tonic commited on
Commit
e21a9f1
·
1 Parent(s): e93a46f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -3
app.py CHANGED
@@ -2,12 +2,24 @@
2
  import gradio as gr
3
  import requests
4
  import os
 
 
5
 
6
  hf_token = os.getenv("HuggingFace_Token")
7
  vapi_url = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model"
8
  headers = {"Authorization": f"Bearer {hf_token}"}
9
 
10
 
 
 
 
 
 
 
 
 
 
 
11
  # Function to query the API
12
  def query(payload):
13
  response = requests.post(vapi_url, headers=headers, json=payload)
@@ -121,11 +133,18 @@ def query_vectara(text):
121
  else:
122
  return f"Error: {response.status_code}"
123
 
 
 
 
 
 
 
 
124
  # Create the Gradio interface
125
  iface = gr.Interface(
126
- fn=evaluate_hallucination,
127
- inputs=[gr.Textbox(label="Assertion"), gr.Textbox(label="Citation")],
128
- outputs=[gr.Label(), gr.Textbox(label="Explanation")],
129
  live=False,
130
  title="👋🏻Welcome to 🌟Team Tonic's 🧠🌈SureRAG🔴🟢",
131
  description="Nothing is more important than reputation. However you can create automated content pipelines for public facing content. How can businesses grow their reputation while mitigating risks due to AI? How it works : vectara rag retrieval reranking and summarization is used to return content. then an LLM generates content based on these returns. this content is checked for hallucination before being validated for publishing on twitter. SureRAG is fixed on Tonic-AI's README files as a Demo, provide input to generate a response. This response is checked by Vectara's HHME. Check out the model [vectara/hallucination_evaluation_model](https://huggingface.co/vectara/hallucination_evaluation_model) Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to 🌟 [DataTonic](https://github.com/Tonic-AI/DataTonic)",
 
2
  import gradio as gr
3
  import requests
4
  import os
5
+ import json
6
+ from transformers import AutoTokenizer, AutoModelForCausalLM
7
 
8
  hf_token = os.getenv("HuggingFace_Token")
9
  vapi_url = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model"
10
  headers = {"Authorization": f"Bearer {hf_token}"}
11
 
12
 
13
+ model_name = "allenai/OLMo-1B"
14
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
15
+ model = AutoModelForCausalLM.from_pretrained(model_name)
16
+
17
+ def generate_text(prompt, max_new_tokens, top_k, top_p, do_sample):
18
+ inputs = tokenizer(prompt, return_tensors='pt', return_token_type_ids=False)
19
+ response = model.generate(**inputs, max_new_tokens=400, do_sample=Truee, top_k=50, top_p=0.95)
20
+ return tokenizer.batch_decode(response, skip_special_tokens=True)[0]
21
+
22
+
23
  # Function to query the API
24
  def query(payload):
25
  response = requests.post(vapi_url, headers=headers, json=payload)
 
133
  else:
134
  return f"Error: {response.status_code}"
135
 
136
+ # Main function to integrate Vectara, OLMo, and hallucination check
137
+ def evaluate_content(user_input):
138
+ vectara_summary = query_vectara(user_input)
139
+ olmo_output = generate_text(vectara_summary)
140
+ hallucination_score = check_hallucination(olmo_output, vectara_summary)
141
+ return olmo_output, hallucination_score
142
+
143
  # Create the Gradio interface
144
  iface = gr.Interface(
145
+ fn=evaluate_content,
146
+ inputs=[gr.Textbox(label="User Input")],
147
+ outputs=[gr.Textbox(label="Generated Text"), gr.Textbox(label="Hallucination Score")],
148
  live=False,
149
  title="👋🏻Welcome to 🌟Team Tonic's 🧠🌈SureRAG🔴🟢",
150
  description="Nothing is more important than reputation. However you can create automated content pipelines for public facing content. How can businesses grow their reputation while mitigating risks due to AI? How it works : vectara rag retrieval reranking and summarization is used to return content. then an LLM generates content based on these returns. this content is checked for hallucination before being validated for publishing on twitter. SureRAG is fixed on Tonic-AI's README files as a Demo, provide input to generate a response. This response is checked by Vectara's HHME. Check out the model [vectara/hallucination_evaluation_model](https://huggingface.co/vectara/hallucination_evaluation_model) Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to 🌟 [DataTonic](https://github.com/Tonic-AI/DataTonic)",