File size: 9,413 Bytes
297437a e760939 5b45d10 e21a9f1 bb6e5e5 5d65dfe e62dd99 e21a9f1 297437a 0c37b52 e93a46f e21a9f1 de59cef e21a9f1 5eddd0b e21a9f1 c0d4e9c e21a9f1 e93a46f fa0faa4 bb6e5e5 fa0faa4 bb6e5e5 fa0faa4 e93a46f fa0faa4 e760939 fa0faa4 e760939 22a3dc8 e62dd99 e21a9f1 cd4bee1 e62dd99 22a3dc8 e62dd99 22a3dc8 e62dd99 e760939 e21a9f1 affd952 e62dd99 affd952 e62dd99 affd952 dc99d7c e93a46f e760939 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import gradio as gr
import requests
import os
import json
import time
import transformers
import re
from transformers import AutoTokenizer, AutoModelForCausalLM
hf_token = os.getenv("HF_AUTH_TOKEN")
vapi_url = "/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2Fvectara%2Fhallucination_evaluation_model%26quot%3B%3C%2Fspan%3E
headers = {"Authorization": f"Bearer {hf_token}"}
model_name = "allenai/OLMo-1B"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
def generate_text(prompt, max_new_tokens=100, do_sample=False, top_k=50, top_p=0.95):
inputs = tokenizer(prompt, return_tensors='pt', return_token_type_ids=False)
response = model.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=do_sample, top_k=top_k, top_p=top_p)
return tokenizer.batch_decode(response, skip_special_tokens=True)[0]
# Function to query the API
def query(payload):
response = requests.post(vapi_url, headers=headers, json=payload)
return response.json()
def check_hallucination(assertion, citation):
api_url = "/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2Fvectara%2Fhallucination_evaluation_model%26quot%3B%3C%2Fspan%3E
header = {"Authorization": f"Bearer {hf_token}"}
payload = {"inputs": f"{assertion} [SEP] {citation}"}
attempts = 0
max_attempts = 3
wait_time = 180 # 3 minutes
while attempts < max_attempts:
try:
response = requests.post(api_url, headers=header, json=payload, timeout=120)
response.raise_for_status() # This will raise an exception for HTTP error codes
output = response.json()
output = output[0][0]["score"]
return f"**hallucination score:** {output}"
except requests.exceptions.HTTPError as http_err:
print(f"HTTP error occurred: {http_err}") # Python 3.6
except requests.exceptions.RequestException as err:
print(f"Other error occurred: {err}") # Python 3.6
except KeyError:
print("KeyError: The expected key was not found in the response. The endpoint might be waking up.")
attempts += 1
if attempts < max_attempts:
print(f"Attempt {attempts} failed. Waiting for {wait_time} seconds before retrying...")
time.sleep(wait_time)
else:
print("Maximum attempts reached. Please try again later.")
return "Error: Unable to retrieve hallucination score after multiple attempts."
return "Error: Unable to process the hallucination check."
def query_vectara(text):
user_message = text
customer_id = os.getenv('CUSTOMER_ID')
corpus_id = os.getenv('CORPUS_ID')
api_key = os.getenv('API_KEY')
api_key_header = {
"customer-id": customer_id,
"x-api-key": api_key
}
request_body = {
"query": [
{
"query": user_message,
"queryContext": "",
"start": 1,
"numResults": 25,
"contextConfig": {
"charsBefore": 0,
"charsAfter": 0,
"sentencesBefore": 2,
"sentencesAfter": 2,
"startTag": "%START_SNIPPET%",
"endTag": "%END_SNIPPET%",
},
"rerankingConfig": {
"rerankerId": 272725718,
"mmrConfig": {
"diversityBias": 0.35
}
},
"corpusKey": [
{
"customerId": customer_id,
"corpusId": corpus_id,
"semantics": 0,
"metadataFilter": "",
"lexicalInterpolationConfig": {
"lambda": 0
},
"dim": []
}
],
"summary": [
{
"maxSummarizedResults": 5,
"responseLang": "auto",
"summarizerPromptName": "vectara-summary-ext-v1.2.0"
}
]
}
]
}
response = requests.post(
"https://api.vectara.io/v1/query",
json=request_body,
verify=True,
headers=api_key_header
)
if response.status_code == 200:
query_data = response.json()
if query_data:
sources_info = []
# Extract the summary.
summary = query_data['responseSet'][0]['summary'][0]['text']
# Iterate over all response sets
for response_set in query_data.get('responseSet', []):
# Extract sources
# Limit to top 5 sources.
for source in response_set.get('response', [])[:5]:
source_metadata = source.get('metadata', [])
source_info = {}
for metadata in source_metadata:
metadata_name = metadata.get('name', '')
metadata_value = metadata.get('value', '')
if metadata_name == 'title':
source_info['title'] = metadata_value
elif metadata_name == 'author':
source_info['author'] = metadata_value
elif metadata_name == 'pageNumber':
source_info['page number'] = metadata_value
if source_info:
sources_info.append(source_info)
result = {"summary": summary, "sources": sources_info}
return f"{json.dumps(result, indent=2)}"
else:
return "No data found in the response."
else:
return f"Error: {response.status_code}"
def remove_references(text):
# Regex pattern to find references like [1], [1][2], etc.
pattern = r'\[\d+\]+'
# Replace found patterns with an empty string
cleaned_text = re.sub(pattern, '', text)
return cleaned_text
def clean_text(text):
# Remove special characters, keeping only letters, numbers, and spaces
cleaned_text = re.sub(r'[^a-zA-Z0-9\s]', '', text)
return cleaned_text
def evaluate_content(user_input):
vectara_response = query_vectara(user_input)
vectara_response_json = json.loads(vectara_response)
summary = vectara_response_json.get("summary", "")
sources = vectara_response_json.get("sources", [])
# Remove references from the summary text
summary_no_refs = remove_references(summary)
# Clean summary text to remove special characters
summary_clean = clean_text(summary_no_refs)
# Process sources to extract and clean necessary information
sources_info = ""
for source in sources:
title = source.get("title", "No title")
author = source.get("author", "No author")
page_number = source.get("page number", "N/A")
# Clean source info
title_clean = clean_text(title)
author_clean = clean_text(author)
sources_info += f"Title: {title_clean}, Author: {author_clean}, Page: {page_number}\n"
# Generate text based on the cleaned and reference-removed summary
olmo_output = generate_text(summary_clean)
olmo_output_clean = clean_text(olmo_output)
# Check hallucination based on the original output and summary
hallucination_score = check_hallucination(olmo_output, summary)
return summary_clean, sources_info, olmo_output_clean, hallucination_score
# Adjust the Gradio interface outputs to match the new structure
iface = gr.Interface(
fn=evaluate_content,
inputs=[gr.Textbox(label="User Input")],
outputs=[
gr.Textbox(label="Vectara Summary", lines=10),
gr.Textbox(label="Vectara Sources", lines=10),
gr.Textbox(label="Generated Text", lines=10),
gr.Textbox(label="Hallucination Score")
],
live=False,
title="👋🏻Welcome to 🌟Team Tonic's 🧠🌈SureRAG🔴🟢",
description="Nothing is more important than reputation. However you can create automated content pipelines for public facing content. How can businesses grow their reputation while mitigating risks due to AI? How it works : vectara rag retrieval reranking and summarization is used to return content. then an LLM generates content based on these returns. this content is checked for hallucination before being validated for publishing on twitter. SureRAG is fixed on Tonic-AI's README files as a Demo, provide input to generate a response. This response is checked by Vectara's HHME. Check out the model [vectara/hallucination_evaluation_model](https://huggingface.co/vectara/hallucination_evaluation_model) Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to 🌟 [DataTonic](https://github.com/Tonic-AI/DataTonic)",
)
iface.launch() |