Spaces:
Configuration error
Configuration error
import argparse | |
import os | |
import warnings | |
from pathlib import Path | |
from uuid import uuid4 | |
from utils.lora import inject_inferable_lora | |
import torch | |
from diffusers import DPMSolverMultistepScheduler, TextToVideoSDPipeline | |
from models.unet_3d_condition import UNet3DConditionModel | |
from einops import rearrange | |
from torch.nn.functional import interpolate | |
import imageio | |
import decord | |
from train import handle_memory_attention, load_primary_models | |
from utils.lama import inpaint_watermark | |
def initialize_pipeline(model, device="cuda", xformers=False, sdp=False): | |
with warnings.catch_warnings(): | |
warnings.simplefilter("ignore") | |
scheduler, tokenizer, text_encoder, vae, _unet = load_primary_models(model) | |
del _unet #This is a no op | |
unet = UNet3DConditionModel.from_pretrained(model, subfolder='unet') | |
# unet.disable_gradient_checkpointing() | |
pipeline = TextToVideoSDPipeline.from_pretrained( | |
pretrained_model_name_or_path=model, | |
scheduler=scheduler, | |
tokenizer=tokenizer, | |
text_encoder=text_encoder.to(device=device, dtype=torch.half), | |
vae=vae.to(device=device, dtype=torch.half), | |
unet=unet.to(device=device, dtype=torch.half), | |
) | |
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) | |
unet._set_gradient_checkpointing(value=False) | |
handle_memory_attention(xformers, sdp, unet) | |
vae.enable_slicing() | |
return pipeline | |
def vid2vid( | |
pipeline, init_video, init_weight, prompt, negative_prompt, height, width, num_inference_steps, generator, guidance_scale | |
): | |
num_frames = init_video.shape[2] | |
init_video = rearrange(init_video, "b c f h w -> (b f) c h w") | |
pipeline.generator=generator | |
latents = pipeline.vae.encode(init_video).latent_dist.sample() | |
latents = rearrange(latents, "(b f) c h w -> b c f h w", f=num_frames) | |
latents = pipeline.scheduler.add_noise( | |
original_samples=latents * 0.18215, | |
noise=torch.randn_like(latents), | |
timesteps=(torch.ones(latents.shape[0]) * pipeline.scheduler.num_train_timesteps * (1 - init_weight)).long(), | |
) | |
if latents.shape[0] != len(prompt): | |
latents = latents.repeat(len(prompt), 1, 1, 1, 1) | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
prompt_embeds = pipeline._encode_prompt( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
device=latents.device, | |
num_images_per_prompt=1, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
) | |
pipeline.scheduler.set_timesteps(num_inference_steps, device=latents.device) | |
timesteps = pipeline.scheduler.timesteps | |
timesteps = timesteps[round(init_weight * len(timesteps)) :] | |
with pipeline.progress_bar(total=len(timesteps)) as progress_bar: | |
for t in timesteps: | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = pipeline.scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
noise_pred = pipeline.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds).sample | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# reshape latents | |
bsz, channel, frames, width, height = latents.shape | |
latents = latents.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height) | |
noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = pipeline.scheduler.step(noise_pred, t, latents).prev_sample | |
# reshape latents back | |
latents = latents[None, :].reshape(bsz, frames, channel, width, height).permute(0, 2, 1, 3, 4) | |
progress_bar.update() | |
video_tensor = pipeline.decode_latents(latents) | |
return video_tensor | |
def inference( | |
model, | |
prompt, | |
negative_prompt=None, | |
batch_size=1, | |
num_frames=16, | |
width=256, | |
height=256, | |
num_steps=50, | |
guidance_scale=9, | |
init_video=None, | |
init_weight=0.5, | |
device="cuda", | |
xformers=False, | |
sdp=False, | |
lora_path='', | |
lora_rank=64, | |
seed=0, | |
): | |
with torch.autocast(device, dtype=torch.half): | |
pipeline = initialize_pipeline(model, device, xformers, sdp) | |
inject_inferable_lora(pipeline, lora_path, r=lora_rank) | |
prompt = [prompt] * batch_size | |
negative_prompt = ([negative_prompt] * batch_size) if negative_prompt is not None else None | |
if init_video is not None: | |
g_cuda = torch.Generator(device='cuda') | |
g_cuda.manual_seed(seed) | |
g_cpu = torch.Generator() | |
g_cpu.manual_seed(seed) | |
videos = vid2vid( | |
pipeline=pipeline, | |
init_video=init_video.to(device=device, dtype=torch.half), | |
init_weight=init_weight, | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
height=height, | |
width=width, | |
num_inference_steps=num_steps, | |
generator=g_cuda, | |
guidance_scale=guidance_scale, | |
) | |
else: | |
g_cuda = torch.Generator(device='cuda') | |
g_cuda.manual_seed(seed) | |
g_cpu = torch.Generator() | |
g_cpu.manual_seed(seed) | |
videos = pipeline( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
num_frames=num_frames, | |
height=height, | |
width=width, | |
num_inference_steps=num_steps, | |
generator=g_cuda, | |
guidance_scale=guidance_scale, | |
output_type="pt", | |
).frames | |
return videos | |
def export_to_video(video_frames, output_video_path, fps): | |
writer = imageio.get_writer(output_video_path, format="FFMPEG", fps=fps) | |
for frame in video_frames: | |
writer.append_data(frame) | |
writer.close() | |
def run(**args): | |
decord.bridge.set_bridge("torch") | |
output_dir = args.pop("output_dir") | |
fps = args.pop("fps") | |
remove_watermark = args.pop("remove_watermark") | |
init_video = args.get("init_video", None) | |
if init_video is not None: | |
vr = decord.VideoReader(init_video) | |
init = rearrange(vr[:], "f h w c -> c f h w").div(127.5).sub(1).unsqueeze(0) | |
init = interpolate(init, size=(args['num_frames'], args['height'], args['width']), mode="trilinear") | |
args["init_video"] = init | |
videos = inference(**args) | |
os.makedirs(output_dir, exist_ok=True) | |
for idx, video in enumerate(videos): | |
if remove_watermark: | |
video = rearrange(video, "c f h w -> f c h w").add(1).div(2) | |
video = inpaint_watermark(video) | |
video = rearrange(video, "f c h w -> f h w c").clamp(0, 1).mul(255) | |
else: | |
video = rearrange(video, "c f h w -> f h w c").clamp(-1, 1).add(1).mul(127.5) | |
video = video.byte().cpu().numpy() | |
filename = os.path.join(output_dir, f"output-{idx}.mp4") | |
export_to_video(video, filename, fps) | |
yield filename | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("-m", "--model", type=str, required=True) | |
parser.add_argument("-p", "--prompt", type=str, required=True) | |
parser.add_argument("-n", "--negative_prompt", type=str, default=None) | |
parser.add_argument("-o", "--output_dir", type=str, default="./output") | |
parser.add_argument("-B", "--batch_size", type=int, default=1) | |
parser.add_argument("-T", "--num_frames", type=int, default=16) | |
parser.add_argument("-W", "--width", type=int, default=256) | |
parser.add_argument("-H", "--height", type=int, default=256) | |
parser.add_argument("-s", "--num_steps", type=int, default=50) | |
parser.add_argument("-g", "--guidance-scale", type=float, default=9) | |
parser.add_argument("-i", "--init-video", type=str, default=None) | |
parser.add_argument("-iw", "--init-weight", type=float, default=0.5) | |
parser.add_argument("-f", "--fps", type=int, default=8) | |
parser.add_argument("-d", "--device", type=str, default="cuda") | |
parser.add_argument("-x", "--xformers", action="store_true") | |
parser.add_argument("-S", "--sdp", action="store_true") | |
parser.add_argument("-lP", "--lora_path", type=str, default="") | |
parser.add_argument("-lR", "--lora_rank", type=int, default=64) | |
parser.add_argument("-rw", "--remove-watermark", action="store_true") | |
parser.add_argument("-seed", "--seed", type=int, default =0) | |
args = vars(parser.parse_args()) | |
for filename in run(**args): | |
print(filename) | |