Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
from haystack.schema import Answer | |
from haystack.document_stores import InMemoryDocumentStore | |
from haystack.pipelines import FAQPipeline, ExtractiveQAPipeline | |
from haystack.nodes import EmbeddingRetriever, TfidfRetriever, FARMReader, TextConverter, PreProcessor | |
from haystack.utils import print_answers | |
from haystack.utils import convert_files_to_docs | |
import logging | |
# FAQ Haystack function calls | |
def start_haystack(): | |
document_store = InMemoryDocumentStore(index="document", embedding_field='embedding', embedding_dim=384, similarity='cosine') | |
retriever = EmbeddingRetriever(document_store=document_store, embedding_model='sentence-transformers/all-MiniLM-L6-v2', use_gpu=True, top_k=1) | |
load_data_to_store(document_store,retriever) | |
pipeline = FAQPipeline(retriever=retriever) | |
return pipeline | |
def load_data_to_store(document_store, retriever): | |
df = pd.read_csv('monopoly_qa-v1.csv') | |
questions = list(df.Question) | |
df['embedding'] = retriever.embed_queries(texts=questions) | |
df = df.rename(columns={"Question":"content","Answer":"answer"}) | |
df.drop('link to source (to prevent duplicate sources)',axis=1, inplace=True) | |
dicts = df.to_dict(orient="records") | |
document_store.write_documents(dicts) | |
faq_pipeline = start_haystack() | |
def predict_faq(question): | |
prediction = faq_pipeline.run(question) | |
answer = prediction["answers"][0].meta | |
faq_response = "FAQ Question: " + answer["query"] + "\n"+"Answer: " + answer["answer"] | |
return faq_response | |
# Extractive QA functions | |
## preprocess monopoly rules | |
def preprocess_txt_doc(fpath): | |
converter = TextConverter(remove_numeric_tables=True, valid_languages=["en"]) | |
doc_txt = converter.convert(file_path=fpath, meta=None)[0] | |
preprocessor = PreProcessor( | |
clean_empty_lines=True, | |
clean_whitespace=True, | |
clean_header_footer=False, | |
split_by="word", | |
split_length=100, | |
split_respect_sentence_boundary=True,) | |
docs = preprocessor.process([doc_txt]) | |
return docs | |
def start_ex_haystack(documents): | |
ex_document_store = InMemoryDocumentStore() | |
ex_document_store.write_documents(documents) | |
retriever = TfidfRetriever(document_store=ex_document_store) | |
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", use_gpu=False) | |
pipe = ExtractiveQAPipeline(reader, retriever) | |
return pipe | |
docs = preprocess_txt_doc("monopoly_text_v1.txt") | |
ex_pipeline = start_ex_haystack(docs) | |
def predict_extract(question): | |
prediction = ex_pipeline.run(question) | |
possible_answers = "" | |
for i,a in enumerate(prediction["answers"]): | |
possible_answers = possible_answers +str(i) + ":" + a.answer + "\n" | |
return possible_answers | |
# Gradio App section | |
input_question =gr.inputs.Textbox(label="enter your monopoly question here") | |
response = "text" | |
examples = ["how much cash do we get to start with?", "at what point can I buy houses?", "what happens when I land on free parking?"] | |
mon_faq = gr.Interface( | |
fn=predict_faq, | |
inputs=input_question, | |
outputs=response, | |
examples=examples, | |
title="Monopoly FAQ Semantic Search") | |
# extractive interface | |
mon_ex = gr.Interface( | |
fn=predict_extract, | |
inputs=input_question, | |
outputs=response, | |
examples=examples, | |
title="Monopoly Extractive QA Search") | |
gr.TabbedInterface([mon_faq,mon_ex],["FAQ Search","Extractive QA"]).launch() |