parsing_map[i].unsqueeze(
|
150 |
+
0) == facial_region_index).float(),
|
151 |
+
kernel_size=self.patch_size))
|
152 |
+
|
153 |
+
# ignore already masked patches:
|
154 |
+
to_mask_patches = (to_mask_patches.view(-1) - masked_patches) > 0
|
155 |
+
select_indices = to_mask_patches.nonzero(as_tuple=False).view(-1)
|
156 |
+
change_indices = torch.randperm(len(select_indices))[
|
157 |
+
:torch.round(to_mask_patches.sum() * mask_ratio_other_fr).int()]
|
158 |
+
img_mask[i, select_indices[change_indices]] = mask_change_to
|
159 |
+
# prevent overlap
|
160 |
+
masked_patches = masked_patches + to_mask_patches.float()
|
161 |
+
|
162 |
+
# mask/unmask patch from other facial regions to get img_mask with fixed size
|
163 |
+
num_mask_to_change = (self.mask_ratio * self.num_patches - img_mask[i].sum(dim=-1)).int()
|
164 |
+
# mask_change_to = 1 if num_mask_to_change >= 0 else 0
|
165 |
+
mask_change_to = torch.clamp(num_mask_to_change, 0, 1).item()
|
166 |
+
# prevent unmasking facial_region_mask
|
167 |
+
select_indices = ((img_mask[i] + facial_region_mask[i]) == (1 - mask_change_to)).nonzero(
|
168 |
+
as_tuple=False).view(-1)
|
169 |
+
change_indices = torch.randperm(len(select_indices))[:torch.abs(num_mask_to_change)]
|
170 |
+
img_mask[i, select_indices[change_indices]] = mask_change_to
|
171 |
+
|
172 |
+
else:
|
173 |
+
# Extreme situations:
|
174 |
+
# if fr_mask is already over(>=) num_patches*mask_ratio, unmask it to get img_mask with fixed ratio
|
175 |
+
select_indices = (facial_region_mask[i] == (1 - mask_change_to)).nonzero(as_tuple=False).view(-1)
|
176 |
+
change_indices = torch.randperm(len(select_indices))[:torch.abs(num_mask_to_change)]
|
177 |
+
img_mask[i, select_indices[change_indices]] = mask_change_to
|
178 |
+
facial_region_mask[i] = img_mask[i]
|
179 |
+
|
180 |
+
return img_mask, facial_region_mask
|
181 |
+
|
182 |
+
|
183 |
+
class FaceParsingDataset(Dataset):
|
184 |
+
def __init__(self, root, transform=None):
|
185 |
+
self.root_dir = root
|
186 |
+
self.transform = transform
|
187 |
+
self.image_folder = os.path.join(root, 'images')
|
188 |
+
self.parsing_map_folder = os.path.join(root, 'parsing_maps')
|
189 |
+
self.image_names = os.listdir(self.image_folder)
|
190 |
+
|
191 |
+
def __len__(self):
|
192 |
+
return len(self.image_names)
|
193 |
+
|
194 |
+
def __getitem__(self, idx):
|
195 |
+
img_name = os.path.join(self.image_folder, self.image_names[idx])
|
196 |
+
parsing_map_name = os.path.join(self.parsing_map_folder, self.image_names[idx].replace('.png', '.npy'))
|
197 |
+
|
198 |
+
image = Image.open(img_name).convert("RGB")
|
199 |
+
parsing_map_np = np.load(parsing_map_name)
|
200 |
+
|
201 |
+
if self.transform:
|
202 |
+
image = self.transform(image)
|
203 |
+
|
204 |
+
# Convert mask to tensor
|
205 |
+
parsing_map = torch.from_numpy(parsing_map_np)
|
206 |
+
del parsing_map_np # may save mem
|
207 |
+
|
208 |
+
return {'image': image, 'parsing_map': parsing_map}
|
209 |
+
|
210 |
+
|
211 |
+
class TestImageFolder(datasets.ImageFolder):
|
212 |
+
def __init__(self, root, transform=None, target_transform=None):
|
213 |
+
super(TestImageFolder, self).__init__(root, transform, target_transform)
|
214 |
+
|
215 |
+
def __getitem__(self, index):
|
216 |
+
# Call the parent class method to load image and label
|
217 |
+
original_tuple = super(TestImageFolder, self).__getitem__(index)
|
218 |
+
|
219 |
+
# Get the video name
|
220 |
+
video_name = self.imgs[index][0].split('/')[-1].split('_frame_')[0] # the separator of video name
|
221 |
+
|
222 |
+
# Extend the tuple to include video name
|
223 |
+
extended_tuple = (original_tuple + (video_name,))
|
224 |
+
|
225 |
+
return extended_tuple
|
226 |
+
|
227 |
+
|
228 |
+
def get_mean_std(args):
|
229 |
+
print('dataset_paths:', args.data_path)
|
230 |
+
transform = transforms.Compose([transforms.ToTensor(),
|
231 |
+
transforms.Resize((args.input_size, args.input_size),
|
232 |
+
interpolation=transforms.InterpolationMode.BICUBIC)])
|
233 |
+
|
234 |
+
if len(args.data_path) > 1:
|
235 |
+
pretrain_datasets = [FaceParsingDataset(root=path, transform=transform) for path in args.data_path]
|
236 |
+
dataset_pretrain = ConcatDataset(pretrain_datasets)
|
237 |
+
else:
|
238 |
+
pretrain_datasets = args.data_path[0]
|
239 |
+
dataset_pretrain = FaceParsingDataset(root=pretrain_datasets, transform=transform)
|
240 |
+
|
241 |
+
print('Compute mean and variance for pretraining data.')
|
242 |
+
print('len(dataset_train): ', len(dataset_pretrain))
|
243 |
+
|
244 |
+
loader = DataLoader(
|
245 |
+
dataset_pretrain,
|
246 |
+
batch_size=args.batch_size,
|
247 |
+
num_workers=args.num_workers,
|
248 |
+
pin_memory=args.pin_mem,
|
249 |
+
drop_last=True,
|
250 |
+
)
|
251 |
+
|
252 |
+
channels_sum, channels_squared_sum, num_batches = 0, 0, 0
|
253 |
+
for sample in loader:
|
254 |
+
data = sample['image']
|
255 |
+
channels_sum += torch.mean(data, dim=[0, 2, 3])
|
256 |
+
channels_squared_sum += torch.mean(data ** 2, dim=[0, 2, 3])
|
257 |
+
num_batches += 1
|
258 |
+
|
259 |
+
mean = channels_sum / num_batches
|
260 |
+
std = (channels_squared_sum / num_batches - mean ** 2) ** 0.5
|
261 |
+
|
262 |
+
print(f'train dataset mean%: {mean.numpy()} std: %{std.numpy()} ')
|
263 |
+
del pretrain_datasets, dataset_pretrain, loader
|
264 |
+
return mean.numpy(), std.numpy()
|
265 |
+
|
266 |
+
|
267 |
+
def build_dataset(is_train, args):
|
268 |
+
transform = build_transform(is_train, args)
|
269 |
+
dataset = datasets.ImageFolder(args.data_path, transform=transform)
|
270 |
+
# if args.eval:
|
271 |
+
# # no loading training set
|
272 |
+
# root = os.path.join(args.data_path, 'test' if is_train else 'test')
|
273 |
+
# dataset = TestImageFolder(root, transform=transform)
|
274 |
+
# else:
|
275 |
+
# root = os.path.join(args.data_path, 'train' if is_train else 'val')
|
276 |
+
# dataset = datasets.ImageFolder(root, transform=transform)
|
277 |
+
# print(dataset)
|
278 |
+
|
279 |
+
return dataset
|
280 |
+
|
281 |
+
|
282 |
+
def build_transform(is_train, args):
|
283 |
+
if args.normalize_from_IMN:
|
284 |
+
mean = IMAGENET_DEFAULT_MEAN
|
285 |
+
std = IMAGENET_DEFAULT_STD
|
286 |
+
# print(f'mean:{mean}, std:{std}')
|
287 |
+
else:
|
288 |
+
if not os.path.exists(os.path.join(args.output_dir, "/pretrain_ds_mean_std.txt")) and not args.eval:
|
289 |
+
shutil.copyfile(os.path.dirname(args.finetune) + '/pretrain_ds_mean_std.txt',
|
290 |
+
os.path.join(args.output_dir) + '/pretrain_ds_mean_std.txt')
|
291 |
+
with open(os.path.join(os.path.dirname(args.resume)) + '/pretrain_ds_mean_std.txt' if args.eval
|
292 |
+
else os.path.join(args.output_dir) + '/pretrain_ds_mean_std.txt', 'r') as file:
|
293 |
+
ds_stat = json.loads(file.readline())
|
294 |
+
mean = ds_stat['mean']
|
295 |
+
std = ds_stat['std']
|
296 |
+
# print(f'mean:{mean}, std:{std}')
|
297 |
+
|
298 |
+
if args.apply_simple_augment:
|
299 |
+
if is_train:
|
300 |
+
# this should always dispatch to transforms_imagenet_train
|
301 |
+
transform = create_transform(
|
302 |
+
input_size=args.input_size,
|
303 |
+
is_training=True,
|
304 |
+
color_jitter=args.color_jitter,
|
305 |
+
auto_augment=args.aa,
|
306 |
+
interpolation=transforms.InterpolationMode.BICUBIC,
|
307 |
+
re_prob=args.reprob,
|
308 |
+
re_mode=args.remode,
|
309 |
+
re_count=args.recount,
|
310 |
+
mean=mean,
|
311 |
+
std=std,
|
312 |
+
)
|
313 |
+
return transform
|
314 |
+
|
315 |
+
# no augment / eval transform
|
316 |
+
t = []
|
317 |
+
if args.input_size <= 224:
|
318 |
+
crop_pct = 224 / 256
|
319 |
+
else:
|
320 |
+
crop_pct = 1.0
|
321 |
+
size = int(args.input_size / crop_pct) # 256
|
322 |
+
t.append(
|
323 |
+
transforms.Resize(size, interpolation=transforms.InterpolationMode.BICUBIC),
|
324 |
+
# to maintain same ratio w.r.t. 224 images
|
325 |
+
)
|
326 |
+
t.append(transforms.CenterCrop(args.input_size)) # 224
|
327 |
+
|
328 |
+
t.append(transforms.ToTensor())
|
329 |
+
t.append(transforms.Normalize(mean, std))
|
330 |
+
return transforms.Compose(t)
|
331 |
+
|
332 |
+
else:
|
333 |
+
t = []
|
334 |
+
if args.input_size < 224:
|
335 |
+
crop_pct = input_size / 224
|
336 |
+
else:
|
337 |
+
crop_pct = 1.0
|
338 |
+
size = int(args.input_size / crop_pct) # size = 224
|
339 |
+
t.append(
|
340 |
+
transforms.Resize(size, interpolation=transforms.InterpolationMode.BICUBIC),
|
341 |
+
# to maintain same ratio w.r.t. 224 images
|
342 |
+
)
|
343 |
+
# t.append(
|
344 |
+
# transforms.Resize((224, 224), interpolation=transforms.InterpolationMode.BICUBIC),
|
345 |
+
# # to maintain same ratio w.r.t. 224 images
|
346 |
+
# )
|
347 |
+
|
348 |
+
t.append(transforms.ToTensor())
|
349 |
+
t.append(transforms.Normalize(mean, std))
|
350 |
+
return transforms.Compose(t)
|
util/lars.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Author: Gaojian Wang@ZJUICSR
|
3 |
+
# --------------------------------------------------------
|
4 |
+
# This source code is licensed under the Attribution-NonCommercial 4.0 International License.
|
5 |
+
# You can find the license in the LICENSE file in the root directory of this source tree.
|
6 |
+
# --------------------------------------------------------
|
7 |
+
|
8 |
+
import torch
|
9 |
+
|
10 |
+
|
11 |
+
class LARS(torch.optim.Optimizer):
|
12 |
+
"""
|
13 |
+
LARS optimizer, no rate scaling or weight decay for parameters <= 1D.
|
14 |
+
"""
|
15 |
+
def __init__(self, params, lr=0, weight_decay=0, momentum=0.9, trust_coefficient=0.001):
|
16 |
+
defaults = dict(lr=lr, weight_decay=weight_decay, momentum=momentum, trust_coefficient=trust_coefficient)
|
17 |
+
super().__init__(params, defaults)
|
18 |
+
|
19 |
+
@torch.no_grad()
|
20 |
+
def step(self):
|
21 |
+
for g in self.param_groups:
|
22 |
+
for p in g['params']:
|
23 |
+
dp = p.grad
|
24 |
+
|
25 |
+
if dp is None:
|
26 |
+
continue
|
27 |
+
|
28 |
+
if p.ndim > 1: # if not normalization gamma/beta or bias
|
29 |
+
dp = dp.add(p, alpha=g['weight_decay'])
|
30 |
+
param_norm = torch.norm(p)
|
31 |
+
update_norm = torch.norm(dp)
|
32 |
+
one = torch.ones_like(param_norm)
|
33 |
+
q = torch.where(param_norm > 0.,
|
34 |
+
torch.where(update_norm > 0,
|
35 |
+
(g['trust_coefficient'] * param_norm / update_norm), one),
|
36 |
+
one)
|
37 |
+
dp = dp.mul(q)
|
38 |
+
|
39 |
+
param_state = self.state[p]
|
40 |
+
if 'mu' not in param_state:
|
41 |
+
param_state['mu'] = torch.zeros_like(p)
|
42 |
+
mu = param_state['mu']
|
43 |
+
mu.mul_(g['momentum']).add_(dp)
|
44 |
+
p.add_(mu, alpha=-g['lr'])
|
util/loss_contrastive.py
ADDED
@@ -0,0 +1,360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Author: Gaojian Wang@ZJUICSR
|
3 |
+
# --------------------------------------------------------
|
4 |
+
# This source code is licensed under the Attribution-NonCommercial 4.0 International License.
|
5 |
+
# You can find the license in the LICENSE file in the root directory of this source tree.
|
6 |
+
# --------------------------------------------------------
|
7 |
+
|
8 |
+
from __future__ import print_function
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import math
|
13 |
+
|
14 |
+
|
15 |
+
class SimSiamLoss(nn.Module):
|
16 |
+
def __init__(self):
|
17 |
+
super(SimSiamLoss, self).__init__()
|
18 |
+
self.criterion = nn.CosineSimilarity(dim=1)
|
19 |
+
|
20 |
+
def forward(self, cl_features):
|
21 |
+
|
22 |
+
if len(cl_features.shape) < 3:
|
23 |
+
raise ValueError('`features` needs to be [bsz, n_views, ...],'
|
24 |
+
'at least 3 dimensions are required')
|
25 |
+
if len(cl_features.shape) > 3:
|
26 |
+
cl_features = cl_features.view(cl_features.shape[0], cl_features.shape[1], -1) # [BS, 2, feat_cl_dim]
|
27 |
+
|
28 |
+
cl_features_1 = cl_features[:, 0] # [BS, feat_cl_dim]
|
29 |
+
cl_features_2 = cl_features[:, 1] # [BS, feat_cl_dim]
|
30 |
+
loss = -(self.criterion(cl_features_1, cl_features_2).mean()) * 0.5
|
31 |
+
|
32 |
+
# if not math.isfinite(loss):
|
33 |
+
# print(cl_features_1, '\n', cl_features_2)
|
34 |
+
# print(self.criterion(cl_features_1, cl_features_2))
|
35 |
+
|
36 |
+
return loss
|
37 |
+
|
38 |
+
|
39 |
+
class BYOLLoss(nn.Module):
|
40 |
+
def __init__(self):
|
41 |
+
super(BYOLLoss, self).__init__()
|
42 |
+
|
43 |
+
@staticmethod
|
44 |
+
def forward(cl_features):
|
45 |
+
|
46 |
+
if len(cl_features.shape) < 3:
|
47 |
+
raise ValueError('`features` needs to be [bsz, n_views, ...],'
|
48 |
+
'at least 3 dimensions are required')
|
49 |
+
if len(cl_features.shape) > 3:
|
50 |
+
cl_features = cl_features.view(cl_features.shape[0], cl_features.shape[1], -1) # [BS, 2, feat_cl_dim]
|
51 |
+
|
52 |
+
cl_features_1 = cl_features[:, 0] # [BS, feat_cl_dim]
|
53 |
+
cl_features_2 = cl_features[:, 1] # [BS, feat_cl_dim]
|
54 |
+
loss = 2 - 2 * (cl_features_1 * cl_features_2).sum(dim=-1)
|
55 |
+
# loss = 1 - (cl_features_1 * cl_features_2).sum(dim=-1)
|
56 |
+
loss = loss.mean()
|
57 |
+
|
58 |
+
if not math.isfinite(loss):
|
59 |
+
print(cl_features_1, '\n', cl_features_2)
|
60 |
+
print(2 - 2 * (cl_features_1 * cl_features_2).sum(dim=-1))
|
61 |
+
|
62 |
+
return loss
|
63 |
+
|
64 |
+
|
65 |
+
# different implementation of InfoNCELoss, including MOCOV3Loss; SupConLoss
|
66 |
+
class InfoNCELoss(nn.Module):
|
67 |
+
def __init__(self, temperature=0.1, contrast_sample='all'):
|
68 |
+
"""
|
69 |
+
from CMAE: https://github.com/ZhichengHuang/CMAE/issues/5
|
70 |
+
:param temperature: 0.1 0.5 1.0, 1.5 2.0
|
71 |
+
"""
|
72 |
+
super(InfoNCELoss, self).__init__()
|
73 |
+
self.temperature = temperature
|
74 |
+
self.criterion = nn.CrossEntropyLoss()
|
75 |
+
self.contrast_sample = contrast_sample
|
76 |
+
|
77 |
+
def forward(self, cl_features):
|
78 |
+
"""
|
79 |
+
Args:
|
80 |
+
:param cl_features: : hidden vector of shape [bsz, n_views, ...]
|
81 |
+
Returns:
|
82 |
+
A loss scalar.
|
83 |
+
"""
|
84 |
+
device = (torch.device('cuda')
|
85 |
+
if cl_features.is_cuda
|
86 |
+
else torch.device('cpu'))
|
87 |
+
|
88 |
+
if len(cl_features.shape) < 3:
|
89 |
+
raise ValueError('`features` needs to be [bsz, n_views, ...],'
|
90 |
+
'at least 3 dimensions are required')
|
91 |
+
if len(cl_features.shape) > 3:
|
92 |
+
cl_features = cl_features.view(cl_features.shape[0], cl_features.shape[1], -1) # [BS, 2, feat_cl_dim]
|
93 |
+
|
94 |
+
cl_features_1 = cl_features[:, 0] # [BS, feat_cl_dim]
|
95 |
+
cl_features_2 = cl_features[:, 1] # [BS, feat_cl_dim]
|
96 |
+
score_all = torch.matmul(cl_features_1, cl_features_2.transpose(1, 0)) # [BS, BS]
|
97 |
+
score_all = score_all / self.temperature
|
98 |
+
bs = score_all.size(0)
|
99 |
+
|
100 |
+
if self.contrast_sample == 'all':
|
101 |
+
score = score_all
|
102 |
+
elif self.contrast_sample == 'positive':
|
103 |
+
mask = torch.eye(bs, dtype=torch.float).to(device) # torch.Size([BS, BS])
|
104 |
+
score = score_all * mask
|
105 |
+
else:
|
106 |
+
raise ValueError('Contrastive sample: all{pos&neg} or positive(positive)')
|
107 |
+
|
108 |
+
# label = (torch.arange(bs, dtype=torch.long) +
|
109 |
+
# bs * torch.distributed.get_rank()).to(device)
|
110 |
+
label = torch.arange(bs, dtype=torch.long).to(device)
|
111 |
+
|
112 |
+
loss = 2 * self.temperature * self.criterion(score, label)
|
113 |
+
|
114 |
+
if not math.isfinite(loss):
|
115 |
+
print(cl_features_1, '\n', cl_features_2)
|
116 |
+
print(score_all, '\n', score, '\n', mask)
|
117 |
+
|
118 |
+
return loss
|
119 |
+
|
120 |
+
|
121 |
+
class MOCOV3Loss(nn.Module):
|
122 |
+
def __init__(self, temperature=0.1):
|
123 |
+
super(MOCOV3Loss, self).__init__()
|
124 |
+
self.temperature = temperature
|
125 |
+
|
126 |
+
def forward(self, cl_features):
|
127 |
+
|
128 |
+
if len(cl_features.shape) < 3:
|
129 |
+
raise ValueError('`features` needs to be [bsz, n_views, ...],'
|
130 |
+
'at least 3 dimensions are required')
|
131 |
+
if len(cl_features.shape) > 3:
|
132 |
+
cl_features = cl_features.view(cl_features.shape[0], cl_features.shape[1], -1) # [BS, 2, feat_cl_dim]
|
133 |
+
|
134 |
+
cl_features_1 = cl_features[:, 0] # [BS, feat_cl_dim]
|
135 |
+
cl_features_2 = cl_features[:, 1] # [BS, feat_cl_dim]
|
136 |
+
|
137 |
+
# normalize
|
138 |
+
cl_features_1 = nn.functional.normalize(cl_features_1, dim=1)
|
139 |
+
cl_features_2 = nn.functional.normalize(cl_features_2, dim=1)
|
140 |
+
# Einstein sum is more intuitive
|
141 |
+
logits = torch.einsum('nc,mc->nm', [cl_features_1, cl_features_2]) / self.temperature
|
142 |
+
N = logits.shape[0]
|
143 |
+
labels = (torch.arange(N, dtype=torch.long)).cuda()
|
144 |
+
return nn.CrossEntropyLoss()(logits, labels) * (2 * self.temperature)
|
145 |
+
|
146 |
+
|
147 |
+
class SupConLoss(nn.Module):
|
148 |
+
"""
|
149 |
+
from: https://github.com/HobbitLong/SupContrast
|
150 |
+
Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf.
|
151 |
+
It also supports the unsupervised contrastive loss in SimCLR"""
|
152 |
+
def __init__(self, temperature=0.1, contrast_mode='all', contrast_sample='all',
|
153 |
+
base_temperature=0.1):
|
154 |
+
super(SupConLoss, self).__init__()
|
155 |
+
self.temperature = temperature
|
156 |
+
self.contrast_mode = contrast_mode
|
157 |
+
self.contrast_sample = contrast_sample
|
158 |
+
self.base_temperature = base_temperature
|
159 |
+
|
160 |
+
def forward(self, features, labels=None, mask=None):
|
161 |
+
"""Compute loss for model. If both `labels` and `mask` are None,
|
162 |
+
it degenerates to SimCLR unsupervised loss:
|
163 |
+
https://arxiv.org/pdf/2002.05709.pdf
|
164 |
+
|
165 |
+
Args:
|
166 |
+
features: hidden vector of shape [bsz, n_views, ...].
|
167 |
+
labels: ground truth of shape [bsz].
|
168 |
+
mask: contrastive mask of shape [bsz, bsz], mask_{i,j}=1 if sample j
|
169 |
+
has the same class as sample i. Can be asymmetric.
|
170 |
+
Returns:
|
171 |
+
A loss scalar.
|
172 |
+
"""
|
173 |
+
device = (torch.device('cuda')
|
174 |
+
if features.is_cuda
|
175 |
+
else torch.device('cpu'))
|
176 |
+
|
177 |
+
if len(features.shape) < 3:
|
178 |
+
raise ValueError('`features` needs to be [bsz, n_views, ...],'
|
179 |
+
'at least 3 dimensions are required')
|
180 |
+
if len(features.shape) > 3:
|
181 |
+
features = features.view(features.shape[0], features.shape[1], -1) # [BS, 2, feat_cl_dim]
|
182 |
+
|
183 |
+
batch_size = features.shape[0]
|
184 |
+
if labels is not None and mask is not None:
|
185 |
+
raise ValueError('Cannot define both `labels` and `mask`')
|
186 |
+
elif labels is None and mask is None:
|
187 |
+
mask = torch.eye(batch_size, dtype=torch.float32).to(device) # torch.Size([BS, BS])
|
188 |
+
elif labels is not None:
|
189 |
+
labels = labels.contiguous().view(-1, 1)
|
190 |
+
if labels.shape[0] != batch_size:
|
191 |
+
raise ValueError('Num of labels does not match num of features')
|
192 |
+
mask = torch.eq(labels, labels.T).float().to(device)
|
193 |
+
else:
|
194 |
+
mask = mask.float().to(device)
|
195 |
+
|
196 |
+
contrast_count = features.shape[1] # contrast_count(2)
|
197 |
+
contrast_feature = torch.cat(torch.unbind(features, dim=1), dim=0) # [BS*contrast_count, D]
|
198 |
+
if self.contrast_mode == 'one':
|
199 |
+
anchor_feature = features[:, 0] # [BS, D]
|
200 |
+
anchor_count = 1
|
201 |
+
elif self.contrast_mode == 'all':
|
202 |
+
anchor_feature = contrast_feature # [BS*contrast_count, D]
|
203 |
+
anchor_count = contrast_count
|
204 |
+
else:
|
205 |
+
raise ValueError('Unknown mode: {}'.format(self.contrast_mode))
|
206 |
+
|
207 |
+
# compute logits
|
208 |
+
anchor_dot_contrast = torch.div(
|
209 |
+
torch.matmul(anchor_feature, contrast_feature.T),
|
210 |
+
self.temperature) # [BS*contrast_count, BS*contrast_count]
|
211 |
+
# for numerical stability
|
212 |
+
logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True) # [BS*contrast_count, 1]
|
213 |
+
logits = anchor_dot_contrast - logits_max.detach() # [BS*contrast_count, BS*contrast_count]
|
214 |
+
|
215 |
+
# tile mask
|
216 |
+
mask = mask.repeat(anchor_count, contrast_count) # [BS*anchor_count, BS*contrast_count]
|
217 |
+
# mask-out self-contrast cases
|
218 |
+
logits_mask = torch.scatter(
|
219 |
+
torch.ones_like(mask),
|
220 |
+
1,
|
221 |
+
torch.arange(batch_size * anchor_count).view(-1, 1).to(device),
|
222 |
+
0
|
223 |
+
) # [BS*anchor_count, BS*contrast_count]
|
224 |
+
mask = mask * logits_mask # [BS*anchor_count, BS*contrast_count]
|
225 |
+
|
226 |
+
"""
|
227 |
+
logits_mask is used to get the denominator(positives and negatives).
|
228 |
+
mask is used to get the numerator(positives). mask is applied to log_prob.
|
229 |
+
"""
|
230 |
+
|
231 |
+
# compute log_prob,logits_mask is contrast anchor with both positives and negatives
|
232 |
+
exp_logits = torch.exp(logits) * logits_mask # [BS*anchor_count, BS*contrast_count]
|
233 |
+
# compute log_prob,logits_mask is contrast anchor with negatives, i.e., denominator only negatives contrast:
|
234 |
+
# exp_logits = torch.exp(logits) * (logits_mask-mask)
|
235 |
+
|
236 |
+
if self.contrast_sample == 'all':
|
237 |
+
log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True)) # [BS*anchor_count, BS*anchor_count]
|
238 |
+
# compute mean of log-likelihood over positive
|
239 |
+
mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1) # [BS*anchor_count]
|
240 |
+
elif self.contrast_sample == 'positive':
|
241 |
+
mean_log_prob_pos = (mask * logits).sum(1) / mask.sum(1)
|
242 |
+
else:
|
243 |
+
raise ValueError('Contrastive sample: all{pos&neg} or positive(positive)')
|
244 |
+
|
245 |
+
# loss
|
246 |
+
loss = - (self.temperature / self.base_temperature) * mean_log_prob_pos
|
247 |
+
loss = loss.view(anchor_count, batch_size).mean()
|
248 |
+
|
249 |
+
return loss
|
250 |
+
|
251 |
+
|
252 |
+
class InfoNCELossPatchLevel(nn.Module):
|
253 |
+
"""
|
254 |
+
test: ref ConMIM: https://github.com/TencentARC/ConMIM.
|
255 |
+
"""
|
256 |
+
def __init__(self, temperature=0.1, contrast_sample='all'):
|
257 |
+
"""
|
258 |
+
:param temperature: 0.1 0.5 1.0, 1.5 2.0
|
259 |
+
"""
|
260 |
+
super(InfoNCELossPatchLevel, self).__init__()
|
261 |
+
self.temperature = temperature
|
262 |
+
self.criterion = nn.CrossEntropyLoss()
|
263 |
+
self.contrast_sample = contrast_sample
|
264 |
+
|
265 |
+
self.facial_region_group = [
|
266 |
+
[2, 3], # eyebrows
|
267 |
+
[4, 5], # eyes
|
268 |
+
[6], # nose
|
269 |
+
[7, 8, 9], # mouth
|
270 |
+
[10, 1, 0], # face boundaries
|
271 |
+
[10], # hair
|
272 |
+
[1], # facial skin
|
273 |
+
[0] # background
|
274 |
+
]
|
275 |
+
|
276 |
+
def forward(self, cl_features, parsing_map=None):
|
277 |
+
"""
|
278 |
+
Args:
|
279 |
+
:param parsing_map:
|
280 |
+
:param cl_features: : hidden vector of shape [bsz, n_views, ...]
|
281 |
+
Returns:
|
282 |
+
A loss scalar.
|
283 |
+
"""
|
284 |
+
device = (torch.device('cuda')
|
285 |
+
if cl_features.is_cuda
|
286 |
+
else torch.device('cpu'))
|
287 |
+
|
288 |
+
if len(cl_features.shape) < 4:
|
289 |
+
raise ValueError('`features` needs to be [bsz, n_views, n_cl_patches, ...],'
|
290 |
+
'at least 4 dimensions are required')
|
291 |
+
if len(cl_features.shape) > 4:
|
292 |
+
cl_features = cl_features.view(cl_features.shape[0], cl_features.shape[1], cl_features.shape[2], -1)
|
293 |
+
# [BS, 2, num_cl_patches, feat_cl_dim]
|
294 |
+
|
295 |
+
cl_features_1 = cl_features[:, 0]
|
296 |
+
cl_features_2 = cl_features[:, 1]
|
297 |
+
score = torch.matmul(cl_features_1, cl_features_2.permute(0, 2, 1)) # [BS, num_cl_patches, num_cl_patches]
|
298 |
+
score = score / self.temperature
|
299 |
+
bs = score.size(0)
|
300 |
+
num_cl_patches = score.size(1)
|
301 |
+
|
302 |
+
if self.contrast_sample == 'all':
|
303 |
+
score = score
|
304 |
+
elif self.contrast_sample == 'positive':
|
305 |
+
mask = torch.eye(num_cl_patches, dtype=torch.float32) # torch.Size([num_cl_patches, num_cl_patches])
|
306 |
+
mask_batch = mask.unsqueeze(0).expand(bs, -1).to(device) # [bs, num_cl_patches, num_cl_patches]
|
307 |
+
score = score*mask_batch
|
308 |
+
elif self.contrast_sample == 'region':
|
309 |
+
cl_features_1_fr = []
|
310 |
+
cl_features_2_fr = []
|
311 |
+
for facial_region_index in self.facial_region_group:
|
312 |
+
fr_mask = (parsing_map == facial_region_index).unsqueeze(2).expand(-1, -1, cl_features_1.size(-1))
|
313 |
+
cl_features_1_fr.append((cl_features_1 * fr_mask).mean(dim=1, keepdim=False))
|
314 |
+
cl_features_2_fr.append((cl_features_1 * fr_mask).mean(dim=1, keepdim=False))
|
315 |
+
cl_features_1_fr = torch.stack(cl_features_1_fr, dim=1)
|
316 |
+
cl_features_2_fr = torch.stack(cl_features_2_fr, dim=1)
|
317 |
+
score = torch.matmul(cl_features_1_fr, cl_features_2_fr.permute(0, 2, 1)) # [BS, 8, 8]
|
318 |
+
score = score / self.temperature
|
319 |
+
# mask = torch.eye(cl_features_1_fr.size(1), dtype=torch.bool)
|
320 |
+
# torch.Size([cl_features_1_fr.size(1), cl_features_1_fr.size(1)])
|
321 |
+
# mask_batch = mask.unsqueeze(0).expand(bs, -1).to(device)
|
322 |
+
# [bs, cl_features_1_fr.size(1), cl_features_1_fr.size(1)]
|
323 |
+
# score = score*mask_batch
|
324 |
+
label = torch.arange(cl_features_1_fr.size(1), dtype=torch.long).to(device)
|
325 |
+
labels_batch = label.unsqueeze(0).expand(bs, -1)
|
326 |
+
loss = 2 * self.temperature * self.criterion(score, labels_batch)
|
327 |
+
return loss
|
328 |
+
else:
|
329 |
+
raise ValueError('Contrastive sample: all{pos&neg} or positive(positive)')
|
330 |
+
|
331 |
+
# label = (torch.arange(bs, dtype=torch.long) +
|
332 |
+
# bs * torch.distributed.get_rank()).to(device)
|
333 |
+
label = torch.arange(num_cl_patches, dtype=torch.long).to(device)
|
334 |
+
labels_batch = label.unsqueeze(0).expand(bs, -1)
|
335 |
+
|
336 |
+
loss = 2 * self.temperature * self.criterion(score, labels_batch)
|
337 |
+
|
338 |
+
return loss
|
339 |
+
|
340 |
+
|
341 |
+
class MSELoss(nn.Module):
|
342 |
+
"""
|
343 |
+
test: unused
|
344 |
+
"""
|
345 |
+
def __init__(self):
|
346 |
+
super(MSELoss, self).__init__()
|
347 |
+
|
348 |
+
@staticmethod
|
349 |
+
def forward(cl_features):
|
350 |
+
|
351 |
+
if len(cl_features.shape) < 3:
|
352 |
+
raise ValueError('`features` needs to be [bsz, n_views, n_patches, ...],'
|
353 |
+
'at least 3 dimensions are required')
|
354 |
+
if len(cl_features.shape) > 3:
|
355 |
+
cl_features = cl_features.view(cl_features.shape[0], cl_features.shape[1], -1) # [BS, 2, feat_cl_dim]
|
356 |
+
|
357 |
+
cl_features_1 = cl_features[:, 0].float() # [BS, feat_cl_dim]
|
358 |
+
cl_features_2 = cl_features[:, 1].float() # [BS, feat_cl_dim]
|
359 |
+
|
360 |
+
return torch.nn.functional.mse_loss(cl_features_1, cl_features_2, reduction='mean')
|
util/lr_decay.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Author: Gaojian Wang@ZJUICSR
|
3 |
+
# --------------------------------------------------------
|
4 |
+
# This source code is licensed under the Attribution-NonCommercial 4.0 International License.
|
5 |
+
# You can find the license in the LICENSE file in the root directory of this source tree.
|
6 |
+
# --------------------------------------------------------
|
7 |
+
|
8 |
+
import json
|
9 |
+
|
10 |
+
|
11 |
+
def param_groups_lrd(model, weight_decay=0.05, no_weight_decay_list=[], layer_decay=.75):
|
12 |
+
"""
|
13 |
+
Parameter groups for layer-wise lr decay
|
14 |
+
Following BEiT: https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py#L58
|
15 |
+
"""
|
16 |
+
param_group_names = {}
|
17 |
+
param_groups = {}
|
18 |
+
|
19 |
+
num_layers = len(model.blocks) + 1
|
20 |
+
|
21 |
+
layer_scales = list(layer_decay ** (num_layers - i) for i in range(num_layers + 1))
|
22 |
+
|
23 |
+
for n, p in model.named_parameters():
|
24 |
+
if not p.requires_grad:
|
25 |
+
continue
|
26 |
+
|
27 |
+
# no decay: all 1D parameters and model specific ones
|
28 |
+
if p.ndim == 1 or n in no_weight_decay_list:
|
29 |
+
g_decay = "no_decay"
|
30 |
+
this_decay = 0.
|
31 |
+
else:
|
32 |
+
g_decay = "decay"
|
33 |
+
this_decay = weight_decay
|
34 |
+
|
35 |
+
layer_id = get_layer_id_for_vit(n, num_layers)
|
36 |
+
group_name = "layer_%d_%s" % (layer_id, g_decay)
|
37 |
+
|
38 |
+
if group_name not in param_group_names:
|
39 |
+
this_scale = layer_scales[layer_id]
|
40 |
+
|
41 |
+
param_group_names[group_name] = {
|
42 |
+
"lr_scale": this_scale,
|
43 |
+
"weight_decay": this_decay,
|
44 |
+
"params": [],
|
45 |
+
}
|
46 |
+
param_groups[group_name] = {
|
47 |
+
"lr_scale": this_scale,
|
48 |
+
"weight_decay": this_decay,
|
49 |
+
"params": [],
|
50 |
+
}
|
51 |
+
|
52 |
+
param_group_names[group_name]["params"].append(n)
|
53 |
+
param_groups[group_name]["params"].append(p)
|
54 |
+
|
55 |
+
# print("parameter groups: \n%s" % json.dumps(param_group_names, indent=2))
|
56 |
+
|
57 |
+
return list(param_groups.values())
|
58 |
+
|
59 |
+
|
60 |
+
def get_layer_id_for_vit(name, num_layers):
|
61 |
+
"""
|
62 |
+
Assign a parameter with its layer id
|
63 |
+
Following BEiT: https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py#L33
|
64 |
+
"""
|
65 |
+
if name in ['cls_token', 'pos_embed']:
|
66 |
+
return 0
|
67 |
+
elif name.startswith('patch_embed'):
|
68 |
+
return 0
|
69 |
+
elif name.startswith('blocks'):
|
70 |
+
return int(name.split('.')[1]) + 1
|
71 |
+
else:
|
72 |
+
return num_layers
|
util/lr_sched.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Author: Gaojian Wang@ZJUICSR
|
3 |
+
# --------------------------------------------------------
|
4 |
+
# This source code is licensed under the Attribution-NonCommercial 4.0 International License.
|
5 |
+
# You can find the license in the LICENSE file in the root directory of this source tree.
|
6 |
+
# --------------------------------------------------------
|
7 |
+
|
8 |
+
import math
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
|
12 |
+
def adjust_learning_rate(optimizer, epoch, args):
|
13 |
+
"""Decay the learning rate with half-cycle cosine after warmup"""
|
14 |
+
if epoch < args.warmup_epochs:
|
15 |
+
lr = args.lr * epoch / args.warmup_epochs
|
16 |
+
else:
|
17 |
+
lr = args.min_lr + (args.lr - args.min_lr) * 0.5 * \
|
18 |
+
(1. + math.cos(math.pi * (epoch - args.warmup_epochs) / (args.epochs - args.warmup_epochs)))
|
19 |
+
for param_group in optimizer.param_groups:
|
20 |
+
if "lr_scale" in param_group:
|
21 |
+
param_group["lr"] = lr * param_group["lr_scale"]
|
22 |
+
else:
|
23 |
+
param_group["lr"] = lr
|
24 |
+
return lr
|
25 |
+
|
26 |
+
|
27 |
+
def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0,
|
28 |
+
start_warmup_value=0, warmup_steps=-1):
|
29 |
+
warmup_schedule = np.array([])
|
30 |
+
warmup_iters = warmup_epochs * niter_per_ep
|
31 |
+
if warmup_steps > 0:
|
32 |
+
warmup_iters = warmup_steps
|
33 |
+
print("Set warmup steps = %d" % warmup_iters)
|
34 |
+
if warmup_epochs > 0:
|
35 |
+
warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters)
|
36 |
+
|
37 |
+
iters = np.arange(epochs * niter_per_ep - warmup_iters)
|
38 |
+
schedule = np.array(
|
39 |
+
[final_value + 0.5 * (base_value - final_value) * (1 + math.cos(math.pi * i / (len(iters)))) for i in iters])
|
40 |
+
|
41 |
+
schedule = np.concatenate((warmup_schedule, schedule))
|
42 |
+
|
43 |
+
assert len(schedule) == epochs * niter_per_ep
|
44 |
+
return schedule
|
util/metrics.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Author: Gaojian Wang@ZJUICSR
|
3 |
+
# --------------------------------------------------------
|
4 |
+
# This source code is licensed under the Attribution-NonCommercial 4.0 International License.
|
5 |
+
# You can find the license in the LICENSE file in the root directory of this source tree.
|
6 |
+
# --------------------------------------------------------
|
7 |
+
|
8 |
+
from sklearn.metrics import roc_auc_score
|
9 |
+
from sklearn.metrics import roc_curve
|
10 |
+
from sklearn.metrics import auc, accuracy_score, balanced_accuracy_score
|
11 |
+
from scipy.optimize import brentq
|
12 |
+
from scipy.interpolate import interp1d
|
13 |
+
|
14 |
+
|
15 |
+
def frame_level_acc(labels, y_preds):
|
16 |
+
return accuracy_score(labels, y_preds) * 100.
|
17 |
+
|
18 |
+
|
19 |
+
def frame_level_balanced_acc(labels, y_preds):
|
20 |
+
return balanced_accuracy_score(labels, y_preds) * 100.
|
21 |
+
|
22 |
+
|
23 |
+
def frame_level_auc(labels, preds):
|
24 |
+
return roc_auc_score(labels, preds) * 100.
|
25 |
+
|
26 |
+
|
27 |
+
def frame_level_eer(labels, preds):
|
28 |
+
# 推荐;更正确的,MaskRelation(TIFS23也是)
|
29 |
+
fpr, tpr, thresholds = roc_curve(labels, preds, pos_label=1) # 如果标签不是二进制的,则应显式地给出pos_标签
|
30 |
+
eer = brentq(lambda x: 1. - x - interp1d(fpr, tpr)(x), 0., 1.)
|
31 |
+
# eer_thresh = interp1d(fpr, thresholds)(eer)
|
32 |
+
return eer
|
33 |
+
|
34 |
+
|
35 |
+
# def frame_level_eer(labels, preds):
|
36 |
+
# fpr, tpr, thresholds = roc_curve(labels, preds, pos_label=1)
|
37 |
+
# eer_threshold = thresholds[(fpr + (1 - tpr)).argmin()]
|
38 |
+
# fpr_eer = fpr[thresholds == eer_threshold][0]
|
39 |
+
# fnr_eer = 1 - tpr[thresholds == eer_threshold][0]
|
40 |
+
# eer = (fpr_eer + fnr_eer) / 2
|
41 |
+
# metric_logger.meters['eer'].update(eer)
|
42 |
+
# return eer, eer_thresh
|
43 |
+
|
44 |
+
|
45 |
+
def get_video_level_label_pred(f_label_list, v_name_list, f_pred_list):
|
46 |
+
"""
|
47 |
+
References:
|
48 |
+
CADDM: https://github.com/megvii-research/CADDM
|
49 |
+
"""
|
50 |
+
video_res_dict = dict()
|
51 |
+
video_pred_list = list()
|
52 |
+
video_y_pred_list = list()
|
53 |
+
video_label_list = list()
|
54 |
+
# summarize all the results for each video
|
55 |
+
for label, video, score in zip(f_label_list, v_name_list, f_pred_list):
|
56 |
+
if video not in video_res_dict.keys():
|
57 |
+
video_res_dict[video] = {"scores": [score], "label": label}
|
58 |
+
else:
|
59 |
+
video_res_dict[video]["scores"].append(score)
|
60 |
+
# get the score and label for each video
|
61 |
+
for video, res in video_res_dict.items():
|
62 |
+
score = sum(res['scores']) / len(res['scores'])
|
63 |
+
label = res['label']
|
64 |
+
video_pred_list.append(score)
|
65 |
+
video_label_list.append(label)
|
66 |
+
video_y_pred_list.append(score >= 0.5)
|
67 |
+
|
68 |
+
return video_label_list, video_pred_list, video_y_pred_list
|
69 |
+
|
70 |
+
|
71 |
+
def video_level_acc(video_label_list, video_y_pred_list):
|
72 |
+
return accuracy_score(video_label_list, video_y_pred_list) * 100.
|
73 |
+
|
74 |
+
|
75 |
+
def video_level_balanced_acc(video_label_list, video_y_pred_list):
|
76 |
+
return balanced_accuracy_score(video_label_list, video_y_pred_list) * 100.
|
77 |
+
|
78 |
+
|
79 |
+
def video_level_auc(video_label_list, video_pred_list):
|
80 |
+
return roc_auc_score(video_label_list, video_pred_list) * 100.
|
81 |
+
|
82 |
+
|
83 |
+
def video_level_eer(video_label_list, video_pred_list):
|
84 |
+
# 推荐;更正确的,MaskRelation(TIFS23也是)
|
85 |
+
fpr, tpr, thresholds = roc_curve(video_label_list, video_pred_list, pos_label=1) # 如果标签不是二进制的,则应显式地给出pos_标签
|
86 |
+
v_eer = brentq(lambda x: 1. - x - interp1d(fpr, tpr)(x), 0., 1.)
|
87 |
+
# eer_thresh = interp1d(fpr, thresholds)(eer)
|
88 |
+
return v_eer
|
util/misc.py
ADDED
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Author: Gaojian Wang@ZJUICSR
|
3 |
+
# --------------------------------------------------------
|
4 |
+
# This source code is licensed under the Attribution-NonCommercial 4.0 International License.
|
5 |
+
# You can find the license in the LICENSE file in the root directory of this source tree.
|
6 |
+
# --------------------------------------------------------
|
7 |
+
|
8 |
+
import builtins
|
9 |
+
import datetime
|
10 |
+
import os
|
11 |
+
import time
|
12 |
+
from collections import defaultdict, deque
|
13 |
+
from pathlib import Path
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import torch.distributed as dist
|
17 |
+
from torch import inf
|
18 |
+
|
19 |
+
|
20 |
+
class SmoothedValue(object):
|
21 |
+
"""Track a series of values and provide access to smoothed values over a
|
22 |
+
window or the global series average.
|
23 |
+
"""
|
24 |
+
|
25 |
+
def __init__(self, window_size=20, fmt=None):
|
26 |
+
if fmt is None:
|
27 |
+
fmt = "{median:.4f} ({global_avg:.4f})"
|
28 |
+
self.deque = deque(maxlen=window_size)
|
29 |
+
self.total = 0.0
|
30 |
+
self.count = 0
|
31 |
+
self.fmt = fmt
|
32 |
+
|
33 |
+
def update(self, value, n=1):
|
34 |
+
self.deque.append(value)
|
35 |
+
self.count += n
|
36 |
+
self.total += value * n
|
37 |
+
|
38 |
+
def synchronize_between_processes(self):
|
39 |
+
"""
|
40 |
+
Warning: does not synchronize the deque!
|
41 |
+
"""
|
42 |
+
if not is_dist_avail_and_initialized():
|
43 |
+
return
|
44 |
+
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
|
45 |
+
dist.barrier()
|
46 |
+
dist.all_reduce(t)
|
47 |
+
t = t.tolist()
|
48 |
+
self.count = int(t[0])
|
49 |
+
self.total = t[1]
|
50 |
+
|
51 |
+
@property
|
52 |
+
def median(self):
|
53 |
+
d = torch.tensor(list(self.deque))
|
54 |
+
return d.median().item()
|
55 |
+
|
56 |
+
@property
|
57 |
+
def avg(self):
|
58 |
+
d = torch.tensor(list(self.deque), dtype=torch.float32)
|
59 |
+
return d.mean().item()
|
60 |
+
|
61 |
+
@property
|
62 |
+
def global_avg(self):
|
63 |
+
return self.total / self.count
|
64 |
+
|
65 |
+
@property
|
66 |
+
def max(self):
|
67 |
+
return max(self.deque)
|
68 |
+
|
69 |
+
@property
|
70 |
+
def value(self):
|
71 |
+
return self.deque[-1]
|
72 |
+
|
73 |
+
def __str__(self):
|
74 |
+
return self.fmt.format(
|
75 |
+
median=self.median,
|
76 |
+
avg=self.avg,
|
77 |
+
global_avg=self.global_avg,
|
78 |
+
max=self.max,
|
79 |
+
value=self.value)
|
80 |
+
|
81 |
+
|
82 |
+
class MetricLogger(object):
|
83 |
+
def __init__(self, delimiter="\t"):
|
84 |
+
self.meters = defaultdict(SmoothedValue)
|
85 |
+
self.delimiter = delimiter
|
86 |
+
|
87 |
+
def update(self, **kwargs):
|
88 |
+
for k, v in kwargs.items():
|
89 |
+
if v is None:
|
90 |
+
continue
|
91 |
+
if isinstance(v, torch.Tensor):
|
92 |
+
v = v.item()
|
93 |
+
assert isinstance(v, (float, int))
|
94 |
+
self.meters[k].update(v)
|
95 |
+
|
96 |
+
def __getattr__(self, attr):
|
97 |
+
if attr in self.meters:
|
98 |
+
return self.meters[attr]
|
99 |
+
if attr in self.__dict__:
|
100 |
+
return self.__dict__[attr]
|
101 |
+
raise AttributeError("'{}' object has no attribute '{}'".format(
|
102 |
+
type(self).__name__, attr))
|
103 |
+
|
104 |
+
def __str__(self):
|
105 |
+
loss_str = []
|
106 |
+
for name, meter in self.meters.items():
|
107 |
+
loss_str.append(
|
108 |
+
"{}: {}".format(name, str(meter))
|
109 |
+
)
|
110 |
+
return self.delimiter.join(loss_str)
|
111 |
+
|
112 |
+
def synchronize_between_processes(self):
|
113 |
+
for meter in self.meters.values():
|
114 |
+
meter.synchronize_between_processes()
|
115 |
+
|
116 |
+
def add_meter(self, name, meter):
|
117 |
+
self.meters[name] = meter
|
118 |
+
|
119 |
+
def log_every(self, iterable, print_freq, header=None):
|
120 |
+
i = 0
|
121 |
+
if not header:
|
122 |
+
header = ''
|
123 |
+
start_time = time.time()
|
124 |
+
end = time.time()
|
125 |
+
iter_time = SmoothedValue(fmt='{avg:.4f}')
|
126 |
+
data_time = SmoothedValue(fmt='{avg:.4f}')
|
127 |
+
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
|
128 |
+
log_msg = [
|
129 |
+
header,
|
130 |
+
'[{0' + space_fmt + '}/{1}]',
|
131 |
+
'eta: {eta}',
|
132 |
+
'{meters}',
|
133 |
+
'time: {time}',
|
134 |
+
'data: {data}'
|
135 |
+
]
|
136 |
+
if torch.cuda.is_available():
|
137 |
+
log_msg.append('max mem: {memory:.0f}')
|
138 |
+
log_msg = self.delimiter.join(log_msg)
|
139 |
+
MB = 1024.0 * 1024.0
|
140 |
+
for obj in iterable:
|
141 |
+
data_time.update(time.time() - end)
|
142 |
+
yield obj
|
143 |
+
iter_time.update(time.time() - end)
|
144 |
+
if i % print_freq == 0 or i == len(iterable) - 1:
|
145 |
+
eta_seconds = iter_time.global_avg * (len(iterable) - i)
|
146 |
+
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
|
147 |
+
if torch.cuda.is_available():
|
148 |
+
print(log_msg.format(
|
149 |
+
i, len(iterable), eta=eta_string,
|
150 |
+
meters=str(self),
|
151 |
+
time=str(iter_time), data=str(data_time),
|
152 |
+
memory=torch.cuda.max_memory_allocated() / MB))
|
153 |
+
else:
|
154 |
+
print(log_msg.format(
|
155 |
+
i, len(iterable), eta=eta_string,
|
156 |
+
meters=str(self),
|
157 |
+
time=str(iter_time), data=str(data_time)))
|
158 |
+
i += 1
|
159 |
+
end = time.time()
|
160 |
+
total_time = time.time() - start_time
|
161 |
+
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
162 |
+
print('{} Total time: {} ({:.4f} s / it)'.format(
|
163 |
+
header, total_time_str, total_time / len(iterable)))
|
164 |
+
|
165 |
+
|
166 |
+
def setup_for_distributed(is_master):
|
167 |
+
"""
|
168 |
+
This function disables printing when not in master process
|
169 |
+
"""
|
170 |
+
builtin_print = builtins.print
|
171 |
+
|
172 |
+
def print(*args, **kwargs):
|
173 |
+
force = kwargs.pop('force', False)
|
174 |
+
force = force or (get_world_size() > 8)
|
175 |
+
if is_master or force:
|
176 |
+
now = datetime.datetime.now().time()
|
177 |
+
builtin_print('[{}] '.format(now), end='') # print with time stamp
|
178 |
+
builtin_print(*args, **kwargs)
|
179 |
+
|
180 |
+
builtins.print = print
|
181 |
+
|
182 |
+
|
183 |
+
def is_dist_avail_and_initialized():
|
184 |
+
if not dist.is_available():
|
185 |
+
return False
|
186 |
+
if not dist.is_initialized():
|
187 |
+
return False
|
188 |
+
return True
|
189 |
+
|
190 |
+
|
191 |
+
def get_world_size():
|
192 |
+
if not is_dist_avail_and_initialized():
|
193 |
+
return 1
|
194 |
+
return dist.get_world_size()
|
195 |
+
|
196 |
+
|
197 |
+
def get_rank():
|
198 |
+
if not is_dist_avail_and_initialized():
|
199 |
+
return 0
|
200 |
+
return dist.get_rank()
|
201 |
+
|
202 |
+
|
203 |
+
def is_main_process():
|
204 |
+
return get_rank() == 0
|
205 |
+
|
206 |
+
|
207 |
+
def save_on_master(*args, **kwargs):
|
208 |
+
if is_main_process():
|
209 |
+
torch.save(*args, **kwargs)
|
210 |
+
|
211 |
+
|
212 |
+
def init_distributed_mode(args):
|
213 |
+
if args.dist_on_itp:
|
214 |
+
args.rank = int(os.environ['OMPI_COMM_WORLD_RANK'])
|
215 |
+
args.world_size = int(os.environ['OMPI_COMM_WORLD_SIZE'])
|
216 |
+
args.gpu = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
|
217 |
+
args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT'])
|
218 |
+
os.environ['LOCAL_RANK'] = str(args.gpu)
|
219 |
+
os.environ['RANK'] = str(args.rank)
|
220 |
+
os.environ['WORLD_SIZE'] = str(args.world_size)
|
221 |
+
# ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"]
|
222 |
+
elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
|
223 |
+
args.rank = int(os.environ["RANK"])
|
224 |
+
args.world_size = int(os.environ['WORLD_SIZE'])
|
225 |
+
args.gpu = int(os.environ['LOCAL_RANK'])
|
226 |
+
elif 'SLURM_PROCID' in os.environ:
|
227 |
+
args.rank = int(os.environ['SLURM_PROCID'])
|
228 |
+
args.gpu = args.rank % torch.cuda.device_count()
|
229 |
+
else:
|
230 |
+
print('Not using distributed mode')
|
231 |
+
setup_for_distributed(is_master=True) # hack
|
232 |
+
args.distributed = False
|
233 |
+
return
|
234 |
+
|
235 |
+
args.distributed = True
|
236 |
+
|
237 |
+
torch.cuda.set_device(args.gpu)
|
238 |
+
args.dist_backend = 'nccl'
|
239 |
+
print('| distributed init (rank {}): {}, gpu {}'.format(
|
240 |
+
args.rank, args.dist_url, args.gpu), flush=True)
|
241 |
+
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
|
242 |
+
world_size=args.world_size, rank=args.rank)
|
243 |
+
torch.distributed.barrier()
|
244 |
+
setup_for_distributed(args.rank == 0)
|
245 |
+
|
246 |
+
|
247 |
+
class NativeScalerWithGradNormCount:
|
248 |
+
state_dict_key = "amp_scaler"
|
249 |
+
|
250 |
+
def __init__(self):
|
251 |
+
self._scaler = torch.cuda.amp.GradScaler()
|
252 |
+
|
253 |
+
def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True):
|
254 |
+
self._scaler.scale(loss).backward(create_graph=create_graph)
|
255 |
+
if update_grad:
|
256 |
+
if clip_grad is not None:
|
257 |
+
assert parameters is not None
|
258 |
+
self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place
|
259 |
+
norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
|
260 |
+
else:
|
261 |
+
self._scaler.unscale_(optimizer)
|
262 |
+
norm = get_grad_norm_(parameters)
|
263 |
+
self._scaler.step(optimizer)
|
264 |
+
self._scaler.update()
|
265 |
+
else:
|
266 |
+
norm = None
|
267 |
+
return norm
|
268 |
+
|
269 |
+
def state_dict(self):
|
270 |
+
return self._scaler.state_dict()
|
271 |
+
|
272 |
+
def load_state_dict(self, state_dict):
|
273 |
+
self._scaler.load_state_dict(state_dict)
|
274 |
+
|
275 |
+
|
276 |
+
def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor:
|
277 |
+
if isinstance(parameters, torch.Tensor):
|
278 |
+
parameters = [parameters]
|
279 |
+
parameters = [p for p in parameters if p.grad is not None]
|
280 |
+
norm_type = float(norm_type)
|
281 |
+
if len(parameters) == 0:
|
282 |
+
return torch.tensor(0.)
|
283 |
+
device = parameters[0].grad.device
|
284 |
+
if norm_type == inf:
|
285 |
+
total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
|
286 |
+
else:
|
287 |
+
total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]),
|
288 |
+
norm_type)
|
289 |
+
return total_norm
|
290 |
+
|
291 |
+
|
292 |
+
def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler, tag=None):
|
293 |
+
output_dir = Path(args.output_dir)
|
294 |
+
epoch_name = str(epoch)
|
295 |
+
if loss_scaler is not None:
|
296 |
+
if tag is None:
|
297 |
+
checkpoint_paths = [output_dir / ('checkpoint-%s.pth' % epoch_name)]
|
298 |
+
else:
|
299 |
+
checkpoint_paths = [output_dir / ('checkpoint-%s.pth' % tag)]
|
300 |
+
for checkpoint_path in checkpoint_paths:
|
301 |
+
to_save = {
|
302 |
+
'model': model_without_ddp.state_dict(),
|
303 |
+
'optimizer': optimizer.state_dict(),
|
304 |
+
'epoch': epoch,
|
305 |
+
'scaler': loss_scaler.state_dict(),
|
306 |
+
'args': args,
|
307 |
+
}
|
308 |
+
|
309 |
+
save_on_master(to_save, checkpoint_path)
|
310 |
+
else:
|
311 |
+
client_state = {'epoch': epoch}
|
312 |
+
if tag is None:
|
313 |
+
model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint-%s" % epoch_name,
|
314 |
+
client_state=client_state)
|
315 |
+
else:
|
316 |
+
model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint-%s" % tag,
|
317 |
+
client_state=client_state)
|
318 |
+
|
319 |
+
|
320 |
+
def save_model_target_encoder(args, epoch, model, model_target_encoder_without_ddp, optimizer, loss_scaler, tag=None):
|
321 |
+
output_dir = Path(args.output_dir)
|
322 |
+
epoch_name = str(epoch)
|
323 |
+
if loss_scaler is not None:
|
324 |
+
if tag is None:
|
325 |
+
checkpoint_paths = [output_dir / ('checkpoint-te-%s.pth' % epoch_name)]
|
326 |
+
else:
|
327 |
+
checkpoint_paths = [output_dir / ('checkpoint-te-%s.pth' % tag)]
|
328 |
+
for checkpoint_path in checkpoint_paths:
|
329 |
+
to_save = {
|
330 |
+
'model': model_target_encoder_without_ddp.state_dict(),
|
331 |
+
'optimizer': optimizer.state_dict(),
|
332 |
+
'epoch': epoch,
|
333 |
+
'scaler': loss_scaler.state_dict(),
|
334 |
+
'args': args,
|
335 |
+
}
|
336 |
+
|
337 |
+
save_on_master(to_save, checkpoint_path)
|
338 |
+
else:
|
339 |
+
client_state = {'epoch': epoch}
|
340 |
+
if tag is None:
|
341 |
+
model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint-te-%s" % epoch_name,
|
342 |
+
client_state=client_state)
|
343 |
+
else:
|
344 |
+
model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint-te-%s" % tag,
|
345 |
+
client_state=client_state)
|
346 |
+
|
347 |
+
|
348 |
+
def load_model(args, model_without_ddp, optimizer, loss_scaler):
|
349 |
+
if args.resume:
|
350 |
+
if args.resume.startswith('https'):
|
351 |
+
checkpoint = torch.hub.load_state_dict_from_url(
|
352 |
+
args.resume, map_location='cpu', check_hash=True)
|
353 |
+
else:
|
354 |
+
checkpoint = torch.load(args.resume, map_location='cpu')
|
355 |
+
model_without_ddp.load_state_dict(checkpoint['model'])
|
356 |
+
print("Resume checkpoint %s" % args.resume)
|
357 |
+
if 'optimizer' in checkpoint and 'epoch' in checkpoint and not (hasattr(args, 'eval') and args.eval):
|
358 |
+
optimizer.load_state_dict(checkpoint['optimizer'])
|
359 |
+
args.start_epoch = checkpoint['epoch'] + 1
|
360 |
+
if 'scaler' in checkpoint:
|
361 |
+
loss_scaler.load_state_dict(checkpoint['scaler'])
|
362 |
+
print("With optim & sched!")
|
363 |
+
|
364 |
+
|
365 |
+
def load_model_target_encoder(args, model_target_encoder_without_ddp, optimizer, loss_scaler):
|
366 |
+
if args.resume:
|
367 |
+
if args.resume.startswith('https'):
|
368 |
+
checkpoint = torch.hub.load_state_dict_from_url(
|
369 |
+
args.resume, map_location='cpu', check_hash=True)
|
370 |
+
else:
|
371 |
+
checkpoint = torch.load(args.resume_target_encoder, map_location='cpu')
|
372 |
+
model_target_encoder_without_ddp.load_state_dict(checkpoint['model'])
|
373 |
+
print("Resume checkpoint %s" % args.resume_target_encoder)
|
374 |
+
if 'optimizer' in checkpoint and 'epoch' in checkpoint and not (hasattr(args, 'eval') and args.eval):
|
375 |
+
optimizer.load_state_dict(checkpoint['optimizer'])
|
376 |
+
args.start_epoch = checkpoint['epoch'] + 1
|
377 |
+
if 'scaler' in checkpoint:
|
378 |
+
loss_scaler.load_state_dict(checkpoint['scaler'])
|
379 |
+
print("With optim & sched!")
|
380 |
+
|
381 |
+
|
382 |
+
def all_reduce_mean(x):
|
383 |
+
world_size = get_world_size()
|
384 |
+
if world_size > 1:
|
385 |
+
x_reduce = torch.tensor(x).cuda()
|
386 |
+
dist.all_reduce(x_reduce)
|
387 |
+
x_reduce /= world_size
|
388 |
+
return x_reduce.item()
|
389 |
+
else:
|
390 |
+
return x
|
util/pos_embed.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Author: Gaojian Wang@ZJUICSR
|
3 |
+
# --------------------------------------------------------
|
4 |
+
# This source code is licensed under the Attribution-NonCommercial 4.0 International License.
|
5 |
+
# You can find the license in the LICENSE file in the root directory of this source tree.
|
6 |
+
# --------------------------------------------------------
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
|
11 |
+
|
12 |
+
# --------------------------------------------------------
|
13 |
+
# 2D sine-cosine position embedding
|
14 |
+
# References:
|
15 |
+
# Transformer: https://github.com/tensorflow/models/blob/master/official/nlp/transformer/model_utils.py
|
16 |
+
# MoCo v3: https://github.com/facebookresearch/moco-v3
|
17 |
+
# --------------------------------------------------------
|
18 |
+
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
|
19 |
+
"""
|
20 |
+
grid_size: int of the grid height and width
|
21 |
+
return:
|
22 |
+
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
23 |
+
"""
|
24 |
+
grid_h = np.arange(grid_size, dtype=np.float32)
|
25 |
+
grid_w = np.arange(grid_size, dtype=np.float32)
|
26 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
27 |
+
grid = np.stack(grid, axis=0)
|
28 |
+
|
29 |
+
grid = grid.reshape([2, 1, grid_size, grid_size])
|
30 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
31 |
+
if cls_token:
|
32 |
+
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
33 |
+
return pos_embed
|
34 |
+
|
35 |
+
|
36 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
37 |
+
assert embed_dim % 2 == 0
|
38 |
+
|
39 |
+
# use half of dimensions to encode grid_h
|
40 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
41 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
42 |
+
|
43 |
+
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
44 |
+
return emb
|
45 |
+
|
46 |
+
|
47 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
48 |
+
"""
|
49 |
+
embed_dim: output dimension for each position
|
50 |
+
pos: a list of positions to be encoded: size (M,)
|
51 |
+
out: (M, D)
|
52 |
+
"""
|
53 |
+
assert embed_dim % 2 == 0
|
54 |
+
omega = np.arange(embed_dim // 2, dtype=np.float)
|
55 |
+
omega /= embed_dim / 2.
|
56 |
+
omega = 1. / 10000**omega # (D/2,)
|
57 |
+
|
58 |
+
pos = pos.reshape(-1) # (M,)
|
59 |
+
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
|
60 |
+
|
61 |
+
emb_sin = np.sin(out) # (M, D/2)
|
62 |
+
emb_cos = np.cos(out) # (M, D/2)
|
63 |
+
|
64 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
65 |
+
return emb
|
66 |
+
|
67 |
+
|
68 |
+
# --------------------------------------------------------
|
69 |
+
# Interpolate position embeddings for high-resolution
|
70 |
+
# References:
|
71 |
+
# DeiT: https://github.com/facebookresearch/deit
|
72 |
+
# --------------------------------------------------------
|
73 |
+
def interpolate_pos_embed(model, checkpoint_model):
|
74 |
+
if 'pos_embed' in checkpoint_model:
|
75 |
+
pos_embed_checkpoint = checkpoint_model['pos_embed']
|
76 |
+
embedding_size = pos_embed_checkpoint.shape[-1]
|
77 |
+
num_patches = model.patch_embed.num_patches
|
78 |
+
num_extra_tokens = model.pos_embed.shape[-2] - num_patches
|
79 |
+
# height (== width) for the checkpoint position embedding
|
80 |
+
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
|
81 |
+
# height (== width) for the new position embedding
|
82 |
+
new_size = int(num_patches ** 0.5)
|
83 |
+
# class_token and dist_token are kept unchanged
|
84 |
+
if orig_size != new_size:
|
85 |
+
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
|
86 |
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
87 |
+
# only the position tokens are interpolated
|
88 |
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
89 |
+
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
90 |
+
pos_tokens = torch.nn.functional.interpolate(
|
91 |
+
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
92 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
93 |
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
94 |
+
checkpoint_model['pos_embed'] = new_pos_embed
|
95 |
+
|
96 |
+
|
97 |
+
def interpolate_pos_embed_ema(model, checkpoint_model):
|
98 |
+
if checkpoint_model.pos_embed is not None:
|
99 |
+
pos_embed_checkpoint = checkpoint_model.pos_embed
|
100 |
+
embedding_size = pos_embed_checkpoint.shape[-1]
|
101 |
+
num_patches = model.patch_embed.num_patches
|
102 |
+
num_extra_tokens = model.pos_embed.shape[-2] - num_patches
|
103 |
+
# height (== width) for the checkpoint position embedding
|
104 |
+
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
|
105 |
+
# height (== width) for the new position embedding
|
106 |
+
new_size = int(num_patches ** 0.5)
|
107 |
+
# class_token and dist_token are kept unchanged
|
108 |
+
if orig_size != new_size:
|
109 |
+
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
|
110 |
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
111 |
+
# only the position tokens are interpolated
|
112 |
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
113 |
+
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
114 |
+
pos_tokens = torch.nn.functional.interpolate(
|
115 |
+
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
116 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
117 |
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
118 |
+
checkpoint_model.pos_embed = new_pos_embed
|