Text2video2024 / inference.py
Tello2020's picture
Upload 14 files
fd5f698
import argparse
import os
import warnings
from pathlib import Path
from uuid import uuid4
from utils.lora import inject_inferable_lora
import torch
from diffusers import DPMSolverMultistepScheduler, TextToVideoSDPipeline
from models.unet_3d_condition import UNet3DConditionModel
from einops import rearrange
from torch.nn.functional import interpolate
import imageio
import decord
from train import handle_memory_attention, load_primary_models
from utils.lama import inpaint_watermark
def initialize_pipeline(model, device="cuda", xformers=False, sdp=False):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
scheduler, tokenizer, text_encoder, vae, _unet = load_primary_models(model)
del _unet #This is a no op
unet = UNet3DConditionModel.from_pretrained(model, subfolder='unet')
# unet.disable_gradient_checkpointing()
pipeline = TextToVideoSDPipeline.from_pretrained(
pretrained_model_name_or_path=model,
scheduler=scheduler,
tokenizer=tokenizer,
text_encoder=text_encoder.to(device=device, dtype=torch.half),
vae=vae.to(device=device, dtype=torch.half),
unet=unet.to(device=device, dtype=torch.half),
)
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
unet._set_gradient_checkpointing(value=False)
handle_memory_attention(xformers, sdp, unet)
vae.enable_slicing()
return pipeline
def vid2vid(
pipeline, init_video, init_weight, prompt, negative_prompt, height, width, num_inference_steps, generator, guidance_scale
):
num_frames = init_video.shape[2]
init_video = rearrange(init_video, "b c f h w -> (b f) c h w")
pipeline.generator=generator
latents = pipeline.vae.encode(init_video).latent_dist.sample()
latents = rearrange(latents, "(b f) c h w -> b c f h w", f=num_frames)
latents = pipeline.scheduler.add_noise(
original_samples=latents * 0.18215,
noise=torch.randn_like(latents),
timesteps=(torch.ones(latents.shape[0]) * pipeline.scheduler.num_train_timesteps * (1 - init_weight)).long(),
)
if latents.shape[0] != len(prompt):
latents = latents.repeat(len(prompt), 1, 1, 1, 1)
do_classifier_free_guidance = guidance_scale > 1.0
prompt_embeds = pipeline._encode_prompt(
prompt=prompt,
negative_prompt=negative_prompt,
device=latents.device,
num_images_per_prompt=1,
do_classifier_free_guidance=do_classifier_free_guidance,
)
pipeline.scheduler.set_timesteps(num_inference_steps, device=latents.device)
timesteps = pipeline.scheduler.timesteps
timesteps = timesteps[round(init_weight * len(timesteps)) :]
with pipeline.progress_bar(total=len(timesteps)) as progress_bar:
for t in timesteps:
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = pipeline.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = pipeline.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# reshape latents
bsz, channel, frames, width, height = latents.shape
latents = latents.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height)
noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height)
# compute the previous noisy sample x_t -> x_t-1
latents = pipeline.scheduler.step(noise_pred, t, latents).prev_sample
# reshape latents back
latents = latents[None, :].reshape(bsz, frames, channel, width, height).permute(0, 2, 1, 3, 4)
progress_bar.update()
video_tensor = pipeline.decode_latents(latents)
return video_tensor
@torch.inference_mode()
def inference(
model,
prompt,
negative_prompt=None,
batch_size=1,
num_frames=16,
width=256,
height=256,
num_steps=50,
guidance_scale=9,
init_video=None,
init_weight=0.5,
device="cuda",
xformers=False,
sdp=False,
lora_path='',
lora_rank=64,
seed=0,
):
with torch.autocast(device, dtype=torch.half):
pipeline = initialize_pipeline(model, device, xformers, sdp)
inject_inferable_lora(pipeline, lora_path, r=lora_rank)
prompt = [prompt] * batch_size
negative_prompt = ([negative_prompt] * batch_size) if negative_prompt is not None else None
if init_video is not None:
g_cuda = torch.Generator(device='cuda')
g_cuda.manual_seed(seed)
g_cpu = torch.Generator()
g_cpu.manual_seed(seed)
videos = vid2vid(
pipeline=pipeline,
init_video=init_video.to(device=device, dtype=torch.half),
init_weight=init_weight,
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_inference_steps=num_steps,
generator=g_cuda,
guidance_scale=guidance_scale,
)
else:
g_cuda = torch.Generator(device='cuda')
g_cuda.manual_seed(seed)
g_cpu = torch.Generator()
g_cpu.manual_seed(seed)
videos = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_frames=num_frames,
height=height,
width=width,
num_inference_steps=num_steps,
generator=g_cuda,
guidance_scale=guidance_scale,
output_type="pt",
).frames
return videos
def export_to_video(video_frames, output_video_path, fps):
writer = imageio.get_writer(output_video_path, format="FFMPEG", fps=fps)
for frame in video_frames:
writer.append_data(frame)
writer.close()
def run(**args):
decord.bridge.set_bridge("torch")
output_dir = args.pop("output_dir")
fps = args.pop("fps")
remove_watermark = args.pop("remove_watermark")
init_video = args.get("init_video", None)
if init_video is not None:
vr = decord.VideoReader(init_video)
init = rearrange(vr[:], "f h w c -> c f h w").div(127.5).sub(1).unsqueeze(0)
init = interpolate(init, size=(args['num_frames'], args['height'], args['width']), mode="trilinear")
args["init_video"] = init
videos = inference(**args)
os.makedirs(output_dir, exist_ok=True)
for idx, video in enumerate(videos):
if remove_watermark:
video = rearrange(video, "c f h w -> f c h w").add(1).div(2)
video = inpaint_watermark(video)
video = rearrange(video, "f c h w -> f h w c").clamp(0, 1).mul(255)
else:
video = rearrange(video, "c f h w -> f h w c").clamp(-1, 1).add(1).mul(127.5)
video = video.byte().cpu().numpy()
filename = os.path.join(output_dir, f"output-{idx}.mp4")
export_to_video(video, filename, fps)
yield filename
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--model", type=str, required=True)
parser.add_argument("-p", "--prompt", type=str, required=True)
parser.add_argument("-n", "--negative_prompt", type=str, default=None)
parser.add_argument("-o", "--output_dir", type=str, default="./output")
parser.add_argument("-B", "--batch_size", type=int, default=1)
parser.add_argument("-T", "--num_frames", type=int, default=16)
parser.add_argument("-W", "--width", type=int, default=256)
parser.add_argument("-H", "--height", type=int, default=256)
parser.add_argument("-s", "--num_steps", type=int, default=50)
parser.add_argument("-g", "--guidance-scale", type=float, default=9)
parser.add_argument("-i", "--init-video", type=str, default=None)
parser.add_argument("-iw", "--init-weight", type=float, default=0.5)
parser.add_argument("-f", "--fps", type=int, default=8)
parser.add_argument("-d", "--device", type=str, default="cuda")
parser.add_argument("-x", "--xformers", action="store_true")
parser.add_argument("-S", "--sdp", action="store_true")
parser.add_argument("-lP", "--lora_path", type=str, default="")
parser.add_argument("-lR", "--lora_rank", type=int, default=64)
parser.add_argument("-rw", "--remove-watermark", action="store_true")
parser.add_argument("-seed", "--seed", type=int, default =0)
args = vars(parser.parse_args())
for filename in run(**args):
print(filename)