import gradio as gr import pandas as pd from haystack.schema import Answer from haystack.document_stores import InMemoryDocumentStore from haystack.pipelines import FAQPipeline, ExtractiveQAPipeline from haystack.nodes import EmbeddingRetriever, TfidfRetriever, FARMReader, TextConverter, PreProcessor from haystack.utils import print_answers from haystack.utils import convert_files_to_docs import logging # FAQ Haystack function calls def start_haystack(): document_store = InMemoryDocumentStore(index="document", embedding_field='embedding', embedding_dim=384, similarity='cosine') retriever = EmbeddingRetriever(document_store=document_store, embedding_model='sentence-transformers/all-MiniLM-L6-v2', use_gpu=True, top_k=1) load_data_to_store(document_store,retriever) pipeline = FAQPipeline(retriever=retriever) return pipeline def load_data_to_store(document_store, retriever): df = pd.read_csv('monopoly_qa-v1.csv') questions = list(df.Question) df['embedding'] = retriever.embed_queries(texts=questions) df = df.rename(columns={"Question":"content","Answer":"answer"}) df.drop('link to source (to prevent duplicate sources)',axis=1, inplace=True) dicts = df.to_dict(orient="records") document_store.write_documents(dicts) faq_pipeline = start_haystack() def predict_faq(question): prediction = faq_pipeline.run(question) answer = prediction["answers"][0].meta faq_response = "FAQ Question: " + answer["query"] + "\n"+"Answer: " + answer["answer"] return faq_response # Extractive QA functions ## preprocess monopoly rules def preprocess_txt_doc(fpath): converter = TextConverter(remove_numeric_tables=True, valid_languages=["en"]) doc_txt = converter.convert(file_path=fpath, meta=None)[0] preprocessor = PreProcessor( clean_empty_lines=True, clean_whitespace=True, clean_header_footer=False, split_by="word", split_length=100, split_respect_sentence_boundary=True,) docs = preprocessor.process([doc_txt]) return docs def start_ex_haystack(documents): ex_document_store = InMemoryDocumentStore() ex_document_store.write_documents(documents) retriever = TfidfRetriever(document_store=ex_document_store) reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", use_gpu=False) pipe = ExtractiveQAPipeline(reader, retriever) return pipe docs = preprocess_txt_doc("monopoly_text_v1.txt") ex_pipeline = start_ex_haystack(docs) def predict_extract(question): prediction = ex_pipeline.run(question) possible_answers = "" for i,a in enumerate(prediction["answers"]): possible_answers = possible_answers +str(i) + ":" + a.answer + "\n" return possible_answers # Gradio App section input_question =gr.inputs.Textbox(label="enter your monopoly question here") response = "text" examples = ["how much cash do we get to start with?", "at what point can I buy houses?", "what happens when I land on free parking?"] mon_faq = gr.Interface( fn=predict_faq, inputs=input_question, outputs=response, examples=examples, title="Monopoly FAQ Semantic Search") # extractive interface mon_ex = gr.Interface( fn=predict_extract, inputs=input_question, outputs=response, examples=examples, title="Monopoly Extractive QA Search") gr.TabbedInterface([mon_faq,mon_ex],["FAQ Search","Extractive QA"]).launch()