Spaces:
Configuration error
Configuration error
Upload 14 files
Browse files- LICENSE +21 -0
- README.md +20 -12
- bucketing.py +32 -0
- cog.yaml +18 -0
- dataset.py +581 -0
- download-weights +48 -0
- inference.py +238 -0
- lama.py +350 -0
- lora.py +1312 -0
- predict.py +101 -0
- samples.py +57 -0
- train.py +998 -0
- unet_3d_blocks.py +836 -0
- unet_3d_condition.py +499 -0
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2023 ExponentialML
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -1,12 +1,20 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# cog-text2video
|
2 |
+
|
3 |
+
A Cog implementation with txt2vid and vid2vid of:
|
4 |
+
|
5 |
+
- https://huggingface.co/cerspense/zeroscope_v2_XL
|
6 |
+
- https://huggingface.co/cerspense/zeroscope_v2_576w
|
7 |
+
- https://huggingface.co/camenduru/potat1
|
8 |
+
|
9 |
+
Deployed at https://replicate.com/anotherjesse/zeroscope-v2-xl
|
10 |
+
|
11 |
+
## Shoutouts
|
12 |
+
|
13 |
+
- [Text-To-Video-Finetuning](https://github.com/camenduru/Text-To-Video-Finetuning) - Finetune ModelScope's Text To Video model using Diffusers
|
14 |
+
- [Showlab](https://github.com/showlab/Tune-A-Video) and bryandlee[https://github.com/bryandlee/Tune-A-Video] for their Tune-A-Video contribution that made this much easier.
|
15 |
+
- [lucidrains](https://github.com/lucidrains) for their implementations around video diffusion.
|
16 |
+
- [cloneofsimo](https://github.com/cloneofsimo) for their diffusers implementation of LoRA.
|
17 |
+
- [kabachuha](https://github.com/kabachuha) for their conversion scripts, training ideas, and webui works.
|
18 |
+
- [JCBrouwer](https://github.com/JCBrouwer) Inference implementations.
|
19 |
+
- [sergiobr](https://github.com/sergiobr) Helpful ideas and bug fixes.
|
20 |
+
- [cjwbw/damo-text-to-video](https://replicate.com/cjwbw/damo-text-to-video) for original [cog](https://github.com/replicate/cog) implementation
|
bucketing.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
|
3 |
+
def min_res(size, min_size): return 192 if size < 192 else size
|
4 |
+
|
5 |
+
def up_down_bucket(m_size, in_size, direction):
|
6 |
+
if direction == 'down': return abs(int(m_size - in_size))
|
7 |
+
if direction == 'up': return abs(int(m_size + in_size))
|
8 |
+
|
9 |
+
def get_bucket_sizes(size, direction: 'down', min_size):
|
10 |
+
multipliers = [64, 128]
|
11 |
+
for i, m in enumerate(multipliers):
|
12 |
+
res = up_down_bucket(m, size, direction)
|
13 |
+
multipliers[i] = min_res(res, min_size=min_size)
|
14 |
+
return multipliers
|
15 |
+
|
16 |
+
def closest_bucket(m_size, size, direction, min_size):
|
17 |
+
lst = get_bucket_sizes(m_size, direction, min_size)
|
18 |
+
return lst[min(range(len(lst)), key=lambda i: abs(lst[i]-size))]
|
19 |
+
|
20 |
+
def resolve_bucket(i,h,w): return (i / (h / w))
|
21 |
+
|
22 |
+
def sensible_buckets(m_width, m_height, w, h, min_size=192):
|
23 |
+
if h > w:
|
24 |
+
w = resolve_bucket(m_width, h, w)
|
25 |
+
w = closest_bucket(m_width, w, 'down', min_size=min_size)
|
26 |
+
return w, m_height
|
27 |
+
if h < w:
|
28 |
+
h = resolve_bucket(m_height, w, h)
|
29 |
+
h = closest_bucket(m_height, h, 'down', min_size=min_size)
|
30 |
+
return m_width, h
|
31 |
+
|
32 |
+
return m_width, m_height
|
cog.yaml
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
build:
|
2 |
+
gpu: true
|
3 |
+
python_version: "3.10"
|
4 |
+
cuda: "11.7"
|
5 |
+
python_packages:
|
6 |
+
- "accelerate==0.20.3"
|
7 |
+
- "diffusers==0.17.1"
|
8 |
+
- "gradio==3.35.2"
|
9 |
+
- "imageio[ffmpeg]==2.31.1"
|
10 |
+
- "torch==2.0.1"
|
11 |
+
- "torchvision==0.15.2"
|
12 |
+
- "transformers==4.30.2"
|
13 |
+
- "einops==0.6.1"
|
14 |
+
- "omegaconf==2.3.0"
|
15 |
+
- "opencv-python-headless==4.7.0.72"
|
16 |
+
- "decord==0.6.0"
|
17 |
+
|
18 |
+
predict: "predict.py:Predictor"
|
dataset.py
ADDED
@@ -0,0 +1,581 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import decord
|
3 |
+
import numpy as np
|
4 |
+
import random
|
5 |
+
import json
|
6 |
+
import torchvision
|
7 |
+
import torchvision.transforms as T
|
8 |
+
import torch
|
9 |
+
|
10 |
+
from glob import glob
|
11 |
+
from PIL import Image
|
12 |
+
from itertools import islice
|
13 |
+
from pathlib import Path
|
14 |
+
from .bucketing import sensible_buckets
|
15 |
+
|
16 |
+
decord.bridge.set_bridge('torch')
|
17 |
+
|
18 |
+
from torch.utils.data import Dataset
|
19 |
+
from einops import rearrange, repeat
|
20 |
+
|
21 |
+
def get_prompt_ids(prompt, tokenizer):
|
22 |
+
prompt_ids = tokenizer(
|
23 |
+
prompt,
|
24 |
+
truncation=True,
|
25 |
+
padding="max_length",
|
26 |
+
max_length=tokenizer.model_max_length,
|
27 |
+
return_tensors="pt",
|
28 |
+
).input_ids
|
29 |
+
|
30 |
+
return prompt_ids
|
31 |
+
|
32 |
+
def read_caption_file(caption_file):
|
33 |
+
with open(caption_file, 'r', encoding="utf8") as t:
|
34 |
+
return t.read()
|
35 |
+
|
36 |
+
def get_text_prompt(
|
37 |
+
text_prompt: str = '',
|
38 |
+
fallback_prompt: str= '',
|
39 |
+
file_path:str = '',
|
40 |
+
ext_types=['.mp4'],
|
41 |
+
use_caption=False
|
42 |
+
):
|
43 |
+
try:
|
44 |
+
if use_caption:
|
45 |
+
if len(text_prompt) > 1: return text_prompt
|
46 |
+
caption_file = ''
|
47 |
+
# Use caption on per-video basis (One caption PER video)
|
48 |
+
for ext in ext_types:
|
49 |
+
maybe_file = file_path.replace(ext, '.txt')
|
50 |
+
if maybe_file.endswith(ext_types): continue
|
51 |
+
if os.path.exists(maybe_file):
|
52 |
+
caption_file = maybe_file
|
53 |
+
break
|
54 |
+
|
55 |
+
if os.path.exists(caption_file):
|
56 |
+
return read_caption_file(caption_file)
|
57 |
+
|
58 |
+
# Return fallback prompt if no conditions are met.
|
59 |
+
return fallback_prompt
|
60 |
+
|
61 |
+
return text_prompt
|
62 |
+
except:
|
63 |
+
print(f"Couldn't read prompt caption for {file_path}. Using fallback.")
|
64 |
+
return fallback_prompt
|
65 |
+
|
66 |
+
|
67 |
+
def get_video_frames(vr, start_idx, sample_rate=1, max_frames=24):
|
68 |
+
max_range = len(vr)
|
69 |
+
frame_number = sorted((0, start_idx, max_range))[1]
|
70 |
+
|
71 |
+
frame_range = range(frame_number, max_range, sample_rate)
|
72 |
+
frame_range_indices = list(frame_range)[:max_frames]
|
73 |
+
|
74 |
+
return frame_range_indices
|
75 |
+
|
76 |
+
def process_video(vid_path, use_bucketing, w, h, get_frame_buckets, get_frame_batch):
|
77 |
+
if use_bucketing:
|
78 |
+
vr = decord.VideoReader(vid_path)
|
79 |
+
resize = get_frame_buckets(vr)
|
80 |
+
video = get_frame_batch(vr, resize=resize)
|
81 |
+
|
82 |
+
else:
|
83 |
+
vr = decord.VideoReader(vid_path, width=w, height=h)
|
84 |
+
video = get_frame_batch(vr)
|
85 |
+
|
86 |
+
return video, vr
|
87 |
+
|
88 |
+
# https://github.com/ExponentialML/Video-BLIP2-Preprocessor
|
89 |
+
class VideoJsonDataset(Dataset):
|
90 |
+
def __init__(
|
91 |
+
self,
|
92 |
+
tokenizer = None,
|
93 |
+
width: int = 256,
|
94 |
+
height: int = 256,
|
95 |
+
n_sample_frames: int = 4,
|
96 |
+
sample_start_idx: int = 1,
|
97 |
+
frame_step: int = 1,
|
98 |
+
json_path: str ="",
|
99 |
+
json_data = None,
|
100 |
+
vid_data_key: str = "video_path",
|
101 |
+
preprocessed: bool = False,
|
102 |
+
use_bucketing: bool = False,
|
103 |
+
**kwargs
|
104 |
+
):
|
105 |
+
self.vid_types = (".mp4", ".avi", ".mov", ".webm", ".flv", ".mjpeg")
|
106 |
+
self.use_bucketing = use_bucketing
|
107 |
+
self.tokenizer = tokenizer
|
108 |
+
self.preprocessed = preprocessed
|
109 |
+
|
110 |
+
self.vid_data_key = vid_data_key
|
111 |
+
self.train_data = self.load_from_json(json_path, json_data)
|
112 |
+
|
113 |
+
self.width = width
|
114 |
+
self.height = height
|
115 |
+
|
116 |
+
self.n_sample_frames = n_sample_frames
|
117 |
+
self.sample_start_idx = sample_start_idx
|
118 |
+
self.frame_step = frame_step
|
119 |
+
|
120 |
+
def build_json(self, json_data):
|
121 |
+
extended_data = []
|
122 |
+
for data in json_data['data']:
|
123 |
+
for nested_data in data['data']:
|
124 |
+
self.build_json_dict(
|
125 |
+
data,
|
126 |
+
nested_data,
|
127 |
+
extended_data
|
128 |
+
)
|
129 |
+
json_data = extended_data
|
130 |
+
return json_data
|
131 |
+
|
132 |
+
def build_json_dict(self, data, nested_data, extended_data):
|
133 |
+
clip_path = nested_data['clip_path'] if 'clip_path' in nested_data else None
|
134 |
+
|
135 |
+
extended_data.append({
|
136 |
+
self.vid_data_key: data[self.vid_data_key],
|
137 |
+
'frame_index': nested_data['frame_index'],
|
138 |
+
'prompt': nested_data['prompt'],
|
139 |
+
'clip_path': clip_path
|
140 |
+
})
|
141 |
+
|
142 |
+
def load_from_json(self, path, json_data):
|
143 |
+
try:
|
144 |
+
with open(path) as jpath:
|
145 |
+
print(f"Loading JSON from {path}")
|
146 |
+
json_data = json.load(jpath)
|
147 |
+
|
148 |
+
return self.build_json(json_data)
|
149 |
+
|
150 |
+
except:
|
151 |
+
self.train_data = []
|
152 |
+
print("Non-existant JSON path. Skipping.")
|
153 |
+
|
154 |
+
def validate_json(self, base_path, path):
|
155 |
+
return os.path.exists(f"{base_path}/{path}")
|
156 |
+
|
157 |
+
def get_frame_range(self, vr):
|
158 |
+
return get_video_frames(
|
159 |
+
vr,
|
160 |
+
self.sample_start_idx,
|
161 |
+
self.frame_step,
|
162 |
+
self.n_sample_frames
|
163 |
+
)
|
164 |
+
|
165 |
+
def get_vid_idx(self, vr, vid_data=None):
|
166 |
+
frames = self.n_sample_frames
|
167 |
+
|
168 |
+
if vid_data is not None:
|
169 |
+
idx = vid_data['frame_index']
|
170 |
+
else:
|
171 |
+
idx = self.sample_start_idx
|
172 |
+
|
173 |
+
return idx
|
174 |
+
|
175 |
+
def get_frame_buckets(self, vr):
|
176 |
+
_, h, w = vr[0].shape
|
177 |
+
width, height = sensible_buckets(self.width, self.height, h, w)
|
178 |
+
resize = T.transforms.Resize((height, width), antialias=True)
|
179 |
+
|
180 |
+
return resize
|
181 |
+
|
182 |
+
def get_frame_batch(self, vr, resize=None):
|
183 |
+
frame_range = self.get_frame_range(vr)
|
184 |
+
frames = vr.get_batch(frame_range)
|
185 |
+
video = rearrange(frames, "f h w c -> f c h w")
|
186 |
+
|
187 |
+
if resize is not None: video = resize(video)
|
188 |
+
return video
|
189 |
+
|
190 |
+
def process_video_wrapper(self, vid_path):
|
191 |
+
video, vr = process_video(
|
192 |
+
vid_path,
|
193 |
+
self.use_bucketing,
|
194 |
+
self.width,
|
195 |
+
self.height,
|
196 |
+
self.get_frame_buckets,
|
197 |
+
self.get_frame_batch
|
198 |
+
)
|
199 |
+
|
200 |
+
return video, vr
|
201 |
+
|
202 |
+
def train_data_batch(self, index):
|
203 |
+
|
204 |
+
# If we are training on individual clips.
|
205 |
+
if 'clip_path' in self.train_data[index] and \
|
206 |
+
self.train_data[index]['clip_path'] is not None:
|
207 |
+
|
208 |
+
vid_data = self.train_data[index]
|
209 |
+
|
210 |
+
clip_path = vid_data['clip_path']
|
211 |
+
|
212 |
+
# Get video prompt
|
213 |
+
prompt = vid_data['prompt']
|
214 |
+
|
215 |
+
video, _ = self.process_video_wrapper(clip_path)
|
216 |
+
|
217 |
+
prompt_ids = prompt_ids = get_prompt_ids(prompt, self.tokenizer)
|
218 |
+
|
219 |
+
return video, prompt, prompt_ids
|
220 |
+
|
221 |
+
# Assign train data
|
222 |
+
train_data = self.train_data[index]
|
223 |
+
|
224 |
+
# Get the frame of the current index.
|
225 |
+
self.sample_start_idx = train_data['frame_index']
|
226 |
+
|
227 |
+
# Initialize resize
|
228 |
+
resize = None
|
229 |
+
|
230 |
+
video, vr = self.process_video_wrapper(train_data[self.vid_data_key])
|
231 |
+
|
232 |
+
# Get video prompt
|
233 |
+
prompt = train_data['prompt']
|
234 |
+
vr.seek(0)
|
235 |
+
|
236 |
+
prompt_ids = get_prompt_ids(prompt, self.tokenizer)
|
237 |
+
|
238 |
+
return video, prompt, prompt_ids
|
239 |
+
|
240 |
+
@staticmethod
|
241 |
+
def __getname__(): return 'json'
|
242 |
+
|
243 |
+
def __len__(self):
|
244 |
+
if self.train_data is not None:
|
245 |
+
return len(self.train_data)
|
246 |
+
else:
|
247 |
+
return 0
|
248 |
+
|
249 |
+
def __getitem__(self, index):
|
250 |
+
|
251 |
+
# Initialize variables
|
252 |
+
video = None
|
253 |
+
prompt = None
|
254 |
+
prompt_ids = None
|
255 |
+
|
256 |
+
# Use default JSON training
|
257 |
+
if self.train_data is not None:
|
258 |
+
video, prompt, prompt_ids = self.train_data_batch(index)
|
259 |
+
|
260 |
+
example = {
|
261 |
+
"pixel_values": (video / 127.5 - 1.0),
|
262 |
+
"prompt_ids": prompt_ids[0],
|
263 |
+
"text_prompt": prompt,
|
264 |
+
'dataset': self.__getname__()
|
265 |
+
}
|
266 |
+
|
267 |
+
return example
|
268 |
+
|
269 |
+
|
270 |
+
class SingleVideoDataset(Dataset):
|
271 |
+
def __init__(
|
272 |
+
self,
|
273 |
+
tokenizer = None,
|
274 |
+
width: int = 256,
|
275 |
+
height: int = 256,
|
276 |
+
n_sample_frames: int = 4,
|
277 |
+
frame_step: int = 1,
|
278 |
+
single_video_path: str = "",
|
279 |
+
single_video_prompt: str = "",
|
280 |
+
use_caption: bool = False,
|
281 |
+
use_bucketing: bool = False,
|
282 |
+
**kwargs
|
283 |
+
):
|
284 |
+
self.tokenizer = tokenizer
|
285 |
+
self.use_bucketing = use_bucketing
|
286 |
+
self.frames = []
|
287 |
+
self.index = 1
|
288 |
+
|
289 |
+
self.vid_types = (".mp4", ".avi", ".mov", ".webm", ".flv", ".mjpeg")
|
290 |
+
self.n_sample_frames = n_sample_frames
|
291 |
+
self.frame_step = frame_step
|
292 |
+
|
293 |
+
self.single_video_path = single_video_path
|
294 |
+
self.single_video_prompt = single_video_prompt
|
295 |
+
|
296 |
+
self.width = width
|
297 |
+
self.height = height
|
298 |
+
def create_video_chunks(self):
|
299 |
+
# Create a list of frames separated by sample frames
|
300 |
+
# [(1,2,3), (4,5,6), ...]
|
301 |
+
vr = decord.VideoReader(self.single_video_path)
|
302 |
+
vr_range = range(1, len(vr), self.frame_step)
|
303 |
+
|
304 |
+
self.frames = list(self.chunk(vr_range, self.n_sample_frames))
|
305 |
+
|
306 |
+
# Delete any list that contains an out of range index.
|
307 |
+
for i, inner_frame_nums in enumerate(self.frames):
|
308 |
+
for frame_num in inner_frame_nums:
|
309 |
+
if frame_num > len(vr):
|
310 |
+
print(f"Removing out of range index list at position: {i}...")
|
311 |
+
del self.frames[i]
|
312 |
+
|
313 |
+
return self.frames
|
314 |
+
|
315 |
+
def chunk(self, it, size):
|
316 |
+
it = iter(it)
|
317 |
+
return iter(lambda: tuple(islice(it, size)), ())
|
318 |
+
|
319 |
+
def get_frame_batch(self, vr, resize=None):
|
320 |
+
index = self.index
|
321 |
+
frames = vr.get_batch(self.frames[self.index])
|
322 |
+
video = rearrange(frames, "f h w c -> f c h w")
|
323 |
+
|
324 |
+
if resize is not None: video = resize(video)
|
325 |
+
return video
|
326 |
+
|
327 |
+
def get_frame_buckets(self, vr):
|
328 |
+
_, h, w = vr[0].shape
|
329 |
+
width, height = sensible_buckets(self.width, self.height, h, w)
|
330 |
+
resize = T.transforms.Resize((height, width), antialias=True)
|
331 |
+
|
332 |
+
return resize
|
333 |
+
|
334 |
+
def process_video_wrapper(self, vid_path):
|
335 |
+
video, vr = process_video(
|
336 |
+
vid_path,
|
337 |
+
self.use_bucketing,
|
338 |
+
self.width,
|
339 |
+
self.height,
|
340 |
+
self.get_frame_buckets,
|
341 |
+
self.get_frame_batch
|
342 |
+
)
|
343 |
+
|
344 |
+
return video, vr
|
345 |
+
|
346 |
+
def single_video_batch(self, index):
|
347 |
+
train_data = self.single_video_path
|
348 |
+
self.index = index
|
349 |
+
|
350 |
+
if train_data.endswith(self.vid_types):
|
351 |
+
video, _ = self.process_video_wrapper(train_data)
|
352 |
+
|
353 |
+
prompt = self.single_video_prompt
|
354 |
+
prompt_ids = get_prompt_ids(prompt, self.tokenizer)
|
355 |
+
|
356 |
+
return video, prompt, prompt_ids
|
357 |
+
else:
|
358 |
+
raise ValueError(f"Single video is not a video type. Types: {self.vid_types}")
|
359 |
+
|
360 |
+
@staticmethod
|
361 |
+
def __getname__(): return 'single_video'
|
362 |
+
|
363 |
+
def __len__(self):
|
364 |
+
|
365 |
+
return len(self.create_video_chunks())
|
366 |
+
|
367 |
+
def __getitem__(self, index):
|
368 |
+
|
369 |
+
video, prompt, prompt_ids = self.single_video_batch(index)
|
370 |
+
|
371 |
+
example = {
|
372 |
+
"pixel_values": (video / 127.5 - 1.0),
|
373 |
+
"prompt_ids": prompt_ids[0],
|
374 |
+
"text_prompt": prompt,
|
375 |
+
'dataset': self.__getname__()
|
376 |
+
}
|
377 |
+
|
378 |
+
return example
|
379 |
+
|
380 |
+
class ImageDataset(Dataset):
|
381 |
+
|
382 |
+
def __init__(
|
383 |
+
self,
|
384 |
+
tokenizer = None,
|
385 |
+
width: int = 256,
|
386 |
+
height: int = 256,
|
387 |
+
base_width: int = 256,
|
388 |
+
base_height: int = 256,
|
389 |
+
use_caption: bool = False,
|
390 |
+
image_dir: str = '',
|
391 |
+
single_img_prompt: str = '',
|
392 |
+
use_bucketing: bool = False,
|
393 |
+
fallback_prompt: str = '',
|
394 |
+
**kwargs
|
395 |
+
):
|
396 |
+
self.tokenizer = tokenizer
|
397 |
+
self.img_types = (".png", ".jpg", ".jpeg", '.bmp')
|
398 |
+
self.use_bucketing = use_bucketing
|
399 |
+
|
400 |
+
self.image_dir = self.get_images_list(image_dir)
|
401 |
+
self.fallback_prompt = fallback_prompt
|
402 |
+
|
403 |
+
self.use_caption = use_caption
|
404 |
+
self.single_img_prompt = single_img_prompt
|
405 |
+
|
406 |
+
self.width = width
|
407 |
+
self.height = height
|
408 |
+
|
409 |
+
def get_images_list(self, image_dir):
|
410 |
+
if os.path.exists(image_dir):
|
411 |
+
imgs = [x for x in os.listdir(image_dir) if x.endswith(self.img_types)]
|
412 |
+
full_img_dir = []
|
413 |
+
|
414 |
+
for img in imgs:
|
415 |
+
full_img_dir.append(f"{image_dir}/{img}")
|
416 |
+
|
417 |
+
return sorted(full_img_dir)
|
418 |
+
|
419 |
+
return ['']
|
420 |
+
|
421 |
+
def image_batch(self, index):
|
422 |
+
train_data = self.image_dir[index]
|
423 |
+
img = train_data
|
424 |
+
|
425 |
+
try:
|
426 |
+
img = torchvision.io.read_image(img, mode=torchvision.io.ImageReadMode.RGB)
|
427 |
+
except:
|
428 |
+
img = T.transforms.PILToTensor()(Image.open(img).convert("RGB"))
|
429 |
+
|
430 |
+
width = self.width
|
431 |
+
height = self.height
|
432 |
+
|
433 |
+
if self.use_bucketing:
|
434 |
+
_, h, w = img.shape
|
435 |
+
width, height = sensible_buckets(width, height, w, h)
|
436 |
+
|
437 |
+
resize = T.transforms.Resize((height, width), antialias=True)
|
438 |
+
|
439 |
+
img = resize(img)
|
440 |
+
img = repeat(img, 'c h w -> f c h w', f=1)
|
441 |
+
|
442 |
+
prompt = get_text_prompt(
|
443 |
+
file_path=train_data,
|
444 |
+
text_prompt=self.single_img_prompt,
|
445 |
+
fallback_prompt=self.fallback_prompt,
|
446 |
+
ext_types=self.img_types,
|
447 |
+
use_caption=True
|
448 |
+
)
|
449 |
+
prompt_ids = get_prompt_ids(prompt, self.tokenizer)
|
450 |
+
|
451 |
+
return img, prompt, prompt_ids
|
452 |
+
|
453 |
+
@staticmethod
|
454 |
+
def __getname__(): return 'image'
|
455 |
+
|
456 |
+
def __len__(self):
|
457 |
+
# Image directory
|
458 |
+
if os.path.exists(self.image_dir[0]):
|
459 |
+
return len(self.image_dir)
|
460 |
+
else:
|
461 |
+
return 0
|
462 |
+
|
463 |
+
def __getitem__(self, index):
|
464 |
+
img, prompt, prompt_ids = self.image_batch(index)
|
465 |
+
example = {
|
466 |
+
"pixel_values": (img / 127.5 - 1.0),
|
467 |
+
"prompt_ids": prompt_ids[0],
|
468 |
+
"text_prompt": prompt,
|
469 |
+
'dataset': self.__getname__()
|
470 |
+
}
|
471 |
+
|
472 |
+
return example
|
473 |
+
|
474 |
+
class VideoFolderDataset(Dataset):
|
475 |
+
def __init__(
|
476 |
+
self,
|
477 |
+
tokenizer=None,
|
478 |
+
width: int = 256,
|
479 |
+
height: int = 256,
|
480 |
+
n_sample_frames: int = 16,
|
481 |
+
fps: int = 8,
|
482 |
+
path: str = "./data",
|
483 |
+
fallback_prompt: str = "",
|
484 |
+
use_bucketing: bool = False,
|
485 |
+
**kwargs
|
486 |
+
):
|
487 |
+
self.tokenizer = tokenizer
|
488 |
+
self.use_bucketing = use_bucketing
|
489 |
+
|
490 |
+
self.fallback_prompt = fallback_prompt
|
491 |
+
|
492 |
+
self.video_files = glob(f"{path}/*.mp4")
|
493 |
+
|
494 |
+
self.width = width
|
495 |
+
self.height = height
|
496 |
+
|
497 |
+
self.n_sample_frames = n_sample_frames
|
498 |
+
self.fps = fps
|
499 |
+
|
500 |
+
def get_frame_buckets(self, vr):
|
501 |
+
_, h, w = vr[0].shape
|
502 |
+
width, height = sensible_buckets(self.width, self.height, h, w)
|
503 |
+
resize = T.transforms.Resize((height, width), antialias=True)
|
504 |
+
|
505 |
+
return resize
|
506 |
+
|
507 |
+
def get_frame_batch(self, vr, resize=None):
|
508 |
+
n_sample_frames = self.n_sample_frames
|
509 |
+
native_fps = vr.get_avg_fps()
|
510 |
+
|
511 |
+
every_nth_frame = max(1, round(native_fps / self.fps))
|
512 |
+
every_nth_frame = min(len(vr), every_nth_frame)
|
513 |
+
|
514 |
+
effective_length = len(vr) // every_nth_frame
|
515 |
+
if effective_length < n_sample_frames:
|
516 |
+
n_sample_frames = effective_length
|
517 |
+
|
518 |
+
effective_idx = random.randint(0, (effective_length - n_sample_frames))
|
519 |
+
idxs = every_nth_frame * np.arange(effective_idx, effective_idx + n_sample_frames)
|
520 |
+
|
521 |
+
video = vr.get_batch(idxs)
|
522 |
+
video = rearrange(video, "f h w c -> f c h w")
|
523 |
+
|
524 |
+
if resize is not None: video = resize(video)
|
525 |
+
return video, vr
|
526 |
+
|
527 |
+
def process_video_wrapper(self, vid_path):
|
528 |
+
video, vr = process_video(
|
529 |
+
vid_path,
|
530 |
+
self.use_bucketing,
|
531 |
+
self.width,
|
532 |
+
self.height,
|
533 |
+
self.get_frame_buckets,
|
534 |
+
self.get_frame_batch
|
535 |
+
)
|
536 |
+
return video, vr
|
537 |
+
|
538 |
+
def get_prompt_ids(self, prompt):
|
539 |
+
return self.tokenizer(
|
540 |
+
prompt,
|
541 |
+
truncation=True,
|
542 |
+
padding="max_length",
|
543 |
+
max_length=self.tokenizer.model_max_length,
|
544 |
+
return_tensors="pt",
|
545 |
+
).input_ids
|
546 |
+
|
547 |
+
@staticmethod
|
548 |
+
def __getname__(): return 'folder'
|
549 |
+
|
550 |
+
def __len__(self):
|
551 |
+
return len(self.video_files)
|
552 |
+
|
553 |
+
def __getitem__(self, index):
|
554 |
+
|
555 |
+
video, _ = self.process_video_wrapper(self.video_files[index])
|
556 |
+
|
557 |
+
if os.path.exists(self.video_files[index].replace(".mp4", ".txt")):
|
558 |
+
with open(self.video_files[index].replace(".mp4", ".txt"), "r") as f:
|
559 |
+
prompt = f.read()
|
560 |
+
else:
|
561 |
+
prompt = self.fallback_prompt
|
562 |
+
|
563 |
+
prompt_ids = self.get_prompt_ids(prompt)
|
564 |
+
|
565 |
+
return {"pixel_values": (video[0] / 127.5 - 1.0), "prompt_ids": prompt_ids[0], "text_prompt": prompt, 'dataset': self.__getname__()}
|
566 |
+
|
567 |
+
class CachedDataset(Dataset):
|
568 |
+
def __init__(self,cache_dir: str = ''):
|
569 |
+
self.cache_dir = cache_dir
|
570 |
+
self.cached_data_list = self.get_files_list()
|
571 |
+
|
572 |
+
def get_files_list(self):
|
573 |
+
tensors_list = [f"{self.cache_dir}/{x}" for x in os.listdir(self.cache_dir) if x.endswith('.pt')]
|
574 |
+
return sorted(tensors_list)
|
575 |
+
|
576 |
+
def __len__(self):
|
577 |
+
return len(self.cached_data_list)
|
578 |
+
|
579 |
+
def __getitem__(self, index):
|
580 |
+
cached_latent = torch.load(self.cached_data_list[index], map_location='cuda:0')
|
581 |
+
return cached_latent
|
download-weights
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
|
4 |
+
import os
|
5 |
+
import shutil
|
6 |
+
import torch
|
7 |
+
from diffusers import DiffusionPipeline
|
8 |
+
|
9 |
+
MODEL_CACHE = "model-cache"
|
10 |
+
TMP_CACHE = "tmp-cache"
|
11 |
+
|
12 |
+
if os.path.exists(MODEL_CACHE):
|
13 |
+
shutil.rmtree(MODEL_CACHE)
|
14 |
+
os.makedirs(MODEL_CACHE, exist_ok=True)
|
15 |
+
|
16 |
+
pipe = DiffusionPipeline.from_pretrained(
|
17 |
+
"cerspense/zeroscope_v2_XL",
|
18 |
+
torch_dtype=torch.float16,
|
19 |
+
cache_dir=TMP_CACHE,
|
20 |
+
)
|
21 |
+
|
22 |
+
pipe.save_pretrained(MODEL_CACHE + "/xl")
|
23 |
+
|
24 |
+
pipe = DiffusionPipeline.from_pretrained(
|
25 |
+
"cerspense/zeroscope_v2_576w",
|
26 |
+
torch_dtype=torch.float16,
|
27 |
+
cache_dir=TMP_CACHE,
|
28 |
+
)
|
29 |
+
|
30 |
+
pipe.save_pretrained(MODEL_CACHE + "/576w")
|
31 |
+
|
32 |
+
pipe = DiffusionPipeline.from_pretrained(
|
33 |
+
"camenduru/potat1",
|
34 |
+
torch_dtype=torch.float16,
|
35 |
+
cache_dir=TMP_CACHE,
|
36 |
+
)
|
37 |
+
|
38 |
+
pipe.save_pretrained(MODEL_CACHE + "/potat1")
|
39 |
+
|
40 |
+
pipe = DiffusionPipeline.from_pretrained(
|
41 |
+
"strangeman3107/animov-512x",
|
42 |
+
torch_dtype=torch.float16,
|
43 |
+
cache_dir=TMP_CACHE,
|
44 |
+
)
|
45 |
+
|
46 |
+
pipe.save_pretrained(MODEL_CACHE + "/animov-512x")
|
47 |
+
|
48 |
+
shutil.rmtree(TMP_CACHE)
|
inference.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import warnings
|
4 |
+
from pathlib import Path
|
5 |
+
from uuid import uuid4
|
6 |
+
from utils.lora import inject_inferable_lora
|
7 |
+
import torch
|
8 |
+
from diffusers import DPMSolverMultistepScheduler, TextToVideoSDPipeline
|
9 |
+
from models.unet_3d_condition import UNet3DConditionModel
|
10 |
+
from einops import rearrange
|
11 |
+
from torch.nn.functional import interpolate
|
12 |
+
import imageio
|
13 |
+
import decord
|
14 |
+
|
15 |
+
from train import handle_memory_attention, load_primary_models
|
16 |
+
from utils.lama import inpaint_watermark
|
17 |
+
|
18 |
+
|
19 |
+
def initialize_pipeline(model, device="cuda", xformers=False, sdp=False):
|
20 |
+
with warnings.catch_warnings():
|
21 |
+
warnings.simplefilter("ignore")
|
22 |
+
|
23 |
+
scheduler, tokenizer, text_encoder, vae, _unet = load_primary_models(model)
|
24 |
+
del _unet #This is a no op
|
25 |
+
unet = UNet3DConditionModel.from_pretrained(model, subfolder='unet')
|
26 |
+
# unet.disable_gradient_checkpointing()
|
27 |
+
|
28 |
+
pipeline = TextToVideoSDPipeline.from_pretrained(
|
29 |
+
pretrained_model_name_or_path=model,
|
30 |
+
scheduler=scheduler,
|
31 |
+
tokenizer=tokenizer,
|
32 |
+
text_encoder=text_encoder.to(device=device, dtype=torch.half),
|
33 |
+
vae=vae.to(device=device, dtype=torch.half),
|
34 |
+
unet=unet.to(device=device, dtype=torch.half),
|
35 |
+
)
|
36 |
+
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
|
37 |
+
unet._set_gradient_checkpointing(value=False)
|
38 |
+
handle_memory_attention(xformers, sdp, unet)
|
39 |
+
vae.enable_slicing()
|
40 |
+
return pipeline
|
41 |
+
|
42 |
+
|
43 |
+
def vid2vid(
|
44 |
+
pipeline, init_video, init_weight, prompt, negative_prompt, height, width, num_inference_steps, generator, guidance_scale
|
45 |
+
):
|
46 |
+
num_frames = init_video.shape[2]
|
47 |
+
init_video = rearrange(init_video, "b c f h w -> (b f) c h w")
|
48 |
+
pipeline.generator=generator
|
49 |
+
latents = pipeline.vae.encode(init_video).latent_dist.sample()
|
50 |
+
latents = rearrange(latents, "(b f) c h w -> b c f h w", f=num_frames)
|
51 |
+
latents = pipeline.scheduler.add_noise(
|
52 |
+
original_samples=latents * 0.18215,
|
53 |
+
noise=torch.randn_like(latents),
|
54 |
+
timesteps=(torch.ones(latents.shape[0]) * pipeline.scheduler.num_train_timesteps * (1 - init_weight)).long(),
|
55 |
+
)
|
56 |
+
if latents.shape[0] != len(prompt):
|
57 |
+
latents = latents.repeat(len(prompt), 1, 1, 1, 1)
|
58 |
+
|
59 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
60 |
+
|
61 |
+
prompt_embeds = pipeline._encode_prompt(
|
62 |
+
prompt=prompt,
|
63 |
+
negative_prompt=negative_prompt,
|
64 |
+
device=latents.device,
|
65 |
+
num_images_per_prompt=1,
|
66 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
67 |
+
)
|
68 |
+
|
69 |
+
pipeline.scheduler.set_timesteps(num_inference_steps, device=latents.device)
|
70 |
+
timesteps = pipeline.scheduler.timesteps
|
71 |
+
timesteps = timesteps[round(init_weight * len(timesteps)) :]
|
72 |
+
|
73 |
+
with pipeline.progress_bar(total=len(timesteps)) as progress_bar:
|
74 |
+
for t in timesteps:
|
75 |
+
# expand the latents if we are doing classifier free guidance
|
76 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
77 |
+
latent_model_input = pipeline.scheduler.scale_model_input(latent_model_input, t)
|
78 |
+
|
79 |
+
# predict the noise residual
|
80 |
+
noise_pred = pipeline.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds).sample
|
81 |
+
|
82 |
+
# perform guidance
|
83 |
+
if do_classifier_free_guidance:
|
84 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
85 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
86 |
+
|
87 |
+
# reshape latents
|
88 |
+
bsz, channel, frames, width, height = latents.shape
|
89 |
+
latents = latents.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height)
|
90 |
+
noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height)
|
91 |
+
|
92 |
+
# compute the previous noisy sample x_t -> x_t-1
|
93 |
+
latents = pipeline.scheduler.step(noise_pred, t, latents).prev_sample
|
94 |
+
|
95 |
+
# reshape latents back
|
96 |
+
latents = latents[None, :].reshape(bsz, frames, channel, width, height).permute(0, 2, 1, 3, 4)
|
97 |
+
|
98 |
+
progress_bar.update()
|
99 |
+
|
100 |
+
video_tensor = pipeline.decode_latents(latents)
|
101 |
+
|
102 |
+
return video_tensor
|
103 |
+
|
104 |
+
|
105 |
+
@torch.inference_mode()
|
106 |
+
def inference(
|
107 |
+
model,
|
108 |
+
prompt,
|
109 |
+
negative_prompt=None,
|
110 |
+
batch_size=1,
|
111 |
+
num_frames=16,
|
112 |
+
width=256,
|
113 |
+
height=256,
|
114 |
+
num_steps=50,
|
115 |
+
guidance_scale=9,
|
116 |
+
init_video=None,
|
117 |
+
init_weight=0.5,
|
118 |
+
device="cuda",
|
119 |
+
xformers=False,
|
120 |
+
sdp=False,
|
121 |
+
lora_path='',
|
122 |
+
lora_rank=64,
|
123 |
+
seed=0,
|
124 |
+
):
|
125 |
+
with torch.autocast(device, dtype=torch.half):
|
126 |
+
pipeline = initialize_pipeline(model, device, xformers, sdp)
|
127 |
+
inject_inferable_lora(pipeline, lora_path, r=lora_rank)
|
128 |
+
prompt = [prompt] * batch_size
|
129 |
+
negative_prompt = ([negative_prompt] * batch_size) if negative_prompt is not None else None
|
130 |
+
|
131 |
+
if init_video is not None:
|
132 |
+
g_cuda = torch.Generator(device='cuda')
|
133 |
+
g_cuda.manual_seed(seed)
|
134 |
+
g_cpu = torch.Generator()
|
135 |
+
g_cpu.manual_seed(seed)
|
136 |
+
videos = vid2vid(
|
137 |
+
pipeline=pipeline,
|
138 |
+
init_video=init_video.to(device=device, dtype=torch.half),
|
139 |
+
init_weight=init_weight,
|
140 |
+
prompt=prompt,
|
141 |
+
negative_prompt=negative_prompt,
|
142 |
+
height=height,
|
143 |
+
width=width,
|
144 |
+
num_inference_steps=num_steps,
|
145 |
+
generator=g_cuda,
|
146 |
+
guidance_scale=guidance_scale,
|
147 |
+
)
|
148 |
+
|
149 |
+
else:
|
150 |
+
g_cuda = torch.Generator(device='cuda')
|
151 |
+
g_cuda.manual_seed(seed)
|
152 |
+
g_cpu = torch.Generator()
|
153 |
+
g_cpu.manual_seed(seed)
|
154 |
+
|
155 |
+
videos = pipeline(
|
156 |
+
prompt=prompt,
|
157 |
+
negative_prompt=negative_prompt,
|
158 |
+
num_frames=num_frames,
|
159 |
+
height=height,
|
160 |
+
width=width,
|
161 |
+
num_inference_steps=num_steps,
|
162 |
+
generator=g_cuda,
|
163 |
+
guidance_scale=guidance_scale,
|
164 |
+
output_type="pt",
|
165 |
+
).frames
|
166 |
+
|
167 |
+
return videos
|
168 |
+
|
169 |
+
def export_to_video(video_frames, output_video_path, fps):
|
170 |
+
writer = imageio.get_writer(output_video_path, format="FFMPEG", fps=fps)
|
171 |
+
for frame in video_frames:
|
172 |
+
writer.append_data(frame)
|
173 |
+
writer.close()
|
174 |
+
|
175 |
+
|
176 |
+
def run(**args):
|
177 |
+
decord.bridge.set_bridge("torch")
|
178 |
+
|
179 |
+
output_dir = args.pop("output_dir")
|
180 |
+
fps = args.pop("fps")
|
181 |
+
remove_watermark = args.pop("remove_watermark")
|
182 |
+
|
183 |
+
init_video = args.get("init_video", None)
|
184 |
+
if init_video is not None:
|
185 |
+
vr = decord.VideoReader(init_video)
|
186 |
+
init = rearrange(vr[:], "f h w c -> c f h w").div(127.5).sub(1).unsqueeze(0)
|
187 |
+
init = interpolate(init, size=(args['num_frames'], args['height'], args['width']), mode="trilinear")
|
188 |
+
args["init_video"] = init
|
189 |
+
|
190 |
+
videos = inference(**args)
|
191 |
+
|
192 |
+
os.makedirs(output_dir, exist_ok=True)
|
193 |
+
|
194 |
+
for idx, video in enumerate(videos):
|
195 |
+
if remove_watermark:
|
196 |
+
video = rearrange(video, "c f h w -> f c h w").add(1).div(2)
|
197 |
+
video = inpaint_watermark(video)
|
198 |
+
video = rearrange(video, "f c h w -> f h w c").clamp(0, 1).mul(255)
|
199 |
+
else:
|
200 |
+
video = rearrange(video, "c f h w -> f h w c").clamp(-1, 1).add(1).mul(127.5)
|
201 |
+
|
202 |
+
video = video.byte().cpu().numpy()
|
203 |
+
|
204 |
+
filename = os.path.join(output_dir, f"output-{idx}.mp4")
|
205 |
+
export_to_video(video, filename, fps)
|
206 |
+
yield filename
|
207 |
+
|
208 |
+
|
209 |
+
if __name__ == "__main__":
|
210 |
+
parser = argparse.ArgumentParser()
|
211 |
+
parser.add_argument("-m", "--model", type=str, required=True)
|
212 |
+
parser.add_argument("-p", "--prompt", type=str, required=True)
|
213 |
+
parser.add_argument("-n", "--negative_prompt", type=str, default=None)
|
214 |
+
parser.add_argument("-o", "--output_dir", type=str, default="./output")
|
215 |
+
parser.add_argument("-B", "--batch_size", type=int, default=1)
|
216 |
+
parser.add_argument("-T", "--num_frames", type=int, default=16)
|
217 |
+
parser.add_argument("-W", "--width", type=int, default=256)
|
218 |
+
parser.add_argument("-H", "--height", type=int, default=256)
|
219 |
+
parser.add_argument("-s", "--num_steps", type=int, default=50)
|
220 |
+
parser.add_argument("-g", "--guidance-scale", type=float, default=9)
|
221 |
+
parser.add_argument("-i", "--init-video", type=str, default=None)
|
222 |
+
parser.add_argument("-iw", "--init-weight", type=float, default=0.5)
|
223 |
+
parser.add_argument("-f", "--fps", type=int, default=8)
|
224 |
+
parser.add_argument("-d", "--device", type=str, default="cuda")
|
225 |
+
parser.add_argument("-x", "--xformers", action="store_true")
|
226 |
+
parser.add_argument("-S", "--sdp", action="store_true")
|
227 |
+
parser.add_argument("-lP", "--lora_path", type=str, default="")
|
228 |
+
parser.add_argument("-lR", "--lora_rank", type=int, default=64)
|
229 |
+
parser.add_argument("-rw", "--remove-watermark", action="store_true")
|
230 |
+
parser.add_argument("-seed", "--seed", type=int, default =0)
|
231 |
+
args = vars(parser.parse_args())
|
232 |
+
|
233 |
+
for filename in run(**args):
|
234 |
+
print(filename)
|
235 |
+
|
236 |
+
|
237 |
+
|
238 |
+
|
lama.py
ADDED
@@ -0,0 +1,350 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Based on the implementation from:
|
3 |
+
https://huggingface.co/spaces/fffiloni/lama-video-watermark-remover/tree/main
|
4 |
+
|
5 |
+
Modules were adapted by Hans Brouwer to only support the final configuration of the model uploaded here:
|
6 |
+
https://huggingface.co/akhaliq/lama
|
7 |
+
|
8 |
+
Apache License 2.0: https://github.com/advimman/lama/blob/main/LICENSE
|
9 |
+
|
10 |
+
@article{suvorov2021resolution,
|
11 |
+
title={Resolution-robust Large Mask Inpainting with Fourier Convolutions},
|
12 |
+
author={Suvorov, Roman and Logacheva, Elizaveta and Mashikhin, Anton and Remizova, Anastasia and Ashukha, Arsenii and Silvestrov, Aleksei and Kong, Naejin and Goka, Harshith and Park, Kiwoong and Lempitsky, Victor},
|
13 |
+
journal={arXiv preprint arXiv:2109.07161},
|
14 |
+
year={2021}
|
15 |
+
}
|
16 |
+
"""
|
17 |
+
|
18 |
+
import os
|
19 |
+
import sys
|
20 |
+
from urllib.request import urlretrieve
|
21 |
+
|
22 |
+
import torch
|
23 |
+
from einops import rearrange
|
24 |
+
from PIL import Image
|
25 |
+
from torch import nn
|
26 |
+
from torch.nn import functional as F
|
27 |
+
from torchvision.transforms.functional import to_tensor
|
28 |
+
from tqdm import tqdm
|
29 |
+
|
30 |
+
from train import export_to_video
|
31 |
+
|
32 |
+
|
33 |
+
LAMA_URL = "https://huggingface.co/akhaliq/lama/resolve/main/best.ckpt"
|
34 |
+
LAMA_PATH = "models/lama.ckpt"
|
35 |
+
|
36 |
+
|
37 |
+
def download_progress(t):
|
38 |
+
last_b = [0]
|
39 |
+
|
40 |
+
def update_to(b=1, bsize=1, tsize=None):
|
41 |
+
if tsize is not None:
|
42 |
+
t.total = tsize
|
43 |
+
t.update((b - last_b[0]) * bsize)
|
44 |
+
last_b[0] = b
|
45 |
+
|
46 |
+
return update_to
|
47 |
+
|
48 |
+
|
49 |
+
def download(url, path):
|
50 |
+
with tqdm(unit="B", unit_scale=True, unit_divisor=1024, miniters=1, desc=path) as t:
|
51 |
+
urlretrieve(url, filename=path, reporthook=download_progress(t), data=None)
|
52 |
+
|
53 |
+
|
54 |
+
class FourierUnit(nn.Module):
|
55 |
+
def __init__(self, in_channels, out_channels, groups=1):
|
56 |
+
super(FourierUnit, self).__init__()
|
57 |
+
self.groups = groups
|
58 |
+
self.conv_layer = torch.nn.Conv2d(
|
59 |
+
in_channels=in_channels * 2,
|
60 |
+
out_channels=out_channels * 2,
|
61 |
+
kernel_size=1,
|
62 |
+
stride=1,
|
63 |
+
padding=0,
|
64 |
+
groups=self.groups,
|
65 |
+
bias=False,
|
66 |
+
)
|
67 |
+
self.bn = torch.nn.BatchNorm2d(out_channels * 2)
|
68 |
+
self.relu = torch.nn.ReLU(inplace=True)
|
69 |
+
|
70 |
+
def forward(self, x):
|
71 |
+
batch = x.shape[0]
|
72 |
+
|
73 |
+
# (batch, c, h, w/2+1, 2)
|
74 |
+
fft_dim = (-2, -1)
|
75 |
+
ffted = torch.fft.rfftn(x, dim=fft_dim, norm="ortho")
|
76 |
+
ffted = torch.stack((ffted.real, ffted.imag), dim=-1)
|
77 |
+
ffted = ffted.permute(0, 1, 4, 2, 3).contiguous() # (batch, c, 2, h, w/2+1)
|
78 |
+
ffted = ffted.view((batch, -1) + ffted.size()[3:])
|
79 |
+
|
80 |
+
ffted = self.conv_layer(ffted) # (batch, c*2, h, w/2+1)
|
81 |
+
ffted = self.relu(self.bn(ffted))
|
82 |
+
|
83 |
+
# (batch,c, t, h, w/2+1, 2)
|
84 |
+
ffted = ffted.view((batch, -1, 2) + ffted.size()[2:]).permute(0, 1, 3, 4, 2).contiguous()
|
85 |
+
ffted = torch.complex(ffted[..., 0], ffted[..., 1])
|
86 |
+
|
87 |
+
ifft_shape_slice = x.shape[-2:]
|
88 |
+
output = torch.fft.irfftn(ffted, s=ifft_shape_slice, dim=fft_dim, norm="ortho")
|
89 |
+
|
90 |
+
return output
|
91 |
+
|
92 |
+
|
93 |
+
class SpectralTransform(nn.Module):
|
94 |
+
def __init__(self, in_channels, out_channels, stride=1, groups=1):
|
95 |
+
super(SpectralTransform, self).__init__()
|
96 |
+
self.stride = stride
|
97 |
+
if stride == 2:
|
98 |
+
self.downsample = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
|
99 |
+
else:
|
100 |
+
self.downsample = nn.Identity()
|
101 |
+
|
102 |
+
self.conv1 = nn.Sequential(
|
103 |
+
nn.Conv2d(in_channels, out_channels // 2, kernel_size=1, groups=groups, bias=False),
|
104 |
+
nn.BatchNorm2d(out_channels // 2),
|
105 |
+
nn.ReLU(inplace=True),
|
106 |
+
)
|
107 |
+
self.fu = FourierUnit(out_channels // 2, out_channels // 2, groups)
|
108 |
+
self.conv2 = torch.nn.Conv2d(out_channels // 2, out_channels, kernel_size=1, groups=groups, bias=False)
|
109 |
+
|
110 |
+
def forward(self, x):
|
111 |
+
x = self.downsample(x)
|
112 |
+
x = self.conv1(x)
|
113 |
+
output = self.fu(x)
|
114 |
+
output = self.conv2(x + output)
|
115 |
+
return output
|
116 |
+
|
117 |
+
|
118 |
+
class FFC(nn.Module):
|
119 |
+
def __init__(
|
120 |
+
self,
|
121 |
+
in_channels,
|
122 |
+
out_channels,
|
123 |
+
kernel_size,
|
124 |
+
ratio_gin,
|
125 |
+
ratio_gout,
|
126 |
+
stride=1,
|
127 |
+
padding=0,
|
128 |
+
dilation=1,
|
129 |
+
groups=1,
|
130 |
+
bias=False,
|
131 |
+
padding_type="reflect",
|
132 |
+
gated=False,
|
133 |
+
):
|
134 |
+
super(FFC, self).__init__()
|
135 |
+
|
136 |
+
assert stride == 1 or stride == 2, "Stride should be 1 or 2."
|
137 |
+
self.stride = stride
|
138 |
+
|
139 |
+
in_cg = int(in_channels * ratio_gin)
|
140 |
+
in_cl = in_channels - in_cg
|
141 |
+
out_cg = int(out_channels * ratio_gout)
|
142 |
+
out_cl = out_channels - out_cg
|
143 |
+
|
144 |
+
self.ratio_gin = ratio_gin
|
145 |
+
self.ratio_gout = ratio_gout
|
146 |
+
self.global_in_num = in_cg
|
147 |
+
|
148 |
+
module = nn.Identity if in_cl == 0 or out_cl == 0 else nn.Conv2d
|
149 |
+
self.convl2l = module(
|
150 |
+
in_cl, out_cl, kernel_size, stride, padding, dilation, groups, bias, padding_mode=padding_type
|
151 |
+
)
|
152 |
+
module = nn.Identity if in_cl == 0 or out_cg == 0 else nn.Conv2d
|
153 |
+
self.convl2g = module(
|
154 |
+
in_cl, out_cg, kernel_size, stride, padding, dilation, groups, bias, padding_mode=padding_type
|
155 |
+
)
|
156 |
+
module = nn.Identity if in_cg == 0 or out_cl == 0 else nn.Conv2d
|
157 |
+
self.convg2l = module(
|
158 |
+
in_cg, out_cl, kernel_size, stride, padding, dilation, groups, bias, padding_mode=padding_type
|
159 |
+
)
|
160 |
+
module = nn.Identity if in_cg == 0 or out_cg == 0 else SpectralTransform
|
161 |
+
self.convg2g = module(in_cg, out_cg, stride, 1 if groups == 1 else groups // 2)
|
162 |
+
|
163 |
+
self.gated = gated
|
164 |
+
module = nn.Identity if in_cg == 0 or out_cl == 0 or not self.gated else nn.Conv2d
|
165 |
+
self.gate = module(in_channels, 2, 1)
|
166 |
+
|
167 |
+
def forward(self, x):
|
168 |
+
x_l, x_g = x if type(x) is tuple else (x, 0)
|
169 |
+
out_xl, out_xg = 0, 0
|
170 |
+
|
171 |
+
if self.gated:
|
172 |
+
total_input_parts = [x_l]
|
173 |
+
if torch.is_tensor(x_g):
|
174 |
+
total_input_parts.append(x_g)
|
175 |
+
total_input = torch.cat(total_input_parts, dim=1)
|
176 |
+
|
177 |
+
gates = torch.sigmoid(self.gate(total_input))
|
178 |
+
g2l_gate, l2g_gate = gates.chunk(2, dim=1)
|
179 |
+
else:
|
180 |
+
g2l_gate, l2g_gate = 1, 1
|
181 |
+
|
182 |
+
if self.ratio_gout != 1:
|
183 |
+
out_xl = self.convl2l(x_l) + self.convg2l(x_g) * g2l_gate
|
184 |
+
if self.ratio_gout != 0:
|
185 |
+
out_xg = self.convl2g(x_l) * l2g_gate + self.convg2g(x_g)
|
186 |
+
|
187 |
+
return out_xl, out_xg
|
188 |
+
|
189 |
+
|
190 |
+
class FFC_BN_ACT(nn.Module):
|
191 |
+
def __init__(
|
192 |
+
self,
|
193 |
+
in_channels,
|
194 |
+
out_channels,
|
195 |
+
kernel_size,
|
196 |
+
ratio_gin=0,
|
197 |
+
ratio_gout=0,
|
198 |
+
stride=1,
|
199 |
+
padding=0,
|
200 |
+
dilation=1,
|
201 |
+
groups=1,
|
202 |
+
bias=False,
|
203 |
+
norm_layer=nn.BatchNorm2d,
|
204 |
+
activation_layer=nn.ReLU,
|
205 |
+
):
|
206 |
+
super(FFC_BN_ACT, self).__init__()
|
207 |
+
self.ffc = FFC(
|
208 |
+
in_channels, out_channels, kernel_size, ratio_gin, ratio_gout, stride, padding, dilation, groups, bias
|
209 |
+
)
|
210 |
+
lnorm = nn.Identity if ratio_gout == 1 else norm_layer
|
211 |
+
gnorm = nn.Identity if ratio_gout == 0 else norm_layer
|
212 |
+
global_channels = int(out_channels * ratio_gout)
|
213 |
+
self.bn_l = lnorm(out_channels - global_channels)
|
214 |
+
self.bn_g = gnorm(global_channels)
|
215 |
+
|
216 |
+
lact = nn.Identity if ratio_gout == 1 else activation_layer
|
217 |
+
gact = nn.Identity if ratio_gout == 0 else activation_layer
|
218 |
+
self.act_l = lact(inplace=True)
|
219 |
+
self.act_g = gact(inplace=True)
|
220 |
+
|
221 |
+
def forward(self, x):
|
222 |
+
x_l, x_g = self.ffc(x)
|
223 |
+
x_l = self.act_l(self.bn_l(x_l))
|
224 |
+
x_g = self.act_g(self.bn_g(x_g))
|
225 |
+
return x_l, x_g
|
226 |
+
|
227 |
+
|
228 |
+
class FFCResnetBlock(nn.Module):
|
229 |
+
def __init__(self, dim, ratio_gin, ratio_gout):
|
230 |
+
super().__init__()
|
231 |
+
self.conv1 = FFC_BN_ACT(
|
232 |
+
dim, dim, kernel_size=3, padding=1, dilation=1, ratio_gin=ratio_gin, ratio_gout=ratio_gout
|
233 |
+
)
|
234 |
+
self.conv2 = FFC_BN_ACT(
|
235 |
+
dim, dim, kernel_size=3, padding=1, dilation=1, ratio_gin=ratio_gin, ratio_gout=ratio_gout
|
236 |
+
)
|
237 |
+
|
238 |
+
def forward(self, x):
|
239 |
+
x_l, x_g = x if type(x) is tuple else (x, 0)
|
240 |
+
id_l, id_g = x_l, x_g
|
241 |
+
x_l, x_g = self.conv1((x_l, x_g))
|
242 |
+
x_l, x_g = self.conv2((x_l, x_g))
|
243 |
+
x_l, x_g = id_l + x_l, id_g + x_g
|
244 |
+
out = x_l, x_g
|
245 |
+
return out
|
246 |
+
|
247 |
+
|
248 |
+
class ConcatTupleLayer(nn.Module):
|
249 |
+
def forward(self, x):
|
250 |
+
assert isinstance(x, tuple)
|
251 |
+
x_l, x_g = x
|
252 |
+
assert torch.is_tensor(x_l) or torch.is_tensor(x_g)
|
253 |
+
if not torch.is_tensor(x_g):
|
254 |
+
return x_l
|
255 |
+
return torch.cat(x, dim=1)
|
256 |
+
|
257 |
+
|
258 |
+
class LargeMaskInpainting(nn.Module):
|
259 |
+
def __init__(self, input_nc=4, output_nc=3, ngf=64, n_downsampling=3, n_blocks=18, max_features=1024):
|
260 |
+
super().__init__()
|
261 |
+
|
262 |
+
model = [nn.ReflectionPad2d(3), FFC_BN_ACT(input_nc, ngf, kernel_size=7)]
|
263 |
+
|
264 |
+
### downsample
|
265 |
+
for i in range(n_downsampling):
|
266 |
+
mult = 2**i
|
267 |
+
model += [
|
268 |
+
FFC_BN_ACT(
|
269 |
+
min(max_features, ngf * mult),
|
270 |
+
min(max_features, ngf * mult * 2),
|
271 |
+
kernel_size=3,
|
272 |
+
stride=2,
|
273 |
+
padding=1,
|
274 |
+
ratio_gout=0.75 if i == n_downsampling - 1 else 0,
|
275 |
+
)
|
276 |
+
]
|
277 |
+
|
278 |
+
### resnet blocks
|
279 |
+
for i in range(n_blocks):
|
280 |
+
cur_resblock = FFCResnetBlock(min(max_features, ngf * 2**n_downsampling), ratio_gin=0.75, ratio_gout=0.75)
|
281 |
+
model += [cur_resblock]
|
282 |
+
|
283 |
+
model += [ConcatTupleLayer()]
|
284 |
+
|
285 |
+
### upsample
|
286 |
+
for i in range(n_downsampling):
|
287 |
+
mult = 2 ** (n_downsampling - i)
|
288 |
+
model += [
|
289 |
+
nn.ConvTranspose2d(
|
290 |
+
min(max_features, ngf * mult),
|
291 |
+
min(max_features, int(ngf * mult / 2)),
|
292 |
+
kernel_size=3,
|
293 |
+
stride=2,
|
294 |
+
padding=1,
|
295 |
+
output_padding=1,
|
296 |
+
),
|
297 |
+
nn.BatchNorm2d(min(max_features, int(ngf * mult / 2))),
|
298 |
+
nn.ReLU(True),
|
299 |
+
]
|
300 |
+
|
301 |
+
model += [nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7), nn.Sigmoid()]
|
302 |
+
self.model = nn.Sequential(*model)
|
303 |
+
|
304 |
+
def forward(self, img, mask):
|
305 |
+
masked_img = img * (1 - mask)
|
306 |
+
masked_img = torch.cat([masked_img, mask], dim=1)
|
307 |
+
pred = self.model(masked_img)
|
308 |
+
inpainted = mask * pred + (1 - mask) * img
|
309 |
+
return inpainted
|
310 |
+
|
311 |
+
|
312 |
+
@torch.inference_mode()
|
313 |
+
def inpaint_watermark(imgs):
|
314 |
+
if not os.path.exists(LAMA_PATH):
|
315 |
+
download(LAMA_URL, LAMA_PATH)
|
316 |
+
|
317 |
+
mask = to_tensor(Image.open("./utils/mask.png").convert("L")).unsqueeze(0).to(imgs.device)
|
318 |
+
if mask.shape[-1] != imgs.shape[-1]:
|
319 |
+
mask = F.interpolate(mask, size=(imgs.shape[2], imgs.shape[3]), mode="nearest")
|
320 |
+
mask = mask.expand(imgs.shape[0], 1, mask.shape[2], mask.shape[3])
|
321 |
+
|
322 |
+
model = LargeMaskInpainting().to(imgs.device)
|
323 |
+
state_dict = torch.load(LAMA_PATH, map_location=imgs.device)["state_dict"]
|
324 |
+
g_dict = {k.replace("generator.", ""): v for k, v in state_dict.items() if k.startswith("generator")}
|
325 |
+
model.load_state_dict(g_dict)
|
326 |
+
|
327 |
+
inpainted = model.forward(imgs, mask)
|
328 |
+
|
329 |
+
return inpainted
|
330 |
+
|
331 |
+
|
332 |
+
if __name__ == "__main__":
|
333 |
+
import decord
|
334 |
+
|
335 |
+
decord.bridge.set_bridge("torch")
|
336 |
+
|
337 |
+
if len(sys.argv) < 2:
|
338 |
+
print("Usage: python -m utils.lama <path/to/video>")
|
339 |
+
sys.exit(1)
|
340 |
+
|
341 |
+
video_path = sys.argv[1]
|
342 |
+
out_path = video_path.replace(".mp4", " inpainted.mp4")
|
343 |
+
|
344 |
+
vr = decord.VideoReader(video_path)
|
345 |
+
fps = vr.get_avg_fps()
|
346 |
+
video = rearrange(vr[:], "f h w c -> f c h w").div(255)
|
347 |
+
|
348 |
+
inpainted = inpaint_watermark(video)
|
349 |
+
inpainted = rearrange(inpainted, "f c h w -> f h w c").clamp(0, 1).mul(255).byte().cpu().numpy()
|
350 |
+
export_to_video(inpainted, out_path, fps)
|
lora.py
ADDED
@@ -0,0 +1,1312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import math
|
3 |
+
from itertools import groupby
|
4 |
+
import os
|
5 |
+
from typing import Callable, Dict, List, Optional, Set, Tuple, Type, Union
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import PIL
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
|
13 |
+
try:
|
14 |
+
from safetensors.torch import safe_open
|
15 |
+
from safetensors.torch import save_file as safe_save
|
16 |
+
|
17 |
+
safetensors_available = True
|
18 |
+
except ImportError:
|
19 |
+
from .safe_open import safe_open
|
20 |
+
|
21 |
+
def safe_save(
|
22 |
+
tensors: Dict[str, torch.Tensor],
|
23 |
+
filename: str,
|
24 |
+
metadata: Optional[Dict[str, str]] = None,
|
25 |
+
) -> None:
|
26 |
+
raise EnvironmentError(
|
27 |
+
"Saving safetensors requires the safetensors library. Please install with pip or similar."
|
28 |
+
)
|
29 |
+
|
30 |
+
safetensors_available = False
|
31 |
+
|
32 |
+
|
33 |
+
class LoraInjectedLinear(nn.Module):
|
34 |
+
def __init__(
|
35 |
+
self, in_features, out_features, bias=False, r=4, dropout_p=0.1, scale=1.0
|
36 |
+
):
|
37 |
+
super().__init__()
|
38 |
+
|
39 |
+
if r > min(in_features, out_features):
|
40 |
+
#raise ValueError(
|
41 |
+
# f"LoRA rank {r} must be less or equal than {min(in_features, out_features)}"
|
42 |
+
#)
|
43 |
+
print(f"LoRA rank {r} is too large. setting to: {min(in_features, out_features)}")
|
44 |
+
r = min(in_features, out_features)
|
45 |
+
|
46 |
+
self.r = r
|
47 |
+
self.linear = nn.Linear(in_features, out_features, bias)
|
48 |
+
self.lora_down = nn.Linear(in_features, r, bias=False)
|
49 |
+
self.dropout = nn.Dropout(dropout_p)
|
50 |
+
self.lora_up = nn.Linear(r, out_features, bias=False)
|
51 |
+
self.scale = scale
|
52 |
+
self.selector = nn.Identity()
|
53 |
+
|
54 |
+
nn.init.normal_(self.lora_down.weight, std=1 / r)
|
55 |
+
nn.init.zeros_(self.lora_up.weight)
|
56 |
+
|
57 |
+
def forward(self, input):
|
58 |
+
return (
|
59 |
+
self.linear(input)
|
60 |
+
+ self.dropout(self.lora_up(self.selector(self.lora_down(input))))
|
61 |
+
* self.scale
|
62 |
+
)
|
63 |
+
|
64 |
+
def realize_as_lora(self):
|
65 |
+
return self.lora_up.weight.data * self.scale, self.lora_down.weight.data
|
66 |
+
|
67 |
+
def set_selector_from_diag(self, diag: torch.Tensor):
|
68 |
+
# diag is a 1D tensor of size (r,)
|
69 |
+
assert diag.shape == (self.r,)
|
70 |
+
self.selector = nn.Linear(self.r, self.r, bias=False)
|
71 |
+
self.selector.weight.data = torch.diag(diag)
|
72 |
+
self.selector.weight.data = self.selector.weight.data.to(
|
73 |
+
self.lora_up.weight.device
|
74 |
+
).to(self.lora_up.weight.dtype)
|
75 |
+
|
76 |
+
|
77 |
+
class LoraInjectedConv2d(nn.Module):
|
78 |
+
def __init__(
|
79 |
+
self,
|
80 |
+
in_channels: int,
|
81 |
+
out_channels: int,
|
82 |
+
kernel_size,
|
83 |
+
stride=1,
|
84 |
+
padding=0,
|
85 |
+
dilation=1,
|
86 |
+
groups: int = 1,
|
87 |
+
bias: bool = True,
|
88 |
+
r: int = 4,
|
89 |
+
dropout_p: float = 0.1,
|
90 |
+
scale: float = 1.0,
|
91 |
+
):
|
92 |
+
super().__init__()
|
93 |
+
if r > min(in_channels, out_channels):
|
94 |
+
print(f"LoRA rank {r} is too large. setting to: {min(in_channels, out_channels)}")
|
95 |
+
r = min(in_channels, out_channels)
|
96 |
+
|
97 |
+
self.r = r
|
98 |
+
self.conv = nn.Conv2d(
|
99 |
+
in_channels=in_channels,
|
100 |
+
out_channels=out_channels,
|
101 |
+
kernel_size=kernel_size,
|
102 |
+
stride=stride,
|
103 |
+
padding=padding,
|
104 |
+
dilation=dilation,
|
105 |
+
groups=groups,
|
106 |
+
bias=bias,
|
107 |
+
)
|
108 |
+
|
109 |
+
self.lora_down = nn.Conv2d(
|
110 |
+
in_channels=in_channels,
|
111 |
+
out_channels=r,
|
112 |
+
kernel_size=kernel_size,
|
113 |
+
stride=stride,
|
114 |
+
padding=padding,
|
115 |
+
dilation=dilation,
|
116 |
+
groups=groups,
|
117 |
+
bias=False,
|
118 |
+
)
|
119 |
+
self.dropout = nn.Dropout(dropout_p)
|
120 |
+
self.lora_up = nn.Conv2d(
|
121 |
+
in_channels=r,
|
122 |
+
out_channels=out_channels,
|
123 |
+
kernel_size=1,
|
124 |
+
stride=1,
|
125 |
+
padding=0,
|
126 |
+
bias=False,
|
127 |
+
)
|
128 |
+
self.selector = nn.Identity()
|
129 |
+
self.scale = scale
|
130 |
+
|
131 |
+
nn.init.normal_(self.lora_down.weight, std=1 / r)
|
132 |
+
nn.init.zeros_(self.lora_up.weight)
|
133 |
+
|
134 |
+
def forward(self, input):
|
135 |
+
return (
|
136 |
+
self.conv(input)
|
137 |
+
+ self.dropout(self.lora_up(self.selector(self.lora_down(input))))
|
138 |
+
* self.scale
|
139 |
+
)
|
140 |
+
|
141 |
+
def realize_as_lora(self):
|
142 |
+
return self.lora_up.weight.data * self.scale, self.lora_down.weight.data
|
143 |
+
|
144 |
+
def set_selector_from_diag(self, diag: torch.Tensor):
|
145 |
+
# diag is a 1D tensor of size (r,)
|
146 |
+
assert diag.shape == (self.r,)
|
147 |
+
self.selector = nn.Conv2d(
|
148 |
+
in_channels=self.r,
|
149 |
+
out_channels=self.r,
|
150 |
+
kernel_size=1,
|
151 |
+
stride=1,
|
152 |
+
padding=0,
|
153 |
+
bias=False,
|
154 |
+
)
|
155 |
+
self.selector.weight.data = torch.diag(diag)
|
156 |
+
|
157 |
+
# same device + dtype as lora_up
|
158 |
+
self.selector.weight.data = self.selector.weight.data.to(
|
159 |
+
self.lora_up.weight.device
|
160 |
+
).to(self.lora_up.weight.dtype)
|
161 |
+
|
162 |
+
class LoraInjectedConv3d(nn.Module):
|
163 |
+
def __init__(
|
164 |
+
self,
|
165 |
+
in_channels: int,
|
166 |
+
out_channels: int,
|
167 |
+
kernel_size: (3, 1, 1),
|
168 |
+
padding: (1, 0, 0),
|
169 |
+
bias: bool = False,
|
170 |
+
r: int = 4,
|
171 |
+
dropout_p: float = 0,
|
172 |
+
scale: float = 1.0,
|
173 |
+
):
|
174 |
+
super().__init__()
|
175 |
+
if r > min(in_channels, out_channels):
|
176 |
+
print(f"LoRA rank {r} is too large. setting to: {min(in_channels, out_channels)}")
|
177 |
+
r = min(in_channels, out_channels)
|
178 |
+
|
179 |
+
self.r = r
|
180 |
+
self.kernel_size = kernel_size
|
181 |
+
self.padding = padding
|
182 |
+
self.conv = nn.Conv3d(
|
183 |
+
in_channels=in_channels,
|
184 |
+
out_channels=out_channels,
|
185 |
+
kernel_size=kernel_size,
|
186 |
+
padding=padding,
|
187 |
+
)
|
188 |
+
|
189 |
+
self.lora_down = nn.Conv3d(
|
190 |
+
in_channels=in_channels,
|
191 |
+
out_channels=r,
|
192 |
+
kernel_size=kernel_size,
|
193 |
+
bias=False,
|
194 |
+
padding=padding
|
195 |
+
)
|
196 |
+
self.dropout = nn.Dropout(dropout_p)
|
197 |
+
self.lora_up = nn.Conv3d(
|
198 |
+
in_channels=r,
|
199 |
+
out_channels=out_channels,
|
200 |
+
kernel_size=1,
|
201 |
+
stride=1,
|
202 |
+
padding=0,
|
203 |
+
bias=False,
|
204 |
+
)
|
205 |
+
self.selector = nn.Identity()
|
206 |
+
self.scale = scale
|
207 |
+
|
208 |
+
nn.init.normal_(self.lora_down.weight, std=1 / r)
|
209 |
+
nn.init.zeros_(self.lora_up.weight)
|
210 |
+
|
211 |
+
def forward(self, input):
|
212 |
+
return (
|
213 |
+
self.conv(input)
|
214 |
+
+ self.dropout(self.lora_up(self.selector(self.lora_down(input))))
|
215 |
+
* self.scale
|
216 |
+
)
|
217 |
+
|
218 |
+
def realize_as_lora(self):
|
219 |
+
return self.lora_up.weight.data * self.scale, self.lora_down.weight.data
|
220 |
+
|
221 |
+
def set_selector_from_diag(self, diag: torch.Tensor):
|
222 |
+
# diag is a 1D tensor of size (r,)
|
223 |
+
assert diag.shape == (self.r,)
|
224 |
+
self.selector = nn.Conv3d(
|
225 |
+
in_channels=self.r,
|
226 |
+
out_channels=self.r,
|
227 |
+
kernel_size=1,
|
228 |
+
stride=1,
|
229 |
+
padding=0,
|
230 |
+
bias=False,
|
231 |
+
)
|
232 |
+
self.selector.weight.data = torch.diag(diag)
|
233 |
+
|
234 |
+
# same device + dtype as lora_up
|
235 |
+
self.selector.weight.data = self.selector.weight.data.to(
|
236 |
+
self.lora_up.weight.device
|
237 |
+
).to(self.lora_up.weight.dtype)
|
238 |
+
|
239 |
+
UNET_DEFAULT_TARGET_REPLACE = {"CrossAttention", "Attention", "GEGLU"}
|
240 |
+
|
241 |
+
UNET_EXTENDED_TARGET_REPLACE = {"ResnetBlock2D", "CrossAttention", "Attention", "GEGLU"}
|
242 |
+
|
243 |
+
TEXT_ENCODER_DEFAULT_TARGET_REPLACE = {"CLIPAttention"}
|
244 |
+
|
245 |
+
TEXT_ENCODER_EXTENDED_TARGET_REPLACE = {"CLIPAttention"}
|
246 |
+
|
247 |
+
DEFAULT_TARGET_REPLACE = UNET_DEFAULT_TARGET_REPLACE
|
248 |
+
|
249 |
+
EMBED_FLAG = "<embed>"
|
250 |
+
|
251 |
+
|
252 |
+
def _find_children(
|
253 |
+
model,
|
254 |
+
search_class: List[Type[nn.Module]] = [nn.Linear],
|
255 |
+
):
|
256 |
+
"""
|
257 |
+
Find all modules of a certain class (or union of classes).
|
258 |
+
|
259 |
+
Returns all matching modules, along with the parent of those moduless and the
|
260 |
+
names they are referenced by.
|
261 |
+
"""
|
262 |
+
# For each target find every linear_class module that isn't a child of a LoraInjectedLinear
|
263 |
+
for parent in model.modules():
|
264 |
+
for name, module in parent.named_children():
|
265 |
+
if any([isinstance(module, _class) for _class in search_class]):
|
266 |
+
yield parent, name, module
|
267 |
+
|
268 |
+
|
269 |
+
def _find_modules_v2(
|
270 |
+
model,
|
271 |
+
ancestor_class: Optional[Set[str]] = None,
|
272 |
+
search_class: List[Type[nn.Module]] = [nn.Linear],
|
273 |
+
exclude_children_of: Optional[List[Type[nn.Module]]] = [
|
274 |
+
LoraInjectedLinear,
|
275 |
+
LoraInjectedConv2d,
|
276 |
+
LoraInjectedConv3d
|
277 |
+
],
|
278 |
+
):
|
279 |
+
"""
|
280 |
+
Find all modules of a certain class (or union of classes) that are direct or
|
281 |
+
indirect descendants of other modules of a certain class (or union of classes).
|
282 |
+
|
283 |
+
Returns all matching modules, along with the parent of those moduless and the
|
284 |
+
names they are referenced by.
|
285 |
+
"""
|
286 |
+
|
287 |
+
# Get the targets we should replace all linears under
|
288 |
+
if ancestor_class is not None:
|
289 |
+
ancestors = (
|
290 |
+
module
|
291 |
+
for module in model.modules()
|
292 |
+
if module.__class__.__name__ in ancestor_class
|
293 |
+
)
|
294 |
+
else:
|
295 |
+
# this, incase you want to naively iterate over all modules.
|
296 |
+
ancestors = [module for module in model.modules()]
|
297 |
+
|
298 |
+
# For each target find every linear_class module that isn't a child of a LoraInjectedLinear
|
299 |
+
for ancestor in ancestors:
|
300 |
+
for fullname, module in ancestor.named_modules():
|
301 |
+
if any([isinstance(module, _class) for _class in search_class]):
|
302 |
+
# Find the direct parent if this is a descendant, not a child, of target
|
303 |
+
*path, name = fullname.split(".")
|
304 |
+
parent = ancestor
|
305 |
+
while path:
|
306 |
+
parent = parent.get_submodule(path.pop(0))
|
307 |
+
# Skip this linear if it's a child of a LoraInjectedLinear
|
308 |
+
if exclude_children_of and any(
|
309 |
+
[isinstance(parent, _class) for _class in exclude_children_of]
|
310 |
+
):
|
311 |
+
continue
|
312 |
+
# Otherwise, yield it
|
313 |
+
yield parent, name, module
|
314 |
+
|
315 |
+
|
316 |
+
def _find_modules_old(
|
317 |
+
model,
|
318 |
+
ancestor_class: Set[str] = DEFAULT_TARGET_REPLACE,
|
319 |
+
search_class: List[Type[nn.Module]] = [nn.Linear],
|
320 |
+
exclude_children_of: Optional[List[Type[nn.Module]]] = [LoraInjectedLinear],
|
321 |
+
):
|
322 |
+
ret = []
|
323 |
+
for _module in model.modules():
|
324 |
+
if _module.__class__.__name__ in ancestor_class:
|
325 |
+
|
326 |
+
for name, _child_module in _module.named_modules():
|
327 |
+
if _child_module.__class__ in search_class:
|
328 |
+
ret.append((_module, name, _child_module))
|
329 |
+
print(ret)
|
330 |
+
return ret
|
331 |
+
|
332 |
+
|
333 |
+
_find_modules = _find_modules_v2
|
334 |
+
|
335 |
+
|
336 |
+
def inject_trainable_lora(
|
337 |
+
model: nn.Module,
|
338 |
+
target_replace_module: Set[str] = DEFAULT_TARGET_REPLACE,
|
339 |
+
r: int = 4,
|
340 |
+
loras=None, # path to lora .pt
|
341 |
+
verbose: bool = False,
|
342 |
+
dropout_p: float = 0.0,
|
343 |
+
scale: float = 1.0,
|
344 |
+
):
|
345 |
+
"""
|
346 |
+
inject lora into model, and returns lora parameter groups.
|
347 |
+
"""
|
348 |
+
|
349 |
+
require_grad_params = []
|
350 |
+
names = []
|
351 |
+
|
352 |
+
if loras != None:
|
353 |
+
loras = torch.load(loras)
|
354 |
+
|
355 |
+
for _module, name, _child_module in _find_modules(
|
356 |
+
model, target_replace_module, search_class=[nn.Linear]
|
357 |
+
):
|
358 |
+
weight = _child_module.weight
|
359 |
+
bias = _child_module.bias
|
360 |
+
if verbose:
|
361 |
+
print("LoRA Injection : injecting lora into ", name)
|
362 |
+
print("LoRA Injection : weight shape", weight.shape)
|
363 |
+
_tmp = LoraInjectedLinear(
|
364 |
+
_child_module.in_features,
|
365 |
+
_child_module.out_features,
|
366 |
+
_child_module.bias is not None,
|
367 |
+
r=r,
|
368 |
+
dropout_p=dropout_p,
|
369 |
+
scale=scale,
|
370 |
+
)
|
371 |
+
_tmp.linear.weight = weight
|
372 |
+
if bias is not None:
|
373 |
+
_tmp.linear.bias = bias
|
374 |
+
|
375 |
+
# switch the module
|
376 |
+
_tmp.to(_child_module.weight.device).to(_child_module.weight.dtype)
|
377 |
+
_module._modules[name] = _tmp
|
378 |
+
|
379 |
+
require_grad_params.append(_module._modules[name].lora_up.parameters())
|
380 |
+
require_grad_params.append(_module._modules[name].lora_down.parameters())
|
381 |
+
|
382 |
+
if loras != None:
|
383 |
+
_module._modules[name].lora_up.weight = loras.pop(0)
|
384 |
+
_module._modules[name].lora_down.weight = loras.pop(0)
|
385 |
+
|
386 |
+
_module._modules[name].lora_up.weight.requires_grad = True
|
387 |
+
_module._modules[name].lora_down.weight.requires_grad = True
|
388 |
+
names.append(name)
|
389 |
+
|
390 |
+
return require_grad_params, names
|
391 |
+
|
392 |
+
|
393 |
+
def inject_trainable_lora_extended(
|
394 |
+
model: nn.Module,
|
395 |
+
target_replace_module: Set[str] = UNET_EXTENDED_TARGET_REPLACE,
|
396 |
+
r: int = 4,
|
397 |
+
loras=None, # path to lora .pt
|
398 |
+
):
|
399 |
+
"""
|
400 |
+
inject lora into model, and returns lora parameter groups.
|
401 |
+
"""
|
402 |
+
|
403 |
+
require_grad_params = []
|
404 |
+
names = []
|
405 |
+
|
406 |
+
if loras != None:
|
407 |
+
loras = torch.load(loras)
|
408 |
+
|
409 |
+
for _module, name, _child_module in _find_modules(
|
410 |
+
model, target_replace_module, search_class=[nn.Linear, nn.Conv2d, nn.Conv3d]
|
411 |
+
):
|
412 |
+
if _child_module.__class__ == nn.Linear:
|
413 |
+
weight = _child_module.weight
|
414 |
+
bias = _child_module.bias
|
415 |
+
_tmp = LoraInjectedLinear(
|
416 |
+
_child_module.in_features,
|
417 |
+
_child_module.out_features,
|
418 |
+
_child_module.bias is not None,
|
419 |
+
r=r,
|
420 |
+
)
|
421 |
+
_tmp.linear.weight = weight
|
422 |
+
if bias is not None:
|
423 |
+
_tmp.linear.bias = bias
|
424 |
+
elif _child_module.__class__ == nn.Conv2d:
|
425 |
+
weight = _child_module.weight
|
426 |
+
bias = _child_module.bias
|
427 |
+
_tmp = LoraInjectedConv2d(
|
428 |
+
_child_module.in_channels,
|
429 |
+
_child_module.out_channels,
|
430 |
+
_child_module.kernel_size,
|
431 |
+
_child_module.stride,
|
432 |
+
_child_module.padding,
|
433 |
+
_child_module.dilation,
|
434 |
+
_child_module.groups,
|
435 |
+
_child_module.bias is not None,
|
436 |
+
r=r,
|
437 |
+
)
|
438 |
+
|
439 |
+
_tmp.conv.weight = weight
|
440 |
+
if bias is not None:
|
441 |
+
_tmp.conv.bias = bias
|
442 |
+
|
443 |
+
elif _child_module.__class__ == nn.Conv3d:
|
444 |
+
weight = _child_module.weight
|
445 |
+
bias = _child_module.bias
|
446 |
+
_tmp = LoraInjectedConv3d(
|
447 |
+
_child_module.in_channels,
|
448 |
+
_child_module.out_channels,
|
449 |
+
bias=_child_module.bias is not None,
|
450 |
+
kernel_size=_child_module.kernel_size,
|
451 |
+
padding=_child_module.padding,
|
452 |
+
r=r,
|
453 |
+
)
|
454 |
+
|
455 |
+
_tmp.conv.weight = weight
|
456 |
+
if bias is not None:
|
457 |
+
_tmp.conv.bias = bias
|
458 |
+
# switch the module
|
459 |
+
_tmp.to(_child_module.weight.device).to(_child_module.weight.dtype)
|
460 |
+
if bias is not None:
|
461 |
+
_tmp.to(_child_module.bias.device).to(_child_module.bias.dtype)
|
462 |
+
|
463 |
+
_module._modules[name] = _tmp
|
464 |
+
require_grad_params.append(_module._modules[name].lora_up.parameters())
|
465 |
+
require_grad_params.append(_module._modules[name].lora_down.parameters())
|
466 |
+
|
467 |
+
if loras != None:
|
468 |
+
_module._modules[name].lora_up.weight = loras.pop(0)
|
469 |
+
_module._modules[name].lora_down.weight = loras.pop(0)
|
470 |
+
|
471 |
+
_module._modules[name].lora_up.weight.requires_grad = True
|
472 |
+
_module._modules[name].lora_down.weight.requires_grad = True
|
473 |
+
names.append(name)
|
474 |
+
|
475 |
+
return require_grad_params, names
|
476 |
+
|
477 |
+
|
478 |
+
def inject_inferable_lora(
|
479 |
+
model,
|
480 |
+
lora_path='',
|
481 |
+
unet_replace_modules=["UNet3DConditionModel"],
|
482 |
+
text_encoder_replace_modules=["CLIPEncoderLayer"],
|
483 |
+
is_extended=False,
|
484 |
+
r=16
|
485 |
+
):
|
486 |
+
from transformers.models.clip import CLIPTextModel
|
487 |
+
from diffusers import UNet3DConditionModel
|
488 |
+
|
489 |
+
def is_text_model(f): return 'text_encoder' in f and isinstance(model.text_encoder, CLIPTextModel)
|
490 |
+
def is_unet(f): return 'unet' in f and model.unet.__class__.__name__ == "UNet3DConditionModel"
|
491 |
+
|
492 |
+
if os.path.exists(lora_path):
|
493 |
+
try:
|
494 |
+
for f in os.listdir(lora_path):
|
495 |
+
if f.endswith('.pt'):
|
496 |
+
lora_file = os.path.join(lora_path, f)
|
497 |
+
|
498 |
+
if is_text_model(f):
|
499 |
+
monkeypatch_or_replace_lora(
|
500 |
+
model.text_encoder,
|
501 |
+
torch.load(lora_file),
|
502 |
+
target_replace_module=text_encoder_replace_modules,
|
503 |
+
r=r
|
504 |
+
)
|
505 |
+
print("Successfully loaded Text Encoder LoRa.")
|
506 |
+
continue
|
507 |
+
|
508 |
+
if is_unet(f):
|
509 |
+
monkeypatch_or_replace_lora_extended(
|
510 |
+
model.unet,
|
511 |
+
torch.load(lora_file),
|
512 |
+
target_replace_module=unet_replace_modules,
|
513 |
+
r=r
|
514 |
+
)
|
515 |
+
print("Successfully loaded UNET LoRa.")
|
516 |
+
continue
|
517 |
+
|
518 |
+
print("Found a .pt file, but doesn't have the correct name format. (unet.pt, text_encoder.pt)")
|
519 |
+
|
520 |
+
except Exception as e:
|
521 |
+
print(e)
|
522 |
+
print("Couldn't inject LoRA's due to an error.")
|
523 |
+
|
524 |
+
def extract_lora_ups_down(model, target_replace_module=DEFAULT_TARGET_REPLACE):
|
525 |
+
|
526 |
+
loras = []
|
527 |
+
|
528 |
+
for _m, _n, _child_module in _find_modules(
|
529 |
+
model,
|
530 |
+
target_replace_module,
|
531 |
+
search_class=[LoraInjectedLinear, LoraInjectedConv2d, LoraInjectedConv3d],
|
532 |
+
):
|
533 |
+
loras.append((_child_module.lora_up, _child_module.lora_down))
|
534 |
+
|
535 |
+
if len(loras) == 0:
|
536 |
+
raise ValueError("No lora injected.")
|
537 |
+
|
538 |
+
return loras
|
539 |
+
|
540 |
+
|
541 |
+
def extract_lora_as_tensor(
|
542 |
+
model, target_replace_module=DEFAULT_TARGET_REPLACE, as_fp16=True
|
543 |
+
):
|
544 |
+
|
545 |
+
loras = []
|
546 |
+
|
547 |
+
for _m, _n, _child_module in _find_modules(
|
548 |
+
model,
|
549 |
+
target_replace_module,
|
550 |
+
search_class=[LoraInjectedLinear, LoraInjectedConv2d, LoraInjectedConv3d],
|
551 |
+
):
|
552 |
+
up, down = _child_module.realize_as_lora()
|
553 |
+
if as_fp16:
|
554 |
+
up = up.to(torch.float16)
|
555 |
+
down = down.to(torch.float16)
|
556 |
+
|
557 |
+
loras.append((up, down))
|
558 |
+
|
559 |
+
if len(loras) == 0:
|
560 |
+
raise ValueError("No lora injected.")
|
561 |
+
|
562 |
+
return loras
|
563 |
+
|
564 |
+
|
565 |
+
def save_lora_weight(
|
566 |
+
model,
|
567 |
+
path="./lora.pt",
|
568 |
+
target_replace_module=DEFAULT_TARGET_REPLACE,
|
569 |
+
):
|
570 |
+
weights = []
|
571 |
+
for _up, _down in extract_lora_ups_down(
|
572 |
+
model, target_replace_module=target_replace_module
|
573 |
+
):
|
574 |
+
weights.append(_up.weight.to("cpu").to(torch.float32))
|
575 |
+
weights.append(_down.weight.to("cpu").to(torch.float32))
|
576 |
+
|
577 |
+
torch.save(weights, path)
|
578 |
+
|
579 |
+
|
580 |
+
def save_lora_as_json(model, path="./lora.json"):
|
581 |
+
weights = []
|
582 |
+
for _up, _down in extract_lora_ups_down(model):
|
583 |
+
weights.append(_up.weight.detach().cpu().numpy().tolist())
|
584 |
+
weights.append(_down.weight.detach().cpu().numpy().tolist())
|
585 |
+
|
586 |
+
import json
|
587 |
+
|
588 |
+
with open(path, "w") as f:
|
589 |
+
json.dump(weights, f)
|
590 |
+
|
591 |
+
|
592 |
+
def save_safeloras_with_embeds(
|
593 |
+
modelmap: Dict[str, Tuple[nn.Module, Set[str]]] = {},
|
594 |
+
embeds: Dict[str, torch.Tensor] = {},
|
595 |
+
outpath="./lora.safetensors",
|
596 |
+
):
|
597 |
+
"""
|
598 |
+
Saves the Lora from multiple modules in a single safetensor file.
|
599 |
+
|
600 |
+
modelmap is a dictionary of {
|
601 |
+
"module name": (module, target_replace_module)
|
602 |
+
}
|
603 |
+
"""
|
604 |
+
weights = {}
|
605 |
+
metadata = {}
|
606 |
+
|
607 |
+
for name, (model, target_replace_module) in modelmap.items():
|
608 |
+
metadata[name] = json.dumps(list(target_replace_module))
|
609 |
+
|
610 |
+
for i, (_up, _down) in enumerate(
|
611 |
+
extract_lora_as_tensor(model, target_replace_module)
|
612 |
+
):
|
613 |
+
rank = _down.shape[0]
|
614 |
+
|
615 |
+
metadata[f"{name}:{i}:rank"] = str(rank)
|
616 |
+
weights[f"{name}:{i}:up"] = _up
|
617 |
+
weights[f"{name}:{i}:down"] = _down
|
618 |
+
|
619 |
+
for token, tensor in embeds.items():
|
620 |
+
metadata[token] = EMBED_FLAG
|
621 |
+
weights[token] = tensor
|
622 |
+
|
623 |
+
print(f"Saving weights to {outpath}")
|
624 |
+
safe_save(weights, outpath, metadata)
|
625 |
+
|
626 |
+
|
627 |
+
def save_safeloras(
|
628 |
+
modelmap: Dict[str, Tuple[nn.Module, Set[str]]] = {},
|
629 |
+
outpath="./lora.safetensors",
|
630 |
+
):
|
631 |
+
return save_safeloras_with_embeds(modelmap=modelmap, outpath=outpath)
|
632 |
+
|
633 |
+
|
634 |
+
def convert_loras_to_safeloras_with_embeds(
|
635 |
+
modelmap: Dict[str, Tuple[str, Set[str], int]] = {},
|
636 |
+
embeds: Dict[str, torch.Tensor] = {},
|
637 |
+
outpath="./lora.safetensors",
|
638 |
+
):
|
639 |
+
"""
|
640 |
+
Converts the Lora from multiple pytorch .pt files into a single safetensor file.
|
641 |
+
|
642 |
+
modelmap is a dictionary of {
|
643 |
+
"module name": (pytorch_model_path, target_replace_module, rank)
|
644 |
+
}
|
645 |
+
"""
|
646 |
+
|
647 |
+
weights = {}
|
648 |
+
metadata = {}
|
649 |
+
|
650 |
+
for name, (path, target_replace_module, r) in modelmap.items():
|
651 |
+
metadata[name] = json.dumps(list(target_replace_module))
|
652 |
+
|
653 |
+
lora = torch.load(path)
|
654 |
+
for i, weight in enumerate(lora):
|
655 |
+
is_up = i % 2 == 0
|
656 |
+
i = i // 2
|
657 |
+
|
658 |
+
if is_up:
|
659 |
+
metadata[f"{name}:{i}:rank"] = str(r)
|
660 |
+
weights[f"{name}:{i}:up"] = weight
|
661 |
+
else:
|
662 |
+
weights[f"{name}:{i}:down"] = weight
|
663 |
+
|
664 |
+
for token, tensor in embeds.items():
|
665 |
+
metadata[token] = EMBED_FLAG
|
666 |
+
weights[token] = tensor
|
667 |
+
|
668 |
+
print(f"Saving weights to {outpath}")
|
669 |
+
safe_save(weights, outpath, metadata)
|
670 |
+
|
671 |
+
|
672 |
+
def convert_loras_to_safeloras(
|
673 |
+
modelmap: Dict[str, Tuple[str, Set[str], int]] = {},
|
674 |
+
outpath="./lora.safetensors",
|
675 |
+
):
|
676 |
+
convert_loras_to_safeloras_with_embeds(modelmap=modelmap, outpath=outpath)
|
677 |
+
|
678 |
+
|
679 |
+
def parse_safeloras(
|
680 |
+
safeloras,
|
681 |
+
) -> Dict[str, Tuple[List[nn.parameter.Parameter], List[int], List[str]]]:
|
682 |
+
"""
|
683 |
+
Converts a loaded safetensor file that contains a set of module Loras
|
684 |
+
into Parameters and other information
|
685 |
+
|
686 |
+
Output is a dictionary of {
|
687 |
+
"module name": (
|
688 |
+
[list of weights],
|
689 |
+
[list of ranks],
|
690 |
+
target_replacement_modules
|
691 |
+
)
|
692 |
+
}
|
693 |
+
"""
|
694 |
+
loras = {}
|
695 |
+
metadata = safeloras.metadata()
|
696 |
+
|
697 |
+
get_name = lambda k: k.split(":")[0]
|
698 |
+
|
699 |
+
keys = list(safeloras.keys())
|
700 |
+
keys.sort(key=get_name)
|
701 |
+
|
702 |
+
for name, module_keys in groupby(keys, get_name):
|
703 |
+
info = metadata.get(name)
|
704 |
+
|
705 |
+
if not info:
|
706 |
+
raise ValueError(
|
707 |
+
f"Tensor {name} has no metadata - is this a Lora safetensor?"
|
708 |
+
)
|
709 |
+
|
710 |
+
# Skip Textual Inversion embeds
|
711 |
+
if info == EMBED_FLAG:
|
712 |
+
continue
|
713 |
+
|
714 |
+
# Handle Loras
|
715 |
+
# Extract the targets
|
716 |
+
target = json.loads(info)
|
717 |
+
|
718 |
+
# Build the result lists - Python needs us to preallocate lists to insert into them
|
719 |
+
module_keys = list(module_keys)
|
720 |
+
ranks = [4] * (len(module_keys) // 2)
|
721 |
+
weights = [None] * len(module_keys)
|
722 |
+
|
723 |
+
for key in module_keys:
|
724 |
+
# Split the model name and index out of the key
|
725 |
+
_, idx, direction = key.split(":")
|
726 |
+
idx = int(idx)
|
727 |
+
|
728 |
+
# Add the rank
|
729 |
+
ranks[idx] = int(metadata[f"{name}:{idx}:rank"])
|
730 |
+
|
731 |
+
# Insert the weight into the list
|
732 |
+
idx = idx * 2 + (1 if direction == "down" else 0)
|
733 |
+
weights[idx] = nn.parameter.Parameter(safeloras.get_tensor(key))
|
734 |
+
|
735 |
+
loras[name] = (weights, ranks, target)
|
736 |
+
|
737 |
+
return loras
|
738 |
+
|
739 |
+
|
740 |
+
def parse_safeloras_embeds(
|
741 |
+
safeloras,
|
742 |
+
) -> Dict[str, torch.Tensor]:
|
743 |
+
"""
|
744 |
+
Converts a loaded safetensor file that contains Textual Inversion embeds into
|
745 |
+
a dictionary of embed_token: Tensor
|
746 |
+
"""
|
747 |
+
embeds = {}
|
748 |
+
metadata = safeloras.metadata()
|
749 |
+
|
750 |
+
for key in safeloras.keys():
|
751 |
+
# Only handle Textual Inversion embeds
|
752 |
+
meta = metadata.get(key)
|
753 |
+
if not meta or meta != EMBED_FLAG:
|
754 |
+
continue
|
755 |
+
|
756 |
+
embeds[key] = safeloras.get_tensor(key)
|
757 |
+
|
758 |
+
return embeds
|
759 |
+
|
760 |
+
|
761 |
+
def load_safeloras(path, device="cpu"):
|
762 |
+
safeloras = safe_open(path, framework="pt", device=device)
|
763 |
+
return parse_safeloras(safeloras)
|
764 |
+
|
765 |
+
|
766 |
+
def load_safeloras_embeds(path, device="cpu"):
|
767 |
+
safeloras = safe_open(path, framework="pt", device=device)
|
768 |
+
return parse_safeloras_embeds(safeloras)
|
769 |
+
|
770 |
+
|
771 |
+
def load_safeloras_both(path, device="cpu"):
|
772 |
+
safeloras = safe_open(path, framework="pt", device=device)
|
773 |
+
return parse_safeloras(safeloras), parse_safeloras_embeds(safeloras)
|
774 |
+
|
775 |
+
|
776 |
+
def collapse_lora(model, alpha=1.0):
|
777 |
+
|
778 |
+
for _module, name, _child_module in _find_modules(
|
779 |
+
model,
|
780 |
+
UNET_EXTENDED_TARGET_REPLACE | TEXT_ENCODER_EXTENDED_TARGET_REPLACE,
|
781 |
+
search_class=[LoraInjectedLinear, LoraInjectedConv2d, LoraInjectedConv3d],
|
782 |
+
):
|
783 |
+
|
784 |
+
if isinstance(_child_module, LoraInjectedLinear):
|
785 |
+
print("Collapsing Lin Lora in", name)
|
786 |
+
|
787 |
+
_child_module.linear.weight = nn.Parameter(
|
788 |
+
_child_module.linear.weight.data
|
789 |
+
+ alpha
|
790 |
+
* (
|
791 |
+
_child_module.lora_up.weight.data
|
792 |
+
@ _child_module.lora_down.weight.data
|
793 |
+
)
|
794 |
+
.type(_child_module.linear.weight.dtype)
|
795 |
+
.to(_child_module.linear.weight.device)
|
796 |
+
)
|
797 |
+
|
798 |
+
else:
|
799 |
+
print("Collapsing Conv Lora in", name)
|
800 |
+
_child_module.conv.weight = nn.Parameter(
|
801 |
+
_child_module.conv.weight.data
|
802 |
+
+ alpha
|
803 |
+
* (
|
804 |
+
_child_module.lora_up.weight.data.flatten(start_dim=1)
|
805 |
+
@ _child_module.lora_down.weight.data.flatten(start_dim=1)
|
806 |
+
)
|
807 |
+
.reshape(_child_module.conv.weight.data.shape)
|
808 |
+
.type(_child_module.conv.weight.dtype)
|
809 |
+
.to(_child_module.conv.weight.device)
|
810 |
+
)
|
811 |
+
|
812 |
+
|
813 |
+
def monkeypatch_or_replace_lora(
|
814 |
+
model,
|
815 |
+
loras,
|
816 |
+
target_replace_module=DEFAULT_TARGET_REPLACE,
|
817 |
+
r: Union[int, List[int]] = 4,
|
818 |
+
):
|
819 |
+
for _module, name, _child_module in _find_modules(
|
820 |
+
model, target_replace_module, search_class=[nn.Linear, LoraInjectedLinear]
|
821 |
+
):
|
822 |
+
_source = (
|
823 |
+
_child_module.linear
|
824 |
+
if isinstance(_child_module, LoraInjectedLinear)
|
825 |
+
else _child_module
|
826 |
+
)
|
827 |
+
|
828 |
+
weight = _source.weight
|
829 |
+
bias = _source.bias
|
830 |
+
_tmp = LoraInjectedLinear(
|
831 |
+
_source.in_features,
|
832 |
+
_source.out_features,
|
833 |
+
_source.bias is not None,
|
834 |
+
r=r.pop(0) if isinstance(r, list) else r,
|
835 |
+
)
|
836 |
+
_tmp.linear.weight = weight
|
837 |
+
|
838 |
+
if bias is not None:
|
839 |
+
_tmp.linear.bias = bias
|
840 |
+
|
841 |
+
# switch the module
|
842 |
+
_module._modules[name] = _tmp
|
843 |
+
|
844 |
+
up_weight = loras.pop(0)
|
845 |
+
down_weight = loras.pop(0)
|
846 |
+
|
847 |
+
_module._modules[name].lora_up.weight = nn.Parameter(
|
848 |
+
up_weight.type(weight.dtype)
|
849 |
+
)
|
850 |
+
_module._modules[name].lora_down.weight = nn.Parameter(
|
851 |
+
down_weight.type(weight.dtype)
|
852 |
+
)
|
853 |
+
|
854 |
+
_module._modules[name].to(weight.device)
|
855 |
+
|
856 |
+
|
857 |
+
def monkeypatch_or_replace_lora_extended(
|
858 |
+
model,
|
859 |
+
loras,
|
860 |
+
target_replace_module=DEFAULT_TARGET_REPLACE,
|
861 |
+
r: Union[int, List[int]] = 4,
|
862 |
+
):
|
863 |
+
for _module, name, _child_module in _find_modules(
|
864 |
+
model,
|
865 |
+
target_replace_module,
|
866 |
+
search_class=[
|
867 |
+
nn.Linear,
|
868 |
+
nn.Conv2d,
|
869 |
+
nn.Conv3d,
|
870 |
+
LoraInjectedLinear,
|
871 |
+
LoraInjectedConv2d,
|
872 |
+
LoraInjectedConv3d,
|
873 |
+
],
|
874 |
+
):
|
875 |
+
|
876 |
+
if (_child_module.__class__ == nn.Linear) or (
|
877 |
+
_child_module.__class__ == LoraInjectedLinear
|
878 |
+
):
|
879 |
+
if len(loras[0].shape) != 2:
|
880 |
+
continue
|
881 |
+
|
882 |
+
_source = (
|
883 |
+
_child_module.linear
|
884 |
+
if isinstance(_child_module, LoraInjectedLinear)
|
885 |
+
else _child_module
|
886 |
+
)
|
887 |
+
|
888 |
+
weight = _source.weight
|
889 |
+
bias = _source.bias
|
890 |
+
_tmp = LoraInjectedLinear(
|
891 |
+
_source.in_features,
|
892 |
+
_source.out_features,
|
893 |
+
_source.bias is not None,
|
894 |
+
r=r.pop(0) if isinstance(r, list) else r,
|
895 |
+
)
|
896 |
+
_tmp.linear.weight = weight
|
897 |
+
|
898 |
+
if bias is not None:
|
899 |
+
_tmp.linear.bias = bias
|
900 |
+
|
901 |
+
elif (_child_module.__class__ == nn.Conv2d) or (
|
902 |
+
_child_module.__class__ == LoraInjectedConv2d
|
903 |
+
):
|
904 |
+
if len(loras[0].shape) != 4:
|
905 |
+
continue
|
906 |
+
_source = (
|
907 |
+
_child_module.conv
|
908 |
+
if isinstance(_child_module, LoraInjectedConv2d)
|
909 |
+
else _child_module
|
910 |
+
)
|
911 |
+
|
912 |
+
weight = _source.weight
|
913 |
+
bias = _source.bias
|
914 |
+
_tmp = LoraInjectedConv2d(
|
915 |
+
_source.in_channels,
|
916 |
+
_source.out_channels,
|
917 |
+
_source.kernel_size,
|
918 |
+
_source.stride,
|
919 |
+
_source.padding,
|
920 |
+
_source.dilation,
|
921 |
+
_source.groups,
|
922 |
+
_source.bias is not None,
|
923 |
+
r=r.pop(0) if isinstance(r, list) else r,
|
924 |
+
)
|
925 |
+
|
926 |
+
_tmp.conv.weight = weight
|
927 |
+
|
928 |
+
if bias is not None:
|
929 |
+
_tmp.conv.bias = bias
|
930 |
+
|
931 |
+
elif _child_module.__class__ == nn.Conv3d or(
|
932 |
+
_child_module.__class__ == LoraInjectedConv3d
|
933 |
+
):
|
934 |
+
|
935 |
+
if len(loras[0].shape) != 5:
|
936 |
+
continue
|
937 |
+
|
938 |
+
_source = (
|
939 |
+
_child_module.conv
|
940 |
+
if isinstance(_child_module, LoraInjectedConv3d)
|
941 |
+
else _child_module
|
942 |
+
)
|
943 |
+
|
944 |
+
weight = _source.weight
|
945 |
+
bias = _source.bias
|
946 |
+
_tmp = LoraInjectedConv3d(
|
947 |
+
_source.in_channels,
|
948 |
+
_source.out_channels,
|
949 |
+
bias=_source.bias is not None,
|
950 |
+
kernel_size=_source.kernel_size,
|
951 |
+
padding=_source.padding,
|
952 |
+
r=r.pop(0) if isinstance(r, list) else r,
|
953 |
+
)
|
954 |
+
|
955 |
+
_tmp.conv.weight = weight
|
956 |
+
|
957 |
+
if bias is not None:
|
958 |
+
_tmp.conv.bias = bias
|
959 |
+
|
960 |
+
# switch the module
|
961 |
+
_module._modules[name] = _tmp
|
962 |
+
|
963 |
+
up_weight = loras.pop(0)
|
964 |
+
down_weight = loras.pop(0)
|
965 |
+
|
966 |
+
_module._modules[name].lora_up.weight = nn.Parameter(
|
967 |
+
up_weight.type(weight.dtype)
|
968 |
+
)
|
969 |
+
_module._modules[name].lora_down.weight = nn.Parameter(
|
970 |
+
down_weight.type(weight.dtype)
|
971 |
+
)
|
972 |
+
|
973 |
+
_module._modules[name].to(weight.device)
|
974 |
+
|
975 |
+
|
976 |
+
def monkeypatch_or_replace_safeloras(models, safeloras):
|
977 |
+
loras = parse_safeloras(safeloras)
|
978 |
+
|
979 |
+
for name, (lora, ranks, target) in loras.items():
|
980 |
+
model = getattr(models, name, None)
|
981 |
+
|
982 |
+
if not model:
|
983 |
+
print(f"No model provided for {name}, contained in Lora")
|
984 |
+
continue
|
985 |
+
|
986 |
+
monkeypatch_or_replace_lora_extended(model, lora, target, ranks)
|
987 |
+
|
988 |
+
|
989 |
+
def monkeypatch_remove_lora(model):
|
990 |
+
for _module, name, _child_module in _find_modules(
|
991 |
+
model, search_class=[LoraInjectedLinear, LoraInjectedConv2d, LoraInjectedConv3d]
|
992 |
+
):
|
993 |
+
if isinstance(_child_module, LoraInjectedLinear):
|
994 |
+
_source = _child_module.linear
|
995 |
+
weight, bias = _source.weight, _source.bias
|
996 |
+
|
997 |
+
_tmp = nn.Linear(
|
998 |
+
_source.in_features, _source.out_features, bias is not None
|
999 |
+
)
|
1000 |
+
|
1001 |
+
_tmp.weight = weight
|
1002 |
+
if bias is not None:
|
1003 |
+
_tmp.bias = bias
|
1004 |
+
|
1005 |
+
else:
|
1006 |
+
_source = _child_module.conv
|
1007 |
+
weight, bias = _source.weight, _source.bias
|
1008 |
+
|
1009 |
+
if isinstance(_source, nn.Conv2d):
|
1010 |
+
_tmp = nn.Conv2d(
|
1011 |
+
in_channels=_source.in_channels,
|
1012 |
+
out_channels=_source.out_channels,
|
1013 |
+
kernel_size=_source.kernel_size,
|
1014 |
+
stride=_source.stride,
|
1015 |
+
padding=_source.padding,
|
1016 |
+
dilation=_source.dilation,
|
1017 |
+
groups=_source.groups,
|
1018 |
+
bias=bias is not None,
|
1019 |
+
)
|
1020 |
+
|
1021 |
+
_tmp.weight = weight
|
1022 |
+
if bias is not None:
|
1023 |
+
_tmp.bias = bias
|
1024 |
+
|
1025 |
+
if isinstance(_source, nn.Conv3d):
|
1026 |
+
_tmp = nn.Conv3d(
|
1027 |
+
_source.in_channels,
|
1028 |
+
_source.out_channels,
|
1029 |
+
bias=_source.bias is not None,
|
1030 |
+
kernel_size=_source.kernel_size,
|
1031 |
+
padding=_source.padding,
|
1032 |
+
)
|
1033 |
+
|
1034 |
+
_tmp.weight = weight
|
1035 |
+
if bias is not None:
|
1036 |
+
_tmp.bias = bias
|
1037 |
+
|
1038 |
+
_module._modules[name] = _tmp
|
1039 |
+
|
1040 |
+
|
1041 |
+
def monkeypatch_add_lora(
|
1042 |
+
model,
|
1043 |
+
loras,
|
1044 |
+
target_replace_module=DEFAULT_TARGET_REPLACE,
|
1045 |
+
alpha: float = 1.0,
|
1046 |
+
beta: float = 1.0,
|
1047 |
+
):
|
1048 |
+
for _module, name, _child_module in _find_modules(
|
1049 |
+
model, target_replace_module, search_class=[LoraInjectedLinear]
|
1050 |
+
):
|
1051 |
+
weight = _child_module.linear.weight
|
1052 |
+
|
1053 |
+
up_weight = loras.pop(0)
|
1054 |
+
down_weight = loras.pop(0)
|
1055 |
+
|
1056 |
+
_module._modules[name].lora_up.weight = nn.Parameter(
|
1057 |
+
up_weight.type(weight.dtype).to(weight.device) * alpha
|
1058 |
+
+ _module._modules[name].lora_up.weight.to(weight.device) * beta
|
1059 |
+
)
|
1060 |
+
_module._modules[name].lora_down.weight = nn.Parameter(
|
1061 |
+
down_weight.type(weight.dtype).to(weight.device) * alpha
|
1062 |
+
+ _module._modules[name].lora_down.weight.to(weight.device) * beta
|
1063 |
+
)
|
1064 |
+
|
1065 |
+
_module._modules[name].to(weight.device)
|
1066 |
+
|
1067 |
+
|
1068 |
+
def tune_lora_scale(model, alpha: float = 1.0):
|
1069 |
+
for _module in model.modules():
|
1070 |
+
if _module.__class__.__name__ in ["LoraInjectedLinear", "LoraInjectedConv2d", "LoraInjectedConv3d"]:
|
1071 |
+
_module.scale = alpha
|
1072 |
+
|
1073 |
+
|
1074 |
+
def set_lora_diag(model, diag: torch.Tensor):
|
1075 |
+
for _module in model.modules():
|
1076 |
+
if _module.__class__.__name__ in ["LoraInjectedLinear", "LoraInjectedConv2d", "LoraInjectedConv3d"]:
|
1077 |
+
_module.set_selector_from_diag(diag)
|
1078 |
+
|
1079 |
+
|
1080 |
+
def _text_lora_path(path: str) -> str:
|
1081 |
+
assert path.endswith(".pt"), "Only .pt files are supported"
|
1082 |
+
return ".".join(path.split(".")[:-1] + ["text_encoder", "pt"])
|
1083 |
+
|
1084 |
+
|
1085 |
+
def _ti_lora_path(path: str) -> str:
|
1086 |
+
assert path.endswith(".pt"), "Only .pt files are supported"
|
1087 |
+
return ".".join(path.split(".")[:-1] + ["ti", "pt"])
|
1088 |
+
|
1089 |
+
|
1090 |
+
def apply_learned_embed_in_clip(
|
1091 |
+
learned_embeds,
|
1092 |
+
text_encoder,
|
1093 |
+
tokenizer,
|
1094 |
+
token: Optional[Union[str, List[str]]] = None,
|
1095 |
+
idempotent=False,
|
1096 |
+
):
|
1097 |
+
if isinstance(token, str):
|
1098 |
+
trained_tokens = [token]
|
1099 |
+
elif isinstance(token, list):
|
1100 |
+
assert len(learned_embeds.keys()) == len(
|
1101 |
+
token
|
1102 |
+
), "The number of tokens and the number of embeds should be the same"
|
1103 |
+
trained_tokens = token
|
1104 |
+
else:
|
1105 |
+
trained_tokens = list(learned_embeds.keys())
|
1106 |
+
|
1107 |
+
for token in trained_tokens:
|
1108 |
+
print(token)
|
1109 |
+
embeds = learned_embeds[token]
|
1110 |
+
|
1111 |
+
# cast to dtype of text_encoder
|
1112 |
+
dtype = text_encoder.get_input_embeddings().weight.dtype
|
1113 |
+
num_added_tokens = tokenizer.add_tokens(token)
|
1114 |
+
|
1115 |
+
i = 1
|
1116 |
+
if not idempotent:
|
1117 |
+
while num_added_tokens == 0:
|
1118 |
+
print(f"The tokenizer already contains the token {token}.")
|
1119 |
+
token = f"{token[:-1]}-{i}>"
|
1120 |
+
print(f"Attempting to add the token {token}.")
|
1121 |
+
num_added_tokens = tokenizer.add_tokens(token)
|
1122 |
+
i += 1
|
1123 |
+
elif num_added_tokens == 0 and idempotent:
|
1124 |
+
print(f"The tokenizer already contains the token {token}.")
|
1125 |
+
print(f"Replacing {token} embedding.")
|
1126 |
+
|
1127 |
+
# resize the token embeddings
|
1128 |
+
text_encoder.resize_token_embeddings(len(tokenizer))
|
1129 |
+
|
1130 |
+
# get the id for the token and assign the embeds
|
1131 |
+
token_id = tokenizer.convert_tokens_to_ids(token)
|
1132 |
+
text_encoder.get_input_embeddings().weight.data[token_id] = embeds
|
1133 |
+
return token
|
1134 |
+
|
1135 |
+
|
1136 |
+
def load_learned_embed_in_clip(
|
1137 |
+
learned_embeds_path,
|
1138 |
+
text_encoder,
|
1139 |
+
tokenizer,
|
1140 |
+
token: Optional[Union[str, List[str]]] = None,
|
1141 |
+
idempotent=False,
|
1142 |
+
):
|
1143 |
+
learned_embeds = torch.load(learned_embeds_path)
|
1144 |
+
apply_learned_embed_in_clip(
|
1145 |
+
learned_embeds, text_encoder, tokenizer, token, idempotent
|
1146 |
+
)
|
1147 |
+
|
1148 |
+
|
1149 |
+
def patch_pipe(
|
1150 |
+
pipe,
|
1151 |
+
maybe_unet_path,
|
1152 |
+
token: Optional[str] = None,
|
1153 |
+
r: int = 4,
|
1154 |
+
patch_unet=True,
|
1155 |
+
patch_text=True,
|
1156 |
+
patch_ti=True,
|
1157 |
+
idempotent_token=True,
|
1158 |
+
unet_target_replace_module=DEFAULT_TARGET_REPLACE,
|
1159 |
+
text_target_replace_module=TEXT_ENCODER_DEFAULT_TARGET_REPLACE,
|
1160 |
+
):
|
1161 |
+
if maybe_unet_path.endswith(".pt"):
|
1162 |
+
# torch format
|
1163 |
+
|
1164 |
+
if maybe_unet_path.endswith(".ti.pt"):
|
1165 |
+
unet_path = maybe_unet_path[:-6] + ".pt"
|
1166 |
+
elif maybe_unet_path.endswith(".text_encoder.pt"):
|
1167 |
+
unet_path = maybe_unet_path[:-16] + ".pt"
|
1168 |
+
else:
|
1169 |
+
unet_path = maybe_unet_path
|
1170 |
+
|
1171 |
+
ti_path = _ti_lora_path(unet_path)
|
1172 |
+
text_path = _text_lora_path(unet_path)
|
1173 |
+
|
1174 |
+
if patch_unet:
|
1175 |
+
print("LoRA : Patching Unet")
|
1176 |
+
monkeypatch_or_replace_lora(
|
1177 |
+
pipe.unet,
|
1178 |
+
torch.load(unet_path),
|
1179 |
+
r=r,
|
1180 |
+
target_replace_module=unet_target_replace_module,
|
1181 |
+
)
|
1182 |
+
|
1183 |
+
if patch_text:
|
1184 |
+
print("LoRA : Patching text encoder")
|
1185 |
+
monkeypatch_or_replace_lora(
|
1186 |
+
pipe.text_encoder,
|
1187 |
+
torch.load(text_path),
|
1188 |
+
target_replace_module=text_target_replace_module,
|
1189 |
+
r=r,
|
1190 |
+
)
|
1191 |
+
if patch_ti:
|
1192 |
+
print("LoRA : Patching token input")
|
1193 |
+
token = load_learned_embed_in_clip(
|
1194 |
+
ti_path,
|
1195 |
+
pipe.text_encoder,
|
1196 |
+
pipe.tokenizer,
|
1197 |
+
token=token,
|
1198 |
+
idempotent=idempotent_token,
|
1199 |
+
)
|
1200 |
+
|
1201 |
+
elif maybe_unet_path.endswith(".safetensors"):
|
1202 |
+
safeloras = safe_open(maybe_unet_path, framework="pt", device="cpu")
|
1203 |
+
monkeypatch_or_replace_safeloras(pipe, safeloras)
|
1204 |
+
tok_dict = parse_safeloras_embeds(safeloras)
|
1205 |
+
if patch_ti:
|
1206 |
+
apply_learned_embed_in_clip(
|
1207 |
+
tok_dict,
|
1208 |
+
pipe.text_encoder,
|
1209 |
+
pipe.tokenizer,
|
1210 |
+
token=token,
|
1211 |
+
idempotent=idempotent_token,
|
1212 |
+
)
|
1213 |
+
return tok_dict
|
1214 |
+
|
1215 |
+
|
1216 |
+
def train_patch_pipe(pipe, patch_unet, patch_text):
|
1217 |
+
if patch_unet:
|
1218 |
+
print("LoRA : Patching Unet")
|
1219 |
+
collapse_lora(pipe.unet)
|
1220 |
+
monkeypatch_remove_lora(pipe.unet)
|
1221 |
+
|
1222 |
+
if patch_text:
|
1223 |
+
print("LoRA : Patching text encoder")
|
1224 |
+
|
1225 |
+
collapse_lora(pipe.text_encoder)
|
1226 |
+
monkeypatch_remove_lora(pipe.text_encoder)
|
1227 |
+
|
1228 |
+
@torch.no_grad()
|
1229 |
+
def inspect_lora(model):
|
1230 |
+
moved = {}
|
1231 |
+
|
1232 |
+
for name, _module in model.named_modules():
|
1233 |
+
if _module.__class__.__name__ in ["LoraInjectedLinear", "LoraInjectedConv2d", "LoraInjectedConv3d"]:
|
1234 |
+
ups = _module.lora_up.weight.data.clone()
|
1235 |
+
downs = _module.lora_down.weight.data.clone()
|
1236 |
+
|
1237 |
+
wght: torch.Tensor = ups.flatten(1) @ downs.flatten(1)
|
1238 |
+
|
1239 |
+
dist = wght.flatten().abs().mean().item()
|
1240 |
+
if name in moved:
|
1241 |
+
moved[name].append(dist)
|
1242 |
+
else:
|
1243 |
+
moved[name] = [dist]
|
1244 |
+
|
1245 |
+
return moved
|
1246 |
+
|
1247 |
+
|
1248 |
+
def save_all(
|
1249 |
+
unet,
|
1250 |
+
text_encoder,
|
1251 |
+
save_path,
|
1252 |
+
placeholder_token_ids=None,
|
1253 |
+
placeholder_tokens=None,
|
1254 |
+
save_lora=True,
|
1255 |
+
save_ti=True,
|
1256 |
+
target_replace_module_text=TEXT_ENCODER_DEFAULT_TARGET_REPLACE,
|
1257 |
+
target_replace_module_unet=DEFAULT_TARGET_REPLACE,
|
1258 |
+
safe_form=True,
|
1259 |
+
):
|
1260 |
+
if not safe_form:
|
1261 |
+
# save ti
|
1262 |
+
if save_ti:
|
1263 |
+
ti_path = _ti_lora_path(save_path)
|
1264 |
+
learned_embeds_dict = {}
|
1265 |
+
for tok, tok_id in zip(placeholder_tokens, placeholder_token_ids):
|
1266 |
+
learned_embeds = text_encoder.get_input_embeddings().weight[tok_id]
|
1267 |
+
print(
|
1268 |
+
f"Current Learned Embeddings for {tok}:, id {tok_id} ",
|
1269 |
+
learned_embeds[:4],
|
1270 |
+
)
|
1271 |
+
learned_embeds_dict[tok] = learned_embeds.detach().cpu()
|
1272 |
+
|
1273 |
+
torch.save(learned_embeds_dict, ti_path)
|
1274 |
+
print("Ti saved to ", ti_path)
|
1275 |
+
|
1276 |
+
# save text encoder
|
1277 |
+
if save_lora:
|
1278 |
+
save_lora_weight(
|
1279 |
+
unet, save_path, target_replace_module=target_replace_module_unet
|
1280 |
+
)
|
1281 |
+
print("Unet saved to ", save_path)
|
1282 |
+
|
1283 |
+
save_lora_weight(
|
1284 |
+
text_encoder,
|
1285 |
+
_text_lora_path(save_path),
|
1286 |
+
target_replace_module=target_replace_module_text,
|
1287 |
+
)
|
1288 |
+
print("Text Encoder saved to ", _text_lora_path(save_path))
|
1289 |
+
|
1290 |
+
else:
|
1291 |
+
assert save_path.endswith(
|
1292 |
+
".safetensors"
|
1293 |
+
), f"Save path : {save_path} should end with .safetensors"
|
1294 |
+
|
1295 |
+
loras = {}
|
1296 |
+
embeds = {}
|
1297 |
+
|
1298 |
+
if save_lora:
|
1299 |
+
|
1300 |
+
loras["unet"] = (unet, target_replace_module_unet)
|
1301 |
+
loras["text_encoder"] = (text_encoder, target_replace_module_text)
|
1302 |
+
|
1303 |
+
if save_ti:
|
1304 |
+
for tok, tok_id in zip(placeholder_tokens, placeholder_token_ids):
|
1305 |
+
learned_embeds = text_encoder.get_input_embeddings().weight[tok_id]
|
1306 |
+
print(
|
1307 |
+
f"Current Learned Embeddings for {tok}:, id {tok_id} ",
|
1308 |
+
learned_embeds[:4],
|
1309 |
+
)
|
1310 |
+
embeds[tok] = learned_embeds.detach().cpu()
|
1311 |
+
|
1312 |
+
save_safeloras_with_embeds(loras, embeds, save_path)
|
predict.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import List
|
3 |
+
from cog import BasePredictor, Input, Path
|
4 |
+
import subprocess
|
5 |
+
import shutil
|
6 |
+
|
7 |
+
MODEL_CACHE = "model-cache"
|
8 |
+
|
9 |
+
class Predictor(BasePredictor):
|
10 |
+
def setup(self):
|
11 |
+
pass
|
12 |
+
|
13 |
+
def predict(
|
14 |
+
self,
|
15 |
+
prompt: str = Input(
|
16 |
+
description="Input prompt", default="An astronaut riding a horse"
|
17 |
+
),
|
18 |
+
negative_prompt: str = Input(
|
19 |
+
description="Negative prompt", default=None
|
20 |
+
),
|
21 |
+
init_video: Path = Input(
|
22 |
+
description="URL of the initial video (optional)", default=None
|
23 |
+
),
|
24 |
+
init_weight: float = Input(
|
25 |
+
description="Strength of init_video", default=0.5
|
26 |
+
),
|
27 |
+
num_frames: int = Input(
|
28 |
+
description="Number of frames for the output video", default=24
|
29 |
+
),
|
30 |
+
num_inference_steps: int = Input(
|
31 |
+
description="Number of denoising steps", ge=1, le=500, default=50
|
32 |
+
),
|
33 |
+
width: int = Input(
|
34 |
+
description="Width of the output video", ge=256, default=576
|
35 |
+
),
|
36 |
+
height: int = Input(
|
37 |
+
description="Height of the output video", ge=256, default=320
|
38 |
+
),
|
39 |
+
guidance_scale: float = Input(
|
40 |
+
description="Guidance scale", ge=1.0, le=100.0, default=7.5
|
41 |
+
),
|
42 |
+
fps: int = Input(description="fps for the output video", default=8),
|
43 |
+
model: str = Input(
|
44 |
+
description="Model to use", default="xl", choices=["xl", "576w", "potat1", "animov-512x"]
|
45 |
+
),
|
46 |
+
batch_size: int = Input(description="Batch size", default=1, ge=1),
|
47 |
+
remove_watermark: bool = Input(
|
48 |
+
description="Remove watermark", default=False
|
49 |
+
),
|
50 |
+
seed: int = Input(
|
51 |
+
description="Random seed. Leave blank to randomize the seed", default=None
|
52 |
+
),
|
53 |
+
) -> List[Path]:
|
54 |
+
if seed is None:
|
55 |
+
seed = int.from_bytes(os.urandom(2), "big")
|
56 |
+
print(f"Using seed: {seed}")
|
57 |
+
|
58 |
+
shutil.rmtree("output", ignore_errors=True)
|
59 |
+
os.makedirs("output", exist_ok=True)
|
60 |
+
|
61 |
+
args = {
|
62 |
+
"prompt": prompt,
|
63 |
+
"negative_prompt": negative_prompt,
|
64 |
+
"batch_size": batch_size,
|
65 |
+
"num_frames": num_frames,
|
66 |
+
"num_steps": num_inference_steps,
|
67 |
+
"seed": seed,
|
68 |
+
"guidance-scale": guidance_scale,
|
69 |
+
"width": width,
|
70 |
+
"height": height,
|
71 |
+
"fps": fps,
|
72 |
+
"device": "cuda",
|
73 |
+
"output_dir": "output",
|
74 |
+
"remove-watermark": remove_watermark,
|
75 |
+
}
|
76 |
+
|
77 |
+
args['model'] = MODEL_CACHE + "/" + model
|
78 |
+
|
79 |
+
if init_video is not None:
|
80 |
+
# for some reason I need to copy the file to make it work
|
81 |
+
if os.path.exists("input.mp4"):
|
82 |
+
os.unlink("input.mp4")
|
83 |
+
shutil.copy(init_video, "input.mp4")
|
84 |
+
|
85 |
+
args["init-video"] = "input.mp4"
|
86 |
+
args["init-weight"] = init_weight
|
87 |
+
print("init video", os.stat("input.mp4").st_size)
|
88 |
+
|
89 |
+
cmd = ["python", "inference.py"]
|
90 |
+
for k, v in args.items():
|
91 |
+
if not v is None:
|
92 |
+
cmd.append(f"--{k}")
|
93 |
+
cmd.append(str(v))
|
94 |
+
subprocess.check_call(cmd)
|
95 |
+
# outputs = inference.run(**args)
|
96 |
+
|
97 |
+
outputs = []
|
98 |
+
for f in os.listdir("output"):
|
99 |
+
if f.endswith(".mp4"):
|
100 |
+
outputs.append(Path(os.path.join("output", f)))
|
101 |
+
return outputs
|
samples.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import requests
|
3 |
+
import sys
|
4 |
+
import os
|
5 |
+
|
6 |
+
|
7 |
+
def gen(output_fn, **kwargs):
|
8 |
+
if os.path.exists(output_fn):
|
9 |
+
print("Skipping", output_fn)
|
10 |
+
return
|
11 |
+
|
12 |
+
print("Generating", output_fn)
|
13 |
+
url = "http://localhost:5000/predictions"
|
14 |
+
response = requests.post(url, json={"input": kwargs})
|
15 |
+
data = response.json()
|
16 |
+
|
17 |
+
try:
|
18 |
+
datauri = data["output"][0]
|
19 |
+
base64_encoded_data = datauri.split(",")[1]
|
20 |
+
data = base64.b64decode(base64_encoded_data)
|
21 |
+
except:
|
22 |
+
print("Error!")
|
23 |
+
print("input:", kwargs)
|
24 |
+
print(data["logs"])
|
25 |
+
# sys.exit(1)
|
26 |
+
|
27 |
+
with open(output_fn, "wb") as f:
|
28 |
+
f.write(data)
|
29 |
+
|
30 |
+
|
31 |
+
def main():
|
32 |
+
gen(
|
33 |
+
"sample.mp4",
|
34 |
+
prompt="A deep sea video of a bioluminescent siphonophore, 8k, beautiful, award winning, close up",
|
35 |
+
seed=42,
|
36 |
+
num_frames=24,
|
37 |
+
model="potat1",
|
38 |
+
num_inference_steps=30,
|
39 |
+
guidance_scale=17.5,
|
40 |
+
fps=12,
|
41 |
+
)
|
42 |
+
gen(
|
43 |
+
"vid-sample.mp4",
|
44 |
+
prompt="A deep sea video of a bioluminescent siphonophore, 8k, beautiful, award winning, close up",
|
45 |
+
seed=42,
|
46 |
+
num_frames=24,
|
47 |
+
model="zeroscope_v2_XL",
|
48 |
+
num_inference_steps=30,
|
49 |
+
guidance_scale=17.5,
|
50 |
+
init_video="https://replicate.delivery/pbxt/qxacIWhXu0rFAZu6GMElrXrTL5Wx6ZqnjPqIoS7DgIftowkIA/out.mp4",
|
51 |
+
fps=12,
|
52 |
+
)
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
if __name__ == "__main__":
|
57 |
+
main()
|
train.py
ADDED
@@ -0,0 +1,998 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import datetime
|
3 |
+
import logging
|
4 |
+
import inspect
|
5 |
+
import math
|
6 |
+
import os
|
7 |
+
import random
|
8 |
+
import gc
|
9 |
+
import copy
|
10 |
+
|
11 |
+
from typing import Dict, Optional, Tuple
|
12 |
+
from omegaconf import OmegaConf
|
13 |
+
|
14 |
+
import cv2
|
15 |
+
import torch
|
16 |
+
import torch.nn.functional as F
|
17 |
+
import torch.utils.checkpoint
|
18 |
+
import torchvision.transforms as T
|
19 |
+
import diffusers
|
20 |
+
import transformers
|
21 |
+
|
22 |
+
from torchvision import transforms
|
23 |
+
from tqdm.auto import tqdm
|
24 |
+
|
25 |
+
from accelerate import Accelerator
|
26 |
+
from accelerate.logging import get_logger
|
27 |
+
from accelerate.utils import set_seed
|
28 |
+
|
29 |
+
from models.unet_3d_condition import UNet3DConditionModel
|
30 |
+
from diffusers.models import AutoencoderKL
|
31 |
+
from diffusers import DPMSolverMultistepScheduler, DDPMScheduler, TextToVideoSDPipeline
|
32 |
+
from diffusers.optimization import get_scheduler
|
33 |
+
from diffusers.utils import check_min_version, export_to_video
|
34 |
+
from diffusers.utils.import_utils import is_xformers_available
|
35 |
+
from diffusers.models.attention_processor import AttnProcessor2_0, Attention
|
36 |
+
from diffusers.models.attention import BasicTransformerBlock
|
37 |
+
|
38 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
39 |
+
from transformers.models.clip.modeling_clip import CLIPEncoder
|
40 |
+
from utils.dataset import VideoJsonDataset, SingleVideoDataset, \
|
41 |
+
ImageDataset, VideoFolderDataset, CachedDataset
|
42 |
+
from einops import rearrange, repeat
|
43 |
+
|
44 |
+
from utils.lora import (
|
45 |
+
extract_lora_ups_down,
|
46 |
+
inject_trainable_lora,
|
47 |
+
inject_trainable_lora_extended,
|
48 |
+
save_lora_weight,
|
49 |
+
train_patch_pipe,
|
50 |
+
monkeypatch_or_replace_lora,
|
51 |
+
monkeypatch_or_replace_lora_extended
|
52 |
+
)
|
53 |
+
|
54 |
+
|
55 |
+
already_printed_trainables = False
|
56 |
+
|
57 |
+
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
58 |
+
check_min_version("0.10.0.dev0")
|
59 |
+
|
60 |
+
logger = get_logger(__name__, log_level="INFO")
|
61 |
+
|
62 |
+
def create_logging(logging, logger, accelerator):
|
63 |
+
logging.basicConfig(
|
64 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
65 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
66 |
+
level=logging.INFO,
|
67 |
+
)
|
68 |
+
logger.info(accelerator.state, main_process_only=False)
|
69 |
+
|
70 |
+
def accelerate_set_verbose(accelerator):
|
71 |
+
if accelerator.is_local_main_process:
|
72 |
+
transformers.utils.logging.set_verbosity_warning()
|
73 |
+
diffusers.utils.logging.set_verbosity_info()
|
74 |
+
else:
|
75 |
+
transformers.utils.logging.set_verbosity_error()
|
76 |
+
diffusers.utils.logging.set_verbosity_error()
|
77 |
+
|
78 |
+
def get_train_dataset(dataset_types, train_data, tokenizer):
|
79 |
+
train_datasets = []
|
80 |
+
|
81 |
+
# Loop through all available datasets, get the name, then add to list of data to process.
|
82 |
+
for DataSet in [VideoJsonDataset, SingleVideoDataset, ImageDataset, VideoFolderDataset]:
|
83 |
+
for dataset in dataset_types:
|
84 |
+
if dataset == DataSet.__getname__():
|
85 |
+
train_datasets.append(DataSet(**train_data, tokenizer=tokenizer))
|
86 |
+
|
87 |
+
if len(train_datasets) > 0:
|
88 |
+
return train_datasets
|
89 |
+
else:
|
90 |
+
raise ValueError("Dataset type not found: 'json', 'single_video', 'folder', 'image'")
|
91 |
+
|
92 |
+
def extend_datasets(datasets, dataset_items, extend=False):
|
93 |
+
biggest_data_len = max(x.__len__() for x in datasets)
|
94 |
+
extended = []
|
95 |
+
for dataset in datasets:
|
96 |
+
if dataset.__len__() == 0:
|
97 |
+
del dataset
|
98 |
+
continue
|
99 |
+
if dataset.__len__() < biggest_data_len:
|
100 |
+
for item in dataset_items:
|
101 |
+
if extend and item not in extended and hasattr(dataset, item):
|
102 |
+
print(f"Extending {item}")
|
103 |
+
|
104 |
+
value = getattr(dataset, item)
|
105 |
+
value *= biggest_data_len
|
106 |
+
value = value[:biggest_data_len]
|
107 |
+
|
108 |
+
setattr(dataset, item, value)
|
109 |
+
|
110 |
+
print(f"New {item} dataset length: {dataset.__len__()}")
|
111 |
+
extended.append(item)
|
112 |
+
|
113 |
+
def export_to_video(video_frames, output_video_path, fps):
|
114 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
115 |
+
h, w, _ = video_frames[0].shape
|
116 |
+
video_writer = cv2.VideoWriter(output_video_path, fourcc, fps=fps, frameSize=(w, h))
|
117 |
+
for i in range(len(video_frames)):
|
118 |
+
img = cv2.cvtColor(video_frames[i], cv2.COLOR_RGB2BGR)
|
119 |
+
video_writer.write(img)
|
120 |
+
|
121 |
+
def create_output_folders(output_dir, config):
|
122 |
+
now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
|
123 |
+
out_dir = os.path.join(output_dir, f"train_{now}")
|
124 |
+
|
125 |
+
os.makedirs(out_dir, exist_ok=True)
|
126 |
+
os.makedirs(f"{out_dir}/samples", exist_ok=True)
|
127 |
+
OmegaConf.save(config, os.path.join(out_dir, 'config.yaml'))
|
128 |
+
|
129 |
+
return out_dir
|
130 |
+
|
131 |
+
def load_primary_models(pretrained_model_path):
|
132 |
+
noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
|
133 |
+
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
|
134 |
+
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
|
135 |
+
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
|
136 |
+
unet = UNet3DConditionModel.from_pretrained(pretrained_model_path, subfolder="unet")
|
137 |
+
|
138 |
+
return noise_scheduler, tokenizer, text_encoder, vae, unet
|
139 |
+
|
140 |
+
def unet_and_text_g_c(unet, text_encoder, unet_enable, text_enable):
|
141 |
+
unet._set_gradient_checkpointing(value=unet_enable)
|
142 |
+
text_encoder._set_gradient_checkpointing(CLIPEncoder, value=text_enable)
|
143 |
+
|
144 |
+
def freeze_models(models_to_freeze):
|
145 |
+
for model in models_to_freeze:
|
146 |
+
if model is not None: model.requires_grad_(False)
|
147 |
+
|
148 |
+
def is_attn(name):
|
149 |
+
return ('attn1' or 'attn2' == name.split('.')[-1])
|
150 |
+
|
151 |
+
def set_processors(attentions):
|
152 |
+
for attn in attentions: attn.set_processor(AttnProcessor2_0())
|
153 |
+
|
154 |
+
def set_torch_2_attn(unet):
|
155 |
+
optim_count = 0
|
156 |
+
|
157 |
+
for name, module in unet.named_modules():
|
158 |
+
if is_attn(name):
|
159 |
+
if isinstance(module, torch.nn.ModuleList):
|
160 |
+
for m in module:
|
161 |
+
if isinstance(m, BasicTransformerBlock):
|
162 |
+
set_processors([m.attn1, m.attn2])
|
163 |
+
optim_count += 1
|
164 |
+
if optim_count > 0:
|
165 |
+
print(f"{optim_count} Attention layers using Scaled Dot Product Attention.")
|
166 |
+
|
167 |
+
def handle_memory_attention(enable_xformers_memory_efficient_attention, enable_torch_2_attn, unet):
|
168 |
+
try:
|
169 |
+
is_torch_2 = hasattr(F, 'scaled_dot_product_attention')
|
170 |
+
|
171 |
+
if enable_xformers_memory_efficient_attention and not is_torch_2:
|
172 |
+
if is_xformers_available():
|
173 |
+
from xformers.ops import MemoryEfficientAttentionFlashAttentionOp
|
174 |
+
unet.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
|
175 |
+
else:
|
176 |
+
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
177 |
+
|
178 |
+
if enable_torch_2_attn and is_torch_2:
|
179 |
+
set_torch_2_attn(unet)
|
180 |
+
except:
|
181 |
+
print("Could not enable memory efficient attention for xformers or Torch 2.0.")
|
182 |
+
|
183 |
+
def inject_lora(use_lora, model, replace_modules, is_extended=False, dropout=0.0, lora_path='', r=16):
|
184 |
+
injector = (
|
185 |
+
inject_trainable_lora if not is_extended
|
186 |
+
else
|
187 |
+
inject_trainable_lora_extended
|
188 |
+
)
|
189 |
+
|
190 |
+
params = None
|
191 |
+
negation = None
|
192 |
+
|
193 |
+
if os.path.exists(lora_path):
|
194 |
+
try:
|
195 |
+
for f in os.listdir(lora_path):
|
196 |
+
if f.endswith('.pt'):
|
197 |
+
lora_file = os.path.join(lora_path, f)
|
198 |
+
|
199 |
+
if 'text_encoder' in f and isinstance(model, CLIPTextModel):
|
200 |
+
monkeypatch_or_replace_lora(
|
201 |
+
model,
|
202 |
+
torch.load(lora_file),
|
203 |
+
target_replace_module=replace_modules,
|
204 |
+
r=r
|
205 |
+
)
|
206 |
+
print("Successfully loaded Text Encoder LoRa.")
|
207 |
+
|
208 |
+
if 'unet' in f and isinstance(model, UNet3DConditionModel):
|
209 |
+
monkeypatch_or_replace_lora_extended(
|
210 |
+
model,
|
211 |
+
torch.load(lora_file),
|
212 |
+
target_replace_module=replace_modules,
|
213 |
+
r=r
|
214 |
+
)
|
215 |
+
print("Successfully loaded UNET LoRa.")
|
216 |
+
|
217 |
+
except Exception as e:
|
218 |
+
print(e)
|
219 |
+
print("Could not load LoRAs. Injecting new ones instead...")
|
220 |
+
|
221 |
+
if use_lora:
|
222 |
+
REPLACE_MODULES = replace_modules
|
223 |
+
injector_args = {
|
224 |
+
"model": model,
|
225 |
+
"target_replace_module": REPLACE_MODULES,
|
226 |
+
"r": r
|
227 |
+
}
|
228 |
+
if not is_extended: injector_args['dropout_p'] = dropout
|
229 |
+
|
230 |
+
params, negation = injector(**injector_args)
|
231 |
+
for _up, _down in extract_lora_ups_down(
|
232 |
+
model,
|
233 |
+
target_replace_module=REPLACE_MODULES):
|
234 |
+
|
235 |
+
if all(x is not None for x in [_up, _down]):
|
236 |
+
print(f"Lora successfully injected into {model.__class__.__name__}.")
|
237 |
+
|
238 |
+
break
|
239 |
+
|
240 |
+
return params, negation
|
241 |
+
|
242 |
+
def save_lora(model, name, condition, replace_modules, step, save_path):
|
243 |
+
if condition and replace_modules is not None:
|
244 |
+
save_path = f"{save_path}/{step}_{name}.pt"
|
245 |
+
save_lora_weight(model, save_path, replace_modules)
|
246 |
+
|
247 |
+
def handle_lora_save(
|
248 |
+
use_unet_lora,
|
249 |
+
use_text_lora,
|
250 |
+
model,
|
251 |
+
save_path,
|
252 |
+
checkpoint_step,
|
253 |
+
unet_target_modules,
|
254 |
+
text_encoder_target_modules
|
255 |
+
):
|
256 |
+
|
257 |
+
save_path = f"{save_path}/lora"
|
258 |
+
os.makedirs(save_path, exist_ok=True)
|
259 |
+
|
260 |
+
save_lora(
|
261 |
+
model.unet,
|
262 |
+
'unet',
|
263 |
+
use_unet_lora,
|
264 |
+
unet_target_modules,
|
265 |
+
checkpoint_step,
|
266 |
+
save_path,
|
267 |
+
)
|
268 |
+
save_lora(
|
269 |
+
model.text_encoder,
|
270 |
+
'text_encoder',
|
271 |
+
use_text_lora,
|
272 |
+
text_encoder_target_modules,
|
273 |
+
checkpoint_step,
|
274 |
+
save_path
|
275 |
+
)
|
276 |
+
|
277 |
+
train_patch_pipe(model, use_unet_lora, use_text_lora)
|
278 |
+
|
279 |
+
def param_optim(model, condition, extra_params=None, is_lora=False, negation=None):
|
280 |
+
return {
|
281 |
+
"model": model,
|
282 |
+
"condition": condition,
|
283 |
+
'extra_params': extra_params,
|
284 |
+
'is_lora': is_lora,
|
285 |
+
"negation": negation
|
286 |
+
}
|
287 |
+
|
288 |
+
|
289 |
+
def create_optim_params(name='param', params=None, lr=5e-6, extra_params=None):
|
290 |
+
params = {
|
291 |
+
"name": name,
|
292 |
+
"params": params,
|
293 |
+
"lr": lr
|
294 |
+
}
|
295 |
+
|
296 |
+
if extra_params is not None:
|
297 |
+
for k, v in extra_params.items():
|
298 |
+
params[k] = v
|
299 |
+
|
300 |
+
return params
|
301 |
+
|
302 |
+
def negate_params(name, negation):
|
303 |
+
# We have to do this if we are co-training with LoRA.
|
304 |
+
# This ensures that parameter groups aren't duplicated.
|
305 |
+
if negation is None: return False
|
306 |
+
for n in negation:
|
307 |
+
if n in name and 'temp' not in name:
|
308 |
+
return True
|
309 |
+
return False
|
310 |
+
|
311 |
+
|
312 |
+
def create_optimizer_params(model_list, lr):
|
313 |
+
import itertools
|
314 |
+
optimizer_params = []
|
315 |
+
|
316 |
+
for optim in model_list:
|
317 |
+
model, condition, extra_params, is_lora, negation = optim.values()
|
318 |
+
# Check if we are doing LoRA training.
|
319 |
+
if is_lora and condition:
|
320 |
+
params = create_optim_params(
|
321 |
+
params=itertools.chain(*model),
|
322 |
+
extra_params=extra_params
|
323 |
+
)
|
324 |
+
optimizer_params.append(params)
|
325 |
+
continue
|
326 |
+
|
327 |
+
# If this is true, we can train it.
|
328 |
+
if condition:
|
329 |
+
for n, p in model.named_parameters():
|
330 |
+
should_negate = 'lora' in n
|
331 |
+
if should_negate: continue
|
332 |
+
|
333 |
+
params = create_optim_params(n, p, lr, extra_params)
|
334 |
+
optimizer_params.append(params)
|
335 |
+
|
336 |
+
return optimizer_params
|
337 |
+
|
338 |
+
def get_optimizer(use_8bit_adam):
|
339 |
+
if use_8bit_adam:
|
340 |
+
try:
|
341 |
+
import bitsandbytes as bnb
|
342 |
+
except ImportError:
|
343 |
+
raise ImportError(
|
344 |
+
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
|
345 |
+
)
|
346 |
+
|
347 |
+
return bnb.optim.AdamW8bit
|
348 |
+
else:
|
349 |
+
return torch.optim.AdamW
|
350 |
+
|
351 |
+
def is_mixed_precision(accelerator):
|
352 |
+
weight_dtype = torch.float32
|
353 |
+
|
354 |
+
if accelerator.mixed_precision == "fp16":
|
355 |
+
weight_dtype = torch.float16
|
356 |
+
|
357 |
+
elif accelerator.mixed_precision == "bf16":
|
358 |
+
weight_dtype = torch.bfloat16
|
359 |
+
|
360 |
+
return weight_dtype
|
361 |
+
|
362 |
+
def cast_to_gpu_and_type(model_list, accelerator, weight_dtype):
|
363 |
+
for model in model_list:
|
364 |
+
if model is not None: model.to(accelerator.device, dtype=weight_dtype)
|
365 |
+
|
366 |
+
def handle_cache_latents(
|
367 |
+
should_cache,
|
368 |
+
output_dir,
|
369 |
+
train_dataloader,
|
370 |
+
train_batch_size,
|
371 |
+
vae,
|
372 |
+
cached_latent_dir=None
|
373 |
+
):
|
374 |
+
|
375 |
+
# Cache latents by storing them in VRAM.
|
376 |
+
# Speeds up training and saves memory by not encoding during the train loop.
|
377 |
+
if not should_cache: return None
|
378 |
+
vae.to('cuda', dtype=torch.float16)
|
379 |
+
vae.enable_slicing()
|
380 |
+
|
381 |
+
cached_latent_dir = (
|
382 |
+
os.path.abspath(cached_latent_dir) if cached_latent_dir is not None else None
|
383 |
+
)
|
384 |
+
|
385 |
+
if cached_latent_dir is None:
|
386 |
+
cache_save_dir = f"{output_dir}/cached_latents"
|
387 |
+
os.makedirs(cache_save_dir, exist_ok=True)
|
388 |
+
|
389 |
+
for i, batch in enumerate(tqdm(train_dataloader, desc="Caching Latents.")):
|
390 |
+
|
391 |
+
save_name = f"cached_{i}"
|
392 |
+
full_out_path = f"{cache_save_dir}/{save_name}.pt"
|
393 |
+
|
394 |
+
pixel_values = batch['pixel_values'].to('cuda', dtype=torch.float16)
|
395 |
+
batch['pixel_values'] = tensor_to_vae_latent(pixel_values, vae)
|
396 |
+
for k, v in batch.items(): batch[k] = v[0]
|
397 |
+
|
398 |
+
torch.save(batch, full_out_path)
|
399 |
+
del pixel_values
|
400 |
+
del batch
|
401 |
+
|
402 |
+
# We do this to avoid fragmentation from casting latents between devices.
|
403 |
+
torch.cuda.empty_cache()
|
404 |
+
else:
|
405 |
+
cache_save_dir = cached_latent_dir
|
406 |
+
|
407 |
+
|
408 |
+
return torch.utils.data.DataLoader(
|
409 |
+
CachedDataset(cache_dir=cache_save_dir),
|
410 |
+
batch_size=train_batch_size,
|
411 |
+
shuffle=True,
|
412 |
+
num_workers=0
|
413 |
+
)
|
414 |
+
|
415 |
+
def handle_trainable_modules(model, trainable_modules=None, is_enabled=True, negation=None):
|
416 |
+
global already_printed_trainables
|
417 |
+
|
418 |
+
# This can most definitely be refactored :-)
|
419 |
+
unfrozen_params = 0
|
420 |
+
if trainable_modules is not None:
|
421 |
+
for name, module in model.named_modules():
|
422 |
+
for tm in tuple(trainable_modules):
|
423 |
+
if tm == 'all':
|
424 |
+
model.requires_grad_(is_enabled)
|
425 |
+
unfrozen_params =len(list(model.parameters()))
|
426 |
+
break
|
427 |
+
|
428 |
+
if tm in name and 'lora' not in name:
|
429 |
+
for m in module.parameters():
|
430 |
+
m.requires_grad_(is_enabled)
|
431 |
+
if is_enabled: unfrozen_params +=1
|
432 |
+
|
433 |
+
if unfrozen_params > 0 and not already_printed_trainables:
|
434 |
+
already_printed_trainables = True
|
435 |
+
print(f"{unfrozen_params} params have been unfrozen for training.")
|
436 |
+
|
437 |
+
def tensor_to_vae_latent(t, vae):
|
438 |
+
video_length = t.shape[1]
|
439 |
+
|
440 |
+
t = rearrange(t, "b f c h w -> (b f) c h w")
|
441 |
+
latents = vae.encode(t).latent_dist.sample()
|
442 |
+
latents = rearrange(latents, "(b f) c h w -> b c f h w", f=video_length)
|
443 |
+
latents = latents * 0.18215
|
444 |
+
|
445 |
+
return latents
|
446 |
+
|
447 |
+
def sample_noise(latents, noise_strength, use_offset_noise):
|
448 |
+
b ,c, f, *_ = latents.shape
|
449 |
+
noise_latents = torch.randn_like(latents, device=latents.device)
|
450 |
+
offset_noise = None
|
451 |
+
|
452 |
+
if use_offset_noise:
|
453 |
+
offset_noise = torch.randn(b, c, f, 1, 1, device=latents.device)
|
454 |
+
noise_latents = noise_latents + noise_strength * offset_noise
|
455 |
+
|
456 |
+
return noise_latents
|
457 |
+
|
458 |
+
def should_sample(global_step, validation_steps, validation_data):
|
459 |
+
return (global_step % validation_steps == 0 or global_step == 1) \
|
460 |
+
and validation_data.sample_preview
|
461 |
+
|
462 |
+
def save_pipe(
|
463 |
+
path,
|
464 |
+
global_step,
|
465 |
+
accelerator,
|
466 |
+
unet,
|
467 |
+
text_encoder,
|
468 |
+
vae,
|
469 |
+
output_dir,
|
470 |
+
use_unet_lora,
|
471 |
+
use_text_lora,
|
472 |
+
unet_target_replace_module=None,
|
473 |
+
text_target_replace_module=None,
|
474 |
+
is_checkpoint=False,
|
475 |
+
):
|
476 |
+
|
477 |
+
if is_checkpoint:
|
478 |
+
save_path = os.path.join(output_dir, f"checkpoint-{global_step}")
|
479 |
+
os.makedirs(save_path, exist_ok=True)
|
480 |
+
else:
|
481 |
+
save_path = output_dir
|
482 |
+
|
483 |
+
# Save the dtypes so we can continue training at the same precision.
|
484 |
+
u_dtype, t_dtype, v_dtype = unet.dtype, text_encoder.dtype, vae.dtype
|
485 |
+
|
486 |
+
# Copy the model without creating a reference to it. This allows keeping the state of our lora training if enabled.
|
487 |
+
unet_out = copy.deepcopy(accelerator.unwrap_model(unet, keep_fp32_wrapper=False))
|
488 |
+
text_encoder_out = copy.deepcopy(accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=False))
|
489 |
+
|
490 |
+
pipeline = TextToVideoSDPipeline.from_pretrained(
|
491 |
+
path,
|
492 |
+
unet=unet_out,
|
493 |
+
text_encoder=text_encoder_out,
|
494 |
+
vae=vae,
|
495 |
+
).to(torch_dtype=torch.float16)
|
496 |
+
|
497 |
+
handle_lora_save(
|
498 |
+
use_unet_lora,
|
499 |
+
use_text_lora,
|
500 |
+
pipeline,
|
501 |
+
output_dir,
|
502 |
+
global_step,
|
503 |
+
unet_target_replace_module,
|
504 |
+
text_target_replace_module
|
505 |
+
)
|
506 |
+
|
507 |
+
pipeline.save_pretrained(save_path)
|
508 |
+
|
509 |
+
if is_checkpoint:
|
510 |
+
unet, text_encoder = accelerator.prepare(unet, text_encoder)
|
511 |
+
models_to_cast_back = [(unet, u_dtype), (text_encoder, t_dtype), (vae, v_dtype)]
|
512 |
+
[x[0].to(accelerator.device, dtype=x[1]) for x in models_to_cast_back]
|
513 |
+
|
514 |
+
logger.info(f"Saved model at {save_path} on step {global_step}")
|
515 |
+
|
516 |
+
del pipeline
|
517 |
+
del unet_out
|
518 |
+
del text_encoder_out
|
519 |
+
torch.cuda.empty_cache()
|
520 |
+
gc.collect()
|
521 |
+
|
522 |
+
|
523 |
+
def replace_prompt(prompt, token, wlist):
|
524 |
+
for w in wlist:
|
525 |
+
if w in prompt: return prompt.replace(w, token)
|
526 |
+
return prompt
|
527 |
+
|
528 |
+
def main(
|
529 |
+
pretrained_model_path: str,
|
530 |
+
output_dir: str,
|
531 |
+
train_data: Dict,
|
532 |
+
validation_data: Dict,
|
533 |
+
dataset_types: Tuple[str] = ('json'),
|
534 |
+
validation_steps: int = 100,
|
535 |
+
trainable_modules: Tuple[str] = ("attn1", "attn2"),
|
536 |
+
trainable_text_modules: Tuple[str] = ("all"),
|
537 |
+
extra_unet_params = None,
|
538 |
+
extra_text_encoder_params = None,
|
539 |
+
train_batch_size: int = 1,
|
540 |
+
max_train_steps: int = 500,
|
541 |
+
learning_rate: float = 5e-5,
|
542 |
+
scale_lr: bool = False,
|
543 |
+
lr_scheduler: str = "constant",
|
544 |
+
lr_warmup_steps: int = 0,
|
545 |
+
adam_beta1: float = 0.9,
|
546 |
+
adam_beta2: float = 0.999,
|
547 |
+
adam_weight_decay: float = 1e-2,
|
548 |
+
adam_epsilon: float = 1e-08,
|
549 |
+
max_grad_norm: float = 1.0,
|
550 |
+
gradient_accumulation_steps: int = 1,
|
551 |
+
gradient_checkpointing: bool = False,
|
552 |
+
text_encoder_gradient_checkpointing: bool = False,
|
553 |
+
checkpointing_steps: int = 500,
|
554 |
+
resume_from_checkpoint: Optional[str] = None,
|
555 |
+
mixed_precision: Optional[str] = "fp16",
|
556 |
+
use_8bit_adam: bool = False,
|
557 |
+
enable_xformers_memory_efficient_attention: bool = True,
|
558 |
+
enable_torch_2_attn: bool = False,
|
559 |
+
seed: Optional[int] = None,
|
560 |
+
train_text_encoder: bool = False,
|
561 |
+
use_offset_noise: bool = False,
|
562 |
+
offset_noise_strength: float = 0.1,
|
563 |
+
extend_dataset: bool = False,
|
564 |
+
cache_latents: bool = False,
|
565 |
+
cached_latent_dir = None,
|
566 |
+
use_unet_lora: bool = False,
|
567 |
+
use_text_lora: bool = False,
|
568 |
+
unet_lora_modules: Tuple[str] = ["ResnetBlock2D"],
|
569 |
+
text_encoder_lora_modules: Tuple[str] = ["CLIPEncoderLayer"],
|
570 |
+
lora_rank: int = 16,
|
571 |
+
lora_path: str = '',
|
572 |
+
**kwargs
|
573 |
+
):
|
574 |
+
|
575 |
+
*_, config = inspect.getargvalues(inspect.currentframe())
|
576 |
+
|
577 |
+
accelerator = Accelerator(
|
578 |
+
gradient_accumulation_steps=gradient_accumulation_steps,
|
579 |
+
mixed_precision=mixed_precision,
|
580 |
+
log_with="tensorboard",
|
581 |
+
logging_dir=output_dir
|
582 |
+
)
|
583 |
+
|
584 |
+
# Make one log on every process with the configuration for debugging.
|
585 |
+
create_logging(logging, logger, accelerator)
|
586 |
+
|
587 |
+
# Initialize accelerate, transformers, and diffusers warnings
|
588 |
+
accelerate_set_verbose(accelerator)
|
589 |
+
|
590 |
+
# If passed along, set the training seed now.
|
591 |
+
if seed is not None:
|
592 |
+
set_seed(seed)
|
593 |
+
|
594 |
+
# Handle the output folder creation
|
595 |
+
if accelerator.is_main_process:
|
596 |
+
output_dir = create_output_folders(output_dir, config)
|
597 |
+
|
598 |
+
# Load scheduler, tokenizer and models.
|
599 |
+
noise_scheduler, tokenizer, text_encoder, vae, unet = load_primary_models(pretrained_model_path)
|
600 |
+
|
601 |
+
# Freeze any necessary models
|
602 |
+
freeze_models([vae, text_encoder, unet])
|
603 |
+
|
604 |
+
# Enable xformers if available
|
605 |
+
handle_memory_attention(enable_xformers_memory_efficient_attention, enable_torch_2_attn, unet)
|
606 |
+
|
607 |
+
if scale_lr:
|
608 |
+
learning_rate = (
|
609 |
+
learning_rate * gradient_accumulation_steps * train_batch_size * accelerator.num_processes
|
610 |
+
)
|
611 |
+
|
612 |
+
# Initialize the optimizer
|
613 |
+
optimizer_cls = get_optimizer(use_8bit_adam)
|
614 |
+
|
615 |
+
# Use LoRA if enabled.
|
616 |
+
unet_lora_params, unet_negation = inject_lora(
|
617 |
+
use_unet_lora, unet, unet_lora_modules, is_extended=True,
|
618 |
+
r=lora_rank, lora_path=lora_path
|
619 |
+
)
|
620 |
+
|
621 |
+
text_encoder_lora_params, text_encoder_negation = inject_lora(
|
622 |
+
use_text_lora, text_encoder, text_encoder_lora_modules,
|
623 |
+
r=lora_rank, lora_path=lora_path
|
624 |
+
)
|
625 |
+
|
626 |
+
# Create parameters to optimize over with a condition (if "condition" is true, optimize it)
|
627 |
+
optim_params = [
|
628 |
+
param_optim(unet, trainable_modules is not None, extra_params=extra_unet_params, negation=unet_negation),
|
629 |
+
param_optim(text_encoder, train_text_encoder and not use_text_lora, extra_params=extra_text_encoder_params,
|
630 |
+
negation=text_encoder_negation
|
631 |
+
),
|
632 |
+
param_optim(text_encoder_lora_params, use_text_lora, is_lora=True, extra_params={"lr": 1e-5}),
|
633 |
+
param_optim(unet_lora_params, use_unet_lora, is_lora=True, extra_params={"lr": 1e-5})
|
634 |
+
]
|
635 |
+
|
636 |
+
params = create_optimizer_params(optim_params, learning_rate)
|
637 |
+
|
638 |
+
# Create Optimizer
|
639 |
+
optimizer = optimizer_cls(
|
640 |
+
params,
|
641 |
+
lr=learning_rate,
|
642 |
+
betas=(adam_beta1, adam_beta2),
|
643 |
+
weight_decay=adam_weight_decay,
|
644 |
+
eps=adam_epsilon,
|
645 |
+
)
|
646 |
+
|
647 |
+
# Scheduler
|
648 |
+
lr_scheduler = get_scheduler(
|
649 |
+
lr_scheduler,
|
650 |
+
optimizer=optimizer,
|
651 |
+
num_warmup_steps=lr_warmup_steps * gradient_accumulation_steps,
|
652 |
+
num_training_steps=max_train_steps * gradient_accumulation_steps,
|
653 |
+
)
|
654 |
+
|
655 |
+
# Get the training dataset based on types (json, single_video, image)
|
656 |
+
train_datasets = get_train_dataset(dataset_types, train_data, tokenizer)
|
657 |
+
|
658 |
+
# Extend datasets that are less than the greatest one. This allows for more balanced training.
|
659 |
+
attrs = ['train_data', 'frames', 'image_dir', 'video_files']
|
660 |
+
extend_datasets(train_datasets, attrs, extend=extend_dataset)
|
661 |
+
|
662 |
+
# Process one dataset
|
663 |
+
if len(train_datasets) == 1:
|
664 |
+
train_dataset = train_datasets[0]
|
665 |
+
|
666 |
+
# Process many datasets
|
667 |
+
else:
|
668 |
+
train_dataset = torch.utils.data.ConcatDataset(train_datasets)
|
669 |
+
|
670 |
+
# DataLoaders creation:
|
671 |
+
train_dataloader = torch.utils.data.DataLoader(
|
672 |
+
train_dataset,
|
673 |
+
batch_size=train_batch_size,
|
674 |
+
shuffle=True
|
675 |
+
)
|
676 |
+
|
677 |
+
# Latents caching
|
678 |
+
cached_data_loader = handle_cache_latents(
|
679 |
+
cache_latents,
|
680 |
+
output_dir,
|
681 |
+
train_dataloader,
|
682 |
+
train_batch_size,
|
683 |
+
vae,
|
684 |
+
cached_latent_dir
|
685 |
+
)
|
686 |
+
|
687 |
+
if cached_data_loader is not None:
|
688 |
+
train_dataloader = cached_data_loader
|
689 |
+
|
690 |
+
# Prepare everything with our `accelerator`.
|
691 |
+
unet, optimizer,train_dataloader, lr_scheduler, text_encoder = accelerator.prepare(
|
692 |
+
unet,
|
693 |
+
optimizer,
|
694 |
+
train_dataloader,
|
695 |
+
lr_scheduler,
|
696 |
+
text_encoder
|
697 |
+
)
|
698 |
+
|
699 |
+
# Use Gradient Checkpointing if enabled.
|
700 |
+
unet_and_text_g_c(
|
701 |
+
unet,
|
702 |
+
text_encoder,
|
703 |
+
gradient_checkpointing,
|
704 |
+
text_encoder_gradient_checkpointing
|
705 |
+
)
|
706 |
+
|
707 |
+
# Enable VAE slicing to save memory.
|
708 |
+
vae.enable_slicing()
|
709 |
+
|
710 |
+
# For mixed precision training we cast the text_encoder and vae weights to half-precision
|
711 |
+
# as these models are only used for inference, keeping weights in full precision is not required.
|
712 |
+
weight_dtype = is_mixed_precision(accelerator)
|
713 |
+
|
714 |
+
# Move text encoders, and VAE to GPU
|
715 |
+
models_to_cast = [text_encoder, vae]
|
716 |
+
cast_to_gpu_and_type(models_to_cast, accelerator, weight_dtype)
|
717 |
+
|
718 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
719 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / gradient_accumulation_steps)
|
720 |
+
|
721 |
+
# Afterwards we recalculate our number of training epochs
|
722 |
+
num_train_epochs = math.ceil(max_train_steps / num_update_steps_per_epoch)
|
723 |
+
|
724 |
+
# We need to initialize the trackers we use, and also store our configuration.
|
725 |
+
# The trackers initializes automatically on the main process.
|
726 |
+
if accelerator.is_main_process:
|
727 |
+
accelerator.init_trackers("text2video-fine-tune")
|
728 |
+
|
729 |
+
# Train!
|
730 |
+
total_batch_size = train_batch_size * accelerator.num_processes * gradient_accumulation_steps
|
731 |
+
|
732 |
+
logger.info("***** Running training *****")
|
733 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
734 |
+
logger.info(f" Num Epochs = {num_train_epochs}")
|
735 |
+
logger.info(f" Instantaneous batch size per device = {train_batch_size}")
|
736 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
737 |
+
logger.info(f" Gradient Accumulation steps = {gradient_accumulation_steps}")
|
738 |
+
logger.info(f" Total optimization steps = {max_train_steps}")
|
739 |
+
global_step = 0
|
740 |
+
first_epoch = 0
|
741 |
+
|
742 |
+
# Only show the progress bar once on each machine.
|
743 |
+
progress_bar = tqdm(range(global_step, max_train_steps), disable=not accelerator.is_local_main_process)
|
744 |
+
progress_bar.set_description("Steps")
|
745 |
+
|
746 |
+
def finetune_unet(batch, train_encoder=False):
|
747 |
+
|
748 |
+
# Check if we are training the text encoder
|
749 |
+
text_trainable = (train_text_encoder or use_text_lora)
|
750 |
+
|
751 |
+
# Unfreeze UNET Layers
|
752 |
+
if global_step == 0:
|
753 |
+
already_printed_trainables = False
|
754 |
+
unet.train()
|
755 |
+
handle_trainable_modules(
|
756 |
+
unet,
|
757 |
+
trainable_modules,
|
758 |
+
is_enabled=True,
|
759 |
+
negation=unet_negation
|
760 |
+
)
|
761 |
+
|
762 |
+
# Convert videos to latent space
|
763 |
+
pixel_values = batch["pixel_values"]
|
764 |
+
|
765 |
+
if not cache_latents:
|
766 |
+
latents = tensor_to_vae_latent(pixel_values, vae)
|
767 |
+
else:
|
768 |
+
latents = pixel_values
|
769 |
+
|
770 |
+
# Get video length
|
771 |
+
video_length = latents.shape[2]
|
772 |
+
|
773 |
+
# Sample noise that we'll add to the latents
|
774 |
+
noise = sample_noise(latents, offset_noise_strength, use_offset_noise)
|
775 |
+
bsz = latents.shape[0]
|
776 |
+
|
777 |
+
# Sample a random timestep for each video
|
778 |
+
timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device)
|
779 |
+
timesteps = timesteps.long()
|
780 |
+
|
781 |
+
# Add noise to the latents according to the noise magnitude at each timestep
|
782 |
+
# (this is the forward diffusion process)
|
783 |
+
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
784 |
+
|
785 |
+
# Enable text encoder training
|
786 |
+
if text_trainable:
|
787 |
+
text_encoder.train()
|
788 |
+
|
789 |
+
if use_text_lora:
|
790 |
+
text_encoder.text_model.embeddings.requires_grad_(True)
|
791 |
+
|
792 |
+
if global_step == 0 and train_text_encoder:
|
793 |
+
handle_trainable_modules(
|
794 |
+
text_encoder,
|
795 |
+
trainable_modules=trainable_text_modules,
|
796 |
+
negation=text_encoder_negation
|
797 |
+
)
|
798 |
+
cast_to_gpu_and_type([text_encoder], accelerator, torch.float32)
|
799 |
+
|
800 |
+
# Fixes gradient checkpointing training.
|
801 |
+
# See: https://github.com/prigoyal/pytorch_memonger/blob/master/tutorial/Checkpointing_for_PyTorch_models.ipynb
|
802 |
+
if gradient_checkpointing or text_encoder_gradient_checkpointing:
|
803 |
+
unet.eval()
|
804 |
+
text_encoder.eval()
|
805 |
+
|
806 |
+
# Encode text embeddings
|
807 |
+
token_ids = batch['prompt_ids']
|
808 |
+
encoder_hidden_states = text_encoder(token_ids)[0]
|
809 |
+
|
810 |
+
# Get the target for loss depending on the prediction type
|
811 |
+
if noise_scheduler.prediction_type == "epsilon":
|
812 |
+
target = noise
|
813 |
+
|
814 |
+
elif noise_scheduler.prediction_type == "v_prediction":
|
815 |
+
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
816 |
+
|
817 |
+
else:
|
818 |
+
raise ValueError(f"Unknown prediction type {noise_scheduler.prediction_type}")
|
819 |
+
|
820 |
+
|
821 |
+
# Here we do two passes for video and text training.
|
822 |
+
# If we are on the second iteration of the loop, get one frame.
|
823 |
+
# This allows us to train text information only on the spatial layers.
|
824 |
+
losses = []
|
825 |
+
should_truncate_video = (video_length > 1 and text_trainable)
|
826 |
+
|
827 |
+
# We detach the encoder hidden states for the first pass (video frames > 1)
|
828 |
+
# Then we make a clone of the initial state to ensure we can train it in the loop.
|
829 |
+
detached_encoder_state = encoder_hidden_states.clone().detach()
|
830 |
+
trainable_encoder_state = encoder_hidden_states.clone()
|
831 |
+
|
832 |
+
for i in range(2):
|
833 |
+
|
834 |
+
should_detach = noisy_latents.shape[2] > 1 and i == 0
|
835 |
+
|
836 |
+
if should_truncate_video and i == 1:
|
837 |
+
noisy_latents = noisy_latents[:,:,1,:,:].unsqueeze(2)
|
838 |
+
target = target[:,:,1,:,:].unsqueeze(2)
|
839 |
+
|
840 |
+
encoder_hidden_states = (
|
841 |
+
detached_encoder_state if should_detach else trainable_encoder_state
|
842 |
+
)
|
843 |
+
|
844 |
+
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states=encoder_hidden_states).sample
|
845 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
846 |
+
|
847 |
+
losses.append(loss)
|
848 |
+
|
849 |
+
# This was most likely single frame training or a single image.
|
850 |
+
if video_length == 1 and i == 0: break
|
851 |
+
|
852 |
+
loss = losses[0] if len(losses) == 1 else losses[0] + losses[1]
|
853 |
+
|
854 |
+
return loss, latents
|
855 |
+
|
856 |
+
for epoch in range(first_epoch, num_train_epochs):
|
857 |
+
train_loss = 0.0
|
858 |
+
|
859 |
+
for step, batch in enumerate(train_dataloader):
|
860 |
+
# Skip steps until we reach the resumed step
|
861 |
+
if resume_from_checkpoint and epoch == first_epoch and step < resume_step:
|
862 |
+
if step % gradient_accumulation_steps == 0:
|
863 |
+
progress_bar.update(1)
|
864 |
+
continue
|
865 |
+
|
866 |
+
with accelerator.accumulate(unet) ,accelerator.accumulate(text_encoder):
|
867 |
+
|
868 |
+
text_prompt = batch['text_prompt'][0]
|
869 |
+
|
870 |
+
with accelerator.autocast():
|
871 |
+
loss, latents = finetune_unet(batch, train_encoder=train_text_encoder)
|
872 |
+
|
873 |
+
# Gather the losses across all processes for logging (if we use distributed training).
|
874 |
+
avg_loss = accelerator.gather(loss.repeat(train_batch_size)).mean()
|
875 |
+
train_loss += avg_loss.item() / gradient_accumulation_steps
|
876 |
+
|
877 |
+
# Backpropagate
|
878 |
+
try:
|
879 |
+
accelerator.backward(loss)
|
880 |
+
params_to_clip = (
|
881 |
+
unet.parameters() if not train_text_encoder
|
882 |
+
else
|
883 |
+
list(unet.parameters()) + list(text_encoder.parameters())
|
884 |
+
)
|
885 |
+
accelerator.clip_grad_norm_(params_to_clip, max_grad_norm)
|
886 |
+
|
887 |
+
optimizer.step()
|
888 |
+
lr_scheduler.step()
|
889 |
+
optimizer.zero_grad(set_to_none=True)
|
890 |
+
|
891 |
+
except Exception as e:
|
892 |
+
print(f"An error has occured during backpropogation! {e}")
|
893 |
+
continue
|
894 |
+
|
895 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
896 |
+
if accelerator.sync_gradients:
|
897 |
+
progress_bar.update(1)
|
898 |
+
global_step += 1
|
899 |
+
accelerator.log({"train_loss": train_loss}, step=global_step)
|
900 |
+
train_loss = 0.0
|
901 |
+
|
902 |
+
if global_step % checkpointing_steps == 0:
|
903 |
+
save_pipe(
|
904 |
+
pretrained_model_path,
|
905 |
+
global_step,
|
906 |
+
accelerator,
|
907 |
+
unet,
|
908 |
+
text_encoder,
|
909 |
+
vae,
|
910 |
+
output_dir,
|
911 |
+
use_unet_lora,
|
912 |
+
use_text_lora,
|
913 |
+
unet_lora_modules,
|
914 |
+
text_encoder_lora_modules,
|
915 |
+
is_checkpoint=True
|
916 |
+
)
|
917 |
+
|
918 |
+
if should_sample(global_step, validation_steps, validation_data):
|
919 |
+
if global_step == 1: print("Performing validation prompt.")
|
920 |
+
if accelerator.is_main_process:
|
921 |
+
|
922 |
+
with accelerator.autocast():
|
923 |
+
unet.eval()
|
924 |
+
text_encoder.eval()
|
925 |
+
unet_and_text_g_c(unet, text_encoder, False, False)
|
926 |
+
|
927 |
+
pipeline = TextToVideoSDPipeline.from_pretrained(
|
928 |
+
pretrained_model_path,
|
929 |
+
text_encoder=text_encoder,
|
930 |
+
vae=vae,
|
931 |
+
unet=unet
|
932 |
+
)
|
933 |
+
|
934 |
+
diffusion_scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
|
935 |
+
pipeline.scheduler = diffusion_scheduler
|
936 |
+
|
937 |
+
prompt = text_prompt if len(validation_data.prompt) <= 0 else validation_data.prompt
|
938 |
+
|
939 |
+
curr_dataset_name = batch['dataset']
|
940 |
+
save_filename = f"{global_step}_dataset-{curr_dataset_name}_{prompt}"
|
941 |
+
|
942 |
+
out_file = f"{output_dir}/samples/{save_filename}.mp4"
|
943 |
+
|
944 |
+
with torch.no_grad():
|
945 |
+
video_frames = pipeline(
|
946 |
+
prompt,
|
947 |
+
width=validation_data.width,
|
948 |
+
height=validation_data.height,
|
949 |
+
num_frames=validation_data.num_frames,
|
950 |
+
num_inference_steps=validation_data.num_inference_steps,
|
951 |
+
guidance_scale=validation_data.guidance_scale
|
952 |
+
).frames
|
953 |
+
export_to_video(video_frames, out_file, train_data.get('fps', 8))
|
954 |
+
|
955 |
+
del pipeline
|
956 |
+
torch.cuda.empty_cache()
|
957 |
+
|
958 |
+
logger.info(f"Saved a new sample to {out_file}")
|
959 |
+
|
960 |
+
unet_and_text_g_c(
|
961 |
+
unet,
|
962 |
+
text_encoder,
|
963 |
+
gradient_checkpointing,
|
964 |
+
text_encoder_gradient_checkpointing
|
965 |
+
)
|
966 |
+
|
967 |
+
logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
|
968 |
+
accelerator.log({"training_loss": loss.detach().item()}, step=step)
|
969 |
+
progress_bar.set_postfix(**logs)
|
970 |
+
|
971 |
+
if global_step >= max_train_steps:
|
972 |
+
break
|
973 |
+
|
974 |
+
# Create the pipeline using the trained modules and save it.
|
975 |
+
accelerator.wait_for_everyone()
|
976 |
+
if accelerator.is_main_process:
|
977 |
+
save_pipe(
|
978 |
+
pretrained_model_path,
|
979 |
+
global_step,
|
980 |
+
accelerator,
|
981 |
+
unet,
|
982 |
+
text_encoder,
|
983 |
+
vae,
|
984 |
+
output_dir,
|
985 |
+
use_unet_lora,
|
986 |
+
use_text_lora,
|
987 |
+
unet_lora_modules,
|
988 |
+
text_encoder_lora_modules,
|
989 |
+
is_checkpoint=False
|
990 |
+
)
|
991 |
+
accelerator.end_training()
|
992 |
+
|
993 |
+
if __name__ == "__main__":
|
994 |
+
parser = argparse.ArgumentParser()
|
995 |
+
parser.add_argument("--config", type=str, default="./configs/my_config.yaml")
|
996 |
+
args = parser.parse_args()
|
997 |
+
|
998 |
+
main(**OmegaConf.load(args.config))
|
unet_3d_blocks.py
ADDED
@@ -0,0 +1,836 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import torch.utils.checkpoint as checkpoint
|
17 |
+
from torch import nn
|
18 |
+
from diffusers.models.resnet import Downsample2D, ResnetBlock2D, TemporalConvLayer, Upsample2D
|
19 |
+
from diffusers.models.transformer_2d import Transformer2DModel
|
20 |
+
from diffusers.models.transformer_temporal import TransformerTemporalModel
|
21 |
+
|
22 |
+
# Assign gradient checkpoint function to simple variable for readability.
|
23 |
+
g_c = checkpoint.checkpoint
|
24 |
+
|
25 |
+
def use_temporal(module, num_frames, x):
|
26 |
+
if num_frames == 1:
|
27 |
+
if isinstance(module, TransformerTemporalModel):
|
28 |
+
return {"sample": x}
|
29 |
+
else:
|
30 |
+
return x
|
31 |
+
|
32 |
+
def custom_checkpoint(module, mode=None):
|
33 |
+
if mode == None: raise ValueError('Mode for gradient checkpointing cannot be none.')
|
34 |
+
custom_forward = None
|
35 |
+
|
36 |
+
if mode == 'resnet':
|
37 |
+
def custom_forward(hidden_states, temb):
|
38 |
+
inputs = module(hidden_states, temb)
|
39 |
+
return inputs
|
40 |
+
|
41 |
+
if mode == 'attn':
|
42 |
+
def custom_forward(
|
43 |
+
hidden_states,
|
44 |
+
encoder_hidden_states=None,
|
45 |
+
cross_attention_kwargs=None
|
46 |
+
):
|
47 |
+
inputs = module(
|
48 |
+
hidden_states,
|
49 |
+
encoder_hidden_states,
|
50 |
+
cross_attention_kwargs
|
51 |
+
)
|
52 |
+
return inputs
|
53 |
+
|
54 |
+
if mode == 'temp':
|
55 |
+
def custom_forward(hidden_states, num_frames=None):
|
56 |
+
inputs = use_temporal(module, num_frames, hidden_states)
|
57 |
+
if inputs is None: inputs = module(
|
58 |
+
hidden_states,
|
59 |
+
num_frames=num_frames
|
60 |
+
)
|
61 |
+
return inputs
|
62 |
+
|
63 |
+
return custom_forward
|
64 |
+
|
65 |
+
def transformer_g_c(transformer, sample, num_frames):
|
66 |
+
sample = g_c(custom_checkpoint(transformer, mode='temp'),
|
67 |
+
sample, num_frames, use_reentrant=False
|
68 |
+
)['sample']
|
69 |
+
|
70 |
+
return sample
|
71 |
+
|
72 |
+
def cross_attn_g_c(
|
73 |
+
attn,
|
74 |
+
temp_attn,
|
75 |
+
resnet,
|
76 |
+
temp_conv,
|
77 |
+
hidden_states,
|
78 |
+
encoder_hidden_states,
|
79 |
+
cross_attention_kwargs,
|
80 |
+
temb,
|
81 |
+
num_frames,
|
82 |
+
inverse_temp=False
|
83 |
+
):
|
84 |
+
|
85 |
+
def ordered_g_c(idx):
|
86 |
+
|
87 |
+
# Self and CrossAttention
|
88 |
+
if idx == 0: return g_c(custom_checkpoint(attn, mode='attn'),
|
89 |
+
hidden_states, encoder_hidden_states,cross_attention_kwargs, use_reentrant=False
|
90 |
+
)['sample']
|
91 |
+
|
92 |
+
# Temporal Self and CrossAttention
|
93 |
+
if idx == 1: return g_c(custom_checkpoint(temp_attn, mode='temp'),
|
94 |
+
hidden_states, num_frames, use_reentrant=False)['sample']
|
95 |
+
|
96 |
+
# Resnets
|
97 |
+
if idx == 2: return g_c(custom_checkpoint(resnet, mode='resnet'),
|
98 |
+
hidden_states, temb, use_reentrant=False)
|
99 |
+
|
100 |
+
# Temporal Convolutions
|
101 |
+
if idx == 3: return g_c(custom_checkpoint(temp_conv, mode='temp'),
|
102 |
+
hidden_states, num_frames, use_reentrant=False
|
103 |
+
)
|
104 |
+
|
105 |
+
# Here we call the function depending on the order in which they are called.
|
106 |
+
# For some layers, the orders are different, so we access the appropriate one by index.
|
107 |
+
|
108 |
+
if not inverse_temp:
|
109 |
+
for idx in [0,1,2,3]: hidden_states = ordered_g_c(idx)
|
110 |
+
else:
|
111 |
+
for idx in [2,3,0,1]: hidden_states = ordered_g_c(idx)
|
112 |
+
|
113 |
+
return hidden_states
|
114 |
+
|
115 |
+
def up_down_g_c(resnet, temp_conv, hidden_states, temb, num_frames):
|
116 |
+
hidden_states = g_c(custom_checkpoint(resnet, mode='resnet'), hidden_states, temb, use_reentrant=False)
|
117 |
+
hidden_states = g_c(custom_checkpoint(temp_conv, mode='temp'),
|
118 |
+
hidden_states, num_frames, use_reentrant=False
|
119 |
+
)
|
120 |
+
return hidden_states
|
121 |
+
|
122 |
+
def get_down_block(
|
123 |
+
down_block_type,
|
124 |
+
num_layers,
|
125 |
+
in_channels,
|
126 |
+
out_channels,
|
127 |
+
temb_channels,
|
128 |
+
add_downsample,
|
129 |
+
resnet_eps,
|
130 |
+
resnet_act_fn,
|
131 |
+
attn_num_head_channels,
|
132 |
+
resnet_groups=None,
|
133 |
+
cross_attention_dim=None,
|
134 |
+
downsample_padding=None,
|
135 |
+
dual_cross_attention=False,
|
136 |
+
use_linear_projection=True,
|
137 |
+
only_cross_attention=False,
|
138 |
+
upcast_attention=False,
|
139 |
+
resnet_time_scale_shift="default",
|
140 |
+
):
|
141 |
+
if down_block_type == "DownBlock3D":
|
142 |
+
return DownBlock3D(
|
143 |
+
num_layers=num_layers,
|
144 |
+
in_channels=in_channels,
|
145 |
+
out_channels=out_channels,
|
146 |
+
temb_channels=temb_channels,
|
147 |
+
add_downsample=add_downsample,
|
148 |
+
resnet_eps=resnet_eps,
|
149 |
+
resnet_act_fn=resnet_act_fn,
|
150 |
+
resnet_groups=resnet_groups,
|
151 |
+
downsample_padding=downsample_padding,
|
152 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
153 |
+
)
|
154 |
+
elif down_block_type == "CrossAttnDownBlock3D":
|
155 |
+
if cross_attention_dim is None:
|
156 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D")
|
157 |
+
return CrossAttnDownBlock3D(
|
158 |
+
num_layers=num_layers,
|
159 |
+
in_channels=in_channels,
|
160 |
+
out_channels=out_channels,
|
161 |
+
temb_channels=temb_channels,
|
162 |
+
add_downsample=add_downsample,
|
163 |
+
resnet_eps=resnet_eps,
|
164 |
+
resnet_act_fn=resnet_act_fn,
|
165 |
+
resnet_groups=resnet_groups,
|
166 |
+
downsample_padding=downsample_padding,
|
167 |
+
cross_attention_dim=cross_attention_dim,
|
168 |
+
attn_num_head_channels=attn_num_head_channels,
|
169 |
+
dual_cross_attention=dual_cross_attention,
|
170 |
+
use_linear_projection=use_linear_projection,
|
171 |
+
only_cross_attention=only_cross_attention,
|
172 |
+
upcast_attention=upcast_attention,
|
173 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
174 |
+
)
|
175 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
176 |
+
|
177 |
+
|
178 |
+
def get_up_block(
|
179 |
+
up_block_type,
|
180 |
+
num_layers,
|
181 |
+
in_channels,
|
182 |
+
out_channels,
|
183 |
+
prev_output_channel,
|
184 |
+
temb_channels,
|
185 |
+
add_upsample,
|
186 |
+
resnet_eps,
|
187 |
+
resnet_act_fn,
|
188 |
+
attn_num_head_channels,
|
189 |
+
resnet_groups=None,
|
190 |
+
cross_attention_dim=None,
|
191 |
+
dual_cross_attention=False,
|
192 |
+
use_linear_projection=True,
|
193 |
+
only_cross_attention=False,
|
194 |
+
upcast_attention=False,
|
195 |
+
resnet_time_scale_shift="default",
|
196 |
+
):
|
197 |
+
if up_block_type == "UpBlock3D":
|
198 |
+
return UpBlock3D(
|
199 |
+
num_layers=num_layers,
|
200 |
+
in_channels=in_channels,
|
201 |
+
out_channels=out_channels,
|
202 |
+
prev_output_channel=prev_output_channel,
|
203 |
+
temb_channels=temb_channels,
|
204 |
+
add_upsample=add_upsample,
|
205 |
+
resnet_eps=resnet_eps,
|
206 |
+
resnet_act_fn=resnet_act_fn,
|
207 |
+
resnet_groups=resnet_groups,
|
208 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
209 |
+
)
|
210 |
+
elif up_block_type == "CrossAttnUpBlock3D":
|
211 |
+
if cross_attention_dim is None:
|
212 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D")
|
213 |
+
return CrossAttnUpBlock3D(
|
214 |
+
num_layers=num_layers,
|
215 |
+
in_channels=in_channels,
|
216 |
+
out_channels=out_channels,
|
217 |
+
prev_output_channel=prev_output_channel,
|
218 |
+
temb_channels=temb_channels,
|
219 |
+
add_upsample=add_upsample,
|
220 |
+
resnet_eps=resnet_eps,
|
221 |
+
resnet_act_fn=resnet_act_fn,
|
222 |
+
resnet_groups=resnet_groups,
|
223 |
+
cross_attention_dim=cross_attention_dim,
|
224 |
+
attn_num_head_channels=attn_num_head_channels,
|
225 |
+
dual_cross_attention=dual_cross_attention,
|
226 |
+
use_linear_projection=use_linear_projection,
|
227 |
+
only_cross_attention=only_cross_attention,
|
228 |
+
upcast_attention=upcast_attention,
|
229 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
230 |
+
)
|
231 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
232 |
+
|
233 |
+
|
234 |
+
class UNetMidBlock3DCrossAttn(nn.Module):
|
235 |
+
def __init__(
|
236 |
+
self,
|
237 |
+
in_channels: int,
|
238 |
+
temb_channels: int,
|
239 |
+
dropout: float = 0.0,
|
240 |
+
num_layers: int = 1,
|
241 |
+
resnet_eps: float = 1e-6,
|
242 |
+
resnet_time_scale_shift: str = "default",
|
243 |
+
resnet_act_fn: str = "swish",
|
244 |
+
resnet_groups: int = 32,
|
245 |
+
resnet_pre_norm: bool = True,
|
246 |
+
attn_num_head_channels=1,
|
247 |
+
output_scale_factor=1.0,
|
248 |
+
cross_attention_dim=1280,
|
249 |
+
dual_cross_attention=False,
|
250 |
+
use_linear_projection=True,
|
251 |
+
upcast_attention=False,
|
252 |
+
):
|
253 |
+
super().__init__()
|
254 |
+
|
255 |
+
self.gradient_checkpointing = False
|
256 |
+
self.has_cross_attention = True
|
257 |
+
self.attn_num_head_channels = attn_num_head_channels
|
258 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
259 |
+
|
260 |
+
# there is always at least one resnet
|
261 |
+
resnets = [
|
262 |
+
ResnetBlock2D(
|
263 |
+
in_channels=in_channels,
|
264 |
+
out_channels=in_channels,
|
265 |
+
temb_channels=temb_channels,
|
266 |
+
eps=resnet_eps,
|
267 |
+
groups=resnet_groups,
|
268 |
+
dropout=dropout,
|
269 |
+
time_embedding_norm=resnet_time_scale_shift,
|
270 |
+
non_linearity=resnet_act_fn,
|
271 |
+
output_scale_factor=output_scale_factor,
|
272 |
+
pre_norm=resnet_pre_norm,
|
273 |
+
)
|
274 |
+
]
|
275 |
+
temp_convs = [
|
276 |
+
TemporalConvLayer(
|
277 |
+
in_channels,
|
278 |
+
in_channels,
|
279 |
+
)
|
280 |
+
]
|
281 |
+
attentions = []
|
282 |
+
temp_attentions = []
|
283 |
+
|
284 |
+
for _ in range(num_layers):
|
285 |
+
attentions.append(
|
286 |
+
Transformer2DModel(
|
287 |
+
in_channels // attn_num_head_channels,
|
288 |
+
attn_num_head_channels,
|
289 |
+
in_channels=in_channels,
|
290 |
+
num_layers=1,
|
291 |
+
cross_attention_dim=cross_attention_dim,
|
292 |
+
norm_num_groups=resnet_groups,
|
293 |
+
use_linear_projection=use_linear_projection,
|
294 |
+
upcast_attention=upcast_attention,
|
295 |
+
)
|
296 |
+
)
|
297 |
+
temp_attentions.append(
|
298 |
+
TransformerTemporalModel(
|
299 |
+
in_channels // attn_num_head_channels,
|
300 |
+
attn_num_head_channels,
|
301 |
+
in_channels=in_channels,
|
302 |
+
num_layers=1,
|
303 |
+
cross_attention_dim=cross_attention_dim,
|
304 |
+
norm_num_groups=resnet_groups,
|
305 |
+
)
|
306 |
+
)
|
307 |
+
resnets.append(
|
308 |
+
ResnetBlock2D(
|
309 |
+
in_channels=in_channels,
|
310 |
+
out_channels=in_channels,
|
311 |
+
temb_channels=temb_channels,
|
312 |
+
eps=resnet_eps,
|
313 |
+
groups=resnet_groups,
|
314 |
+
dropout=dropout,
|
315 |
+
time_embedding_norm=resnet_time_scale_shift,
|
316 |
+
non_linearity=resnet_act_fn,
|
317 |
+
output_scale_factor=output_scale_factor,
|
318 |
+
pre_norm=resnet_pre_norm,
|
319 |
+
)
|
320 |
+
)
|
321 |
+
temp_convs.append(
|
322 |
+
TemporalConvLayer(
|
323 |
+
in_channels,
|
324 |
+
in_channels,
|
325 |
+
)
|
326 |
+
)
|
327 |
+
|
328 |
+
self.resnets = nn.ModuleList(resnets)
|
329 |
+
self.temp_convs = nn.ModuleList(temp_convs)
|
330 |
+
self.attentions = nn.ModuleList(attentions)
|
331 |
+
self.temp_attentions = nn.ModuleList(temp_attentions)
|
332 |
+
|
333 |
+
def forward(
|
334 |
+
self,
|
335 |
+
hidden_states,
|
336 |
+
temb=None,
|
337 |
+
encoder_hidden_states=None,
|
338 |
+
attention_mask=None,
|
339 |
+
num_frames=1,
|
340 |
+
cross_attention_kwargs=None,
|
341 |
+
):
|
342 |
+
if self.gradient_checkpointing:
|
343 |
+
hidden_states = up_down_g_c(
|
344 |
+
self.resnets[0],
|
345 |
+
self.temp_convs[0],
|
346 |
+
hidden_states,
|
347 |
+
temb,
|
348 |
+
num_frames
|
349 |
+
)
|
350 |
+
else:
|
351 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
352 |
+
hidden_states = self.temp_convs[0](hidden_states, num_frames=num_frames)
|
353 |
+
|
354 |
+
for attn, temp_attn, resnet, temp_conv in zip(
|
355 |
+
self.attentions, self.temp_attentions, self.resnets[1:], self.temp_convs[1:]
|
356 |
+
):
|
357 |
+
if self.gradient_checkpointing:
|
358 |
+
hidden_states = cross_attn_g_c(
|
359 |
+
attn,
|
360 |
+
temp_attn,
|
361 |
+
resnet,
|
362 |
+
temp_conv,
|
363 |
+
hidden_states,
|
364 |
+
encoder_hidden_states,
|
365 |
+
cross_attention_kwargs,
|
366 |
+
temb,
|
367 |
+
num_frames
|
368 |
+
)
|
369 |
+
else:
|
370 |
+
hidden_states = attn(
|
371 |
+
hidden_states,
|
372 |
+
encoder_hidden_states=encoder_hidden_states,
|
373 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
374 |
+
).sample
|
375 |
+
|
376 |
+
if num_frames > 1:
|
377 |
+
hidden_states = temp_attn(hidden_states, num_frames=num_frames).sample
|
378 |
+
|
379 |
+
hidden_states = resnet(hidden_states, temb)
|
380 |
+
|
381 |
+
if num_frames > 1:
|
382 |
+
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
|
383 |
+
|
384 |
+
return hidden_states
|
385 |
+
|
386 |
+
|
387 |
+
class CrossAttnDownBlock3D(nn.Module):
|
388 |
+
def __init__(
|
389 |
+
self,
|
390 |
+
in_channels: int,
|
391 |
+
out_channels: int,
|
392 |
+
temb_channels: int,
|
393 |
+
dropout: float = 0.0,
|
394 |
+
num_layers: int = 1,
|
395 |
+
resnet_eps: float = 1e-6,
|
396 |
+
resnet_time_scale_shift: str = "default",
|
397 |
+
resnet_act_fn: str = "swish",
|
398 |
+
resnet_groups: int = 32,
|
399 |
+
resnet_pre_norm: bool = True,
|
400 |
+
attn_num_head_channels=1,
|
401 |
+
cross_attention_dim=1280,
|
402 |
+
output_scale_factor=1.0,
|
403 |
+
downsample_padding=1,
|
404 |
+
add_downsample=True,
|
405 |
+
dual_cross_attention=False,
|
406 |
+
use_linear_projection=False,
|
407 |
+
only_cross_attention=False,
|
408 |
+
upcast_attention=False,
|
409 |
+
):
|
410 |
+
super().__init__()
|
411 |
+
resnets = []
|
412 |
+
attentions = []
|
413 |
+
temp_attentions = []
|
414 |
+
temp_convs = []
|
415 |
+
|
416 |
+
self.gradient_checkpointing = False
|
417 |
+
self.has_cross_attention = True
|
418 |
+
self.attn_num_head_channels = attn_num_head_channels
|
419 |
+
|
420 |
+
for i in range(num_layers):
|
421 |
+
in_channels = in_channels if i == 0 else out_channels
|
422 |
+
resnets.append(
|
423 |
+
ResnetBlock2D(
|
424 |
+
in_channels=in_channels,
|
425 |
+
out_channels=out_channels,
|
426 |
+
temb_channels=temb_channels,
|
427 |
+
eps=resnet_eps,
|
428 |
+
groups=resnet_groups,
|
429 |
+
dropout=dropout,
|
430 |
+
time_embedding_norm=resnet_time_scale_shift,
|
431 |
+
non_linearity=resnet_act_fn,
|
432 |
+
output_scale_factor=output_scale_factor,
|
433 |
+
pre_norm=resnet_pre_norm,
|
434 |
+
)
|
435 |
+
)
|
436 |
+
temp_convs.append(
|
437 |
+
TemporalConvLayer(
|
438 |
+
out_channels,
|
439 |
+
out_channels,
|
440 |
+
)
|
441 |
+
)
|
442 |
+
attentions.append(
|
443 |
+
Transformer2DModel(
|
444 |
+
out_channels // attn_num_head_channels,
|
445 |
+
attn_num_head_channels,
|
446 |
+
in_channels=out_channels,
|
447 |
+
num_layers=1,
|
448 |
+
cross_attention_dim=cross_attention_dim,
|
449 |
+
norm_num_groups=resnet_groups,
|
450 |
+
use_linear_projection=use_linear_projection,
|
451 |
+
only_cross_attention=only_cross_attention,
|
452 |
+
upcast_attention=upcast_attention,
|
453 |
+
)
|
454 |
+
)
|
455 |
+
temp_attentions.append(
|
456 |
+
TransformerTemporalModel(
|
457 |
+
out_channels // attn_num_head_channels,
|
458 |
+
attn_num_head_channels,
|
459 |
+
in_channels=out_channels,
|
460 |
+
num_layers=1,
|
461 |
+
cross_attention_dim=cross_attention_dim,
|
462 |
+
norm_num_groups=resnet_groups,
|
463 |
+
)
|
464 |
+
)
|
465 |
+
self.resnets = nn.ModuleList(resnets)
|
466 |
+
self.temp_convs = nn.ModuleList(temp_convs)
|
467 |
+
self.attentions = nn.ModuleList(attentions)
|
468 |
+
self.temp_attentions = nn.ModuleList(temp_attentions)
|
469 |
+
|
470 |
+
if add_downsample:
|
471 |
+
self.downsamplers = nn.ModuleList(
|
472 |
+
[
|
473 |
+
Downsample2D(
|
474 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
475 |
+
)
|
476 |
+
]
|
477 |
+
)
|
478 |
+
else:
|
479 |
+
self.downsamplers = None
|
480 |
+
|
481 |
+
def forward(
|
482 |
+
self,
|
483 |
+
hidden_states,
|
484 |
+
temb=None,
|
485 |
+
encoder_hidden_states=None,
|
486 |
+
attention_mask=None,
|
487 |
+
num_frames=1,
|
488 |
+
cross_attention_kwargs=None,
|
489 |
+
):
|
490 |
+
# TODO(Patrick, William) - attention mask is not used
|
491 |
+
output_states = ()
|
492 |
+
|
493 |
+
for resnet, temp_conv, attn, temp_attn in zip(
|
494 |
+
self.resnets, self.temp_convs, self.attentions, self.temp_attentions
|
495 |
+
):
|
496 |
+
|
497 |
+
if self.gradient_checkpointing:
|
498 |
+
hidden_states = cross_attn_g_c(
|
499 |
+
attn,
|
500 |
+
temp_attn,
|
501 |
+
resnet,
|
502 |
+
temp_conv,
|
503 |
+
hidden_states,
|
504 |
+
encoder_hidden_states,
|
505 |
+
cross_attention_kwargs,
|
506 |
+
temb,
|
507 |
+
num_frames,
|
508 |
+
inverse_temp=True
|
509 |
+
)
|
510 |
+
else:
|
511 |
+
hidden_states = resnet(hidden_states, temb)
|
512 |
+
|
513 |
+
if num_frames > 1:
|
514 |
+
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
|
515 |
+
|
516 |
+
hidden_states = attn(
|
517 |
+
hidden_states,
|
518 |
+
encoder_hidden_states=encoder_hidden_states,
|
519 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
520 |
+
).sample
|
521 |
+
|
522 |
+
if num_frames > 1:
|
523 |
+
hidden_states = temp_attn(hidden_states, num_frames=num_frames).sample
|
524 |
+
|
525 |
+
output_states += (hidden_states,)
|
526 |
+
|
527 |
+
if self.downsamplers is not None:
|
528 |
+
for downsampler in self.downsamplers:
|
529 |
+
hidden_states = downsampler(hidden_states)
|
530 |
+
|
531 |
+
output_states += (hidden_states,)
|
532 |
+
|
533 |
+
return hidden_states, output_states
|
534 |
+
|
535 |
+
|
536 |
+
class DownBlock3D(nn.Module):
|
537 |
+
def __init__(
|
538 |
+
self,
|
539 |
+
in_channels: int,
|
540 |
+
out_channels: int,
|
541 |
+
temb_channels: int,
|
542 |
+
dropout: float = 0.0,
|
543 |
+
num_layers: int = 1,
|
544 |
+
resnet_eps: float = 1e-6,
|
545 |
+
resnet_time_scale_shift: str = "default",
|
546 |
+
resnet_act_fn: str = "swish",
|
547 |
+
resnet_groups: int = 32,
|
548 |
+
resnet_pre_norm: bool = True,
|
549 |
+
output_scale_factor=1.0,
|
550 |
+
add_downsample=True,
|
551 |
+
downsample_padding=1,
|
552 |
+
):
|
553 |
+
super().__init__()
|
554 |
+
resnets = []
|
555 |
+
temp_convs = []
|
556 |
+
|
557 |
+
self.gradient_checkpointing = False
|
558 |
+
for i in range(num_layers):
|
559 |
+
in_channels = in_channels if i == 0 else out_channels
|
560 |
+
resnets.append(
|
561 |
+
ResnetBlock2D(
|
562 |
+
in_channels=in_channels,
|
563 |
+
out_channels=out_channels,
|
564 |
+
temb_channels=temb_channels,
|
565 |
+
eps=resnet_eps,
|
566 |
+
groups=resnet_groups,
|
567 |
+
dropout=dropout,
|
568 |
+
time_embedding_norm=resnet_time_scale_shift,
|
569 |
+
non_linearity=resnet_act_fn,
|
570 |
+
output_scale_factor=output_scale_factor,
|
571 |
+
pre_norm=resnet_pre_norm,
|
572 |
+
)
|
573 |
+
)
|
574 |
+
temp_convs.append(
|
575 |
+
TemporalConvLayer(
|
576 |
+
out_channels,
|
577 |
+
out_channels,
|
578 |
+
)
|
579 |
+
)
|
580 |
+
|
581 |
+
self.resnets = nn.ModuleList(resnets)
|
582 |
+
self.temp_convs = nn.ModuleList(temp_convs)
|
583 |
+
|
584 |
+
if add_downsample:
|
585 |
+
self.downsamplers = nn.ModuleList(
|
586 |
+
[
|
587 |
+
Downsample2D(
|
588 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
589 |
+
)
|
590 |
+
]
|
591 |
+
)
|
592 |
+
else:
|
593 |
+
self.downsamplers = None
|
594 |
+
|
595 |
+
def forward(self, hidden_states, temb=None, num_frames=1):
|
596 |
+
output_states = ()
|
597 |
+
|
598 |
+
for resnet, temp_conv in zip(self.resnets, self.temp_convs):
|
599 |
+
if self.gradient_checkpointing:
|
600 |
+
hidden_states = up_down_g_c(resnet, temp_conv, hidden_states, temb, num_frames)
|
601 |
+
else:
|
602 |
+
hidden_states = resnet(hidden_states, temb)
|
603 |
+
|
604 |
+
if num_frames > 1:
|
605 |
+
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
|
606 |
+
|
607 |
+
output_states += (hidden_states,)
|
608 |
+
|
609 |
+
if self.downsamplers is not None:
|
610 |
+
for downsampler in self.downsamplers:
|
611 |
+
hidden_states = downsampler(hidden_states)
|
612 |
+
|
613 |
+
output_states += (hidden_states,)
|
614 |
+
|
615 |
+
return hidden_states, output_states
|
616 |
+
|
617 |
+
|
618 |
+
class CrossAttnUpBlock3D(nn.Module):
|
619 |
+
def __init__(
|
620 |
+
self,
|
621 |
+
in_channels: int,
|
622 |
+
out_channels: int,
|
623 |
+
prev_output_channel: int,
|
624 |
+
temb_channels: int,
|
625 |
+
dropout: float = 0.0,
|
626 |
+
num_layers: int = 1,
|
627 |
+
resnet_eps: float = 1e-6,
|
628 |
+
resnet_time_scale_shift: str = "default",
|
629 |
+
resnet_act_fn: str = "swish",
|
630 |
+
resnet_groups: int = 32,
|
631 |
+
resnet_pre_norm: bool = True,
|
632 |
+
attn_num_head_channels=1,
|
633 |
+
cross_attention_dim=1280,
|
634 |
+
output_scale_factor=1.0,
|
635 |
+
add_upsample=True,
|
636 |
+
dual_cross_attention=False,
|
637 |
+
use_linear_projection=False,
|
638 |
+
only_cross_attention=False,
|
639 |
+
upcast_attention=False,
|
640 |
+
):
|
641 |
+
super().__init__()
|
642 |
+
resnets = []
|
643 |
+
temp_convs = []
|
644 |
+
attentions = []
|
645 |
+
temp_attentions = []
|
646 |
+
|
647 |
+
self.gradient_checkpointing = False
|
648 |
+
self.has_cross_attention = True
|
649 |
+
self.attn_num_head_channels = attn_num_head_channels
|
650 |
+
|
651 |
+
for i in range(num_layers):
|
652 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
653 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
654 |
+
|
655 |
+
resnets.append(
|
656 |
+
ResnetBlock2D(
|
657 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
658 |
+
out_channels=out_channels,
|
659 |
+
temb_channels=temb_channels,
|
660 |
+
eps=resnet_eps,
|
661 |
+
groups=resnet_groups,
|
662 |
+
dropout=dropout,
|
663 |
+
time_embedding_norm=resnet_time_scale_shift,
|
664 |
+
non_linearity=resnet_act_fn,
|
665 |
+
output_scale_factor=output_scale_factor,
|
666 |
+
pre_norm=resnet_pre_norm,
|
667 |
+
)
|
668 |
+
)
|
669 |
+
temp_convs.append(
|
670 |
+
TemporalConvLayer(
|
671 |
+
out_channels,
|
672 |
+
out_channels,
|
673 |
+
)
|
674 |
+
)
|
675 |
+
attentions.append(
|
676 |
+
Transformer2DModel(
|
677 |
+
out_channels // attn_num_head_channels,
|
678 |
+
attn_num_head_channels,
|
679 |
+
in_channels=out_channels,
|
680 |
+
num_layers=1,
|
681 |
+
cross_attention_dim=cross_attention_dim,
|
682 |
+
norm_num_groups=resnet_groups,
|
683 |
+
use_linear_projection=use_linear_projection,
|
684 |
+
only_cross_attention=only_cross_attention,
|
685 |
+
upcast_attention=upcast_attention,
|
686 |
+
)
|
687 |
+
)
|
688 |
+
temp_attentions.append(
|
689 |
+
TransformerTemporalModel(
|
690 |
+
out_channels // attn_num_head_channels,
|
691 |
+
attn_num_head_channels,
|
692 |
+
in_channels=out_channels,
|
693 |
+
num_layers=1,
|
694 |
+
cross_attention_dim=cross_attention_dim,
|
695 |
+
norm_num_groups=resnet_groups,
|
696 |
+
)
|
697 |
+
)
|
698 |
+
self.resnets = nn.ModuleList(resnets)
|
699 |
+
self.temp_convs = nn.ModuleList(temp_convs)
|
700 |
+
self.attentions = nn.ModuleList(attentions)
|
701 |
+
self.temp_attentions = nn.ModuleList(temp_attentions)
|
702 |
+
|
703 |
+
if add_upsample:
|
704 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
705 |
+
else:
|
706 |
+
self.upsamplers = None
|
707 |
+
|
708 |
+
def forward(
|
709 |
+
self,
|
710 |
+
hidden_states,
|
711 |
+
res_hidden_states_tuple,
|
712 |
+
temb=None,
|
713 |
+
encoder_hidden_states=None,
|
714 |
+
upsample_size=None,
|
715 |
+
attention_mask=None,
|
716 |
+
num_frames=1,
|
717 |
+
cross_attention_kwargs=None,
|
718 |
+
):
|
719 |
+
# TODO(Patrick, William) - attention mask is not used
|
720 |
+
for resnet, temp_conv, attn, temp_attn in zip(
|
721 |
+
self.resnets, self.temp_convs, self.attentions, self.temp_attentions
|
722 |
+
):
|
723 |
+
# pop res hidden states
|
724 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
725 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
726 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
727 |
+
|
728 |
+
if self.gradient_checkpointing:
|
729 |
+
hidden_states = cross_attn_g_c(
|
730 |
+
attn,
|
731 |
+
temp_attn,
|
732 |
+
resnet,
|
733 |
+
temp_conv,
|
734 |
+
hidden_states,
|
735 |
+
encoder_hidden_states,
|
736 |
+
cross_attention_kwargs,
|
737 |
+
temb,
|
738 |
+
num_frames,
|
739 |
+
inverse_temp=True
|
740 |
+
)
|
741 |
+
else:
|
742 |
+
hidden_states = resnet(hidden_states, temb)
|
743 |
+
|
744 |
+
if num_frames > 1:
|
745 |
+
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
|
746 |
+
|
747 |
+
hidden_states = attn(
|
748 |
+
hidden_states,
|
749 |
+
encoder_hidden_states=encoder_hidden_states,
|
750 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
751 |
+
).sample
|
752 |
+
|
753 |
+
if num_frames > 1:
|
754 |
+
hidden_states = temp_attn(hidden_states, num_frames=num_frames).sample
|
755 |
+
|
756 |
+
if self.upsamplers is not None:
|
757 |
+
for upsampler in self.upsamplers:
|
758 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
759 |
+
|
760 |
+
return hidden_states
|
761 |
+
|
762 |
+
|
763 |
+
class UpBlock3D(nn.Module):
|
764 |
+
def __init__(
|
765 |
+
self,
|
766 |
+
in_channels: int,
|
767 |
+
prev_output_channel: int,
|
768 |
+
out_channels: int,
|
769 |
+
temb_channels: int,
|
770 |
+
dropout: float = 0.0,
|
771 |
+
num_layers: int = 1,
|
772 |
+
resnet_eps: float = 1e-6,
|
773 |
+
resnet_time_scale_shift: str = "default",
|
774 |
+
resnet_act_fn: str = "swish",
|
775 |
+
resnet_groups: int = 32,
|
776 |
+
resnet_pre_norm: bool = True,
|
777 |
+
output_scale_factor=1.0,
|
778 |
+
add_upsample=True,
|
779 |
+
):
|
780 |
+
super().__init__()
|
781 |
+
resnets = []
|
782 |
+
temp_convs = []
|
783 |
+
self.gradient_checkpointing = False
|
784 |
+
for i in range(num_layers):
|
785 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
786 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
787 |
+
|
788 |
+
resnets.append(
|
789 |
+
ResnetBlock2D(
|
790 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
791 |
+
out_channels=out_channels,
|
792 |
+
temb_channels=temb_channels,
|
793 |
+
eps=resnet_eps,
|
794 |
+
groups=resnet_groups,
|
795 |
+
dropout=dropout,
|
796 |
+
time_embedding_norm=resnet_time_scale_shift,
|
797 |
+
non_linearity=resnet_act_fn,
|
798 |
+
output_scale_factor=output_scale_factor,
|
799 |
+
pre_norm=resnet_pre_norm,
|
800 |
+
)
|
801 |
+
)
|
802 |
+
temp_convs.append(
|
803 |
+
TemporalConvLayer(
|
804 |
+
out_channels,
|
805 |
+
out_channels,
|
806 |
+
)
|
807 |
+
)
|
808 |
+
|
809 |
+
self.resnets = nn.ModuleList(resnets)
|
810 |
+
self.temp_convs = nn.ModuleList(temp_convs)
|
811 |
+
|
812 |
+
if add_upsample:
|
813 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
814 |
+
else:
|
815 |
+
self.upsamplers = None
|
816 |
+
|
817 |
+
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, num_frames=1):
|
818 |
+
for resnet, temp_conv in zip(self.resnets, self.temp_convs):
|
819 |
+
# pop res hidden states
|
820 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
821 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
822 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
823 |
+
|
824 |
+
if self.gradient_checkpointing:
|
825 |
+
hidden_states = up_down_g_c(resnet, temp_conv, hidden_states, temb, num_frames)
|
826 |
+
else:
|
827 |
+
hidden_states = resnet(hidden_states, temb)
|
828 |
+
|
829 |
+
if num_frames > 1:
|
830 |
+
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
|
831 |
+
|
832 |
+
if self.upsamplers is not None:
|
833 |
+
for upsampler in self.upsamplers:
|
834 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
835 |
+
|
836 |
+
return hidden_states
|
unet_3d_condition.py
ADDED
@@ -0,0 +1,499 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Alibaba DAMO-VILAB and The HuggingFace Team. All rights reserved.
|
2 |
+
# Copyright 2023 The ModelScope Team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
from dataclasses import dataclass
|
16 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.utils.checkpoint
|
21 |
+
|
22 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
23 |
+
from diffusers.utils import BaseOutput, logging
|
24 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
25 |
+
from diffusers.models.modeling_utils import ModelMixin
|
26 |
+
from diffusers.models.transformer_temporal import TransformerTemporalModel
|
27 |
+
from .unet_3d_blocks import (
|
28 |
+
CrossAttnDownBlock3D,
|
29 |
+
CrossAttnUpBlock3D,
|
30 |
+
DownBlock3D,
|
31 |
+
UNetMidBlock3DCrossAttn,
|
32 |
+
UpBlock3D,
|
33 |
+
get_down_block,
|
34 |
+
get_up_block,
|
35 |
+
transformer_g_c
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
40 |
+
|
41 |
+
|
42 |
+
@dataclass
|
43 |
+
class UNet3DConditionOutput(BaseOutput):
|
44 |
+
"""
|
45 |
+
Args:
|
46 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
|
47 |
+
Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
48 |
+
"""
|
49 |
+
|
50 |
+
sample: torch.FloatTensor
|
51 |
+
|
52 |
+
|
53 |
+
class UNet3DConditionModel(ModelMixin, ConfigMixin):
|
54 |
+
r"""
|
55 |
+
UNet3DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep
|
56 |
+
and returns sample shaped output.
|
57 |
+
|
58 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
|
59 |
+
implements for all the models (such as downloading or saving, etc.)
|
60 |
+
|
61 |
+
Parameters:
|
62 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
63 |
+
Height and width of input/output sample.
|
64 |
+
in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample.
|
65 |
+
out_channels (`int`, *optional*, defaults to 4): The number of channels in the output.
|
66 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
67 |
+
The tuple of downsample blocks to use.
|
68 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`):
|
69 |
+
The tuple of upsample blocks to use.
|
70 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
71 |
+
The tuple of output channels for each block.
|
72 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
73 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
74 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
75 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
76 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
77 |
+
If `None`, it will skip the normalization and activation layers in post-processing
|
78 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
79 |
+
cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features.
|
80 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
81 |
+
"""
|
82 |
+
|
83 |
+
_supports_gradient_checkpointing = True
|
84 |
+
|
85 |
+
@register_to_config
|
86 |
+
def __init__(
|
87 |
+
self,
|
88 |
+
sample_size: Optional[int] = None,
|
89 |
+
in_channels: int = 4,
|
90 |
+
out_channels: int = 4,
|
91 |
+
down_block_types: Tuple[str] = (
|
92 |
+
"CrossAttnDownBlock3D",
|
93 |
+
"CrossAttnDownBlock3D",
|
94 |
+
"CrossAttnDownBlock3D",
|
95 |
+
"DownBlock3D",
|
96 |
+
),
|
97 |
+
up_block_types: Tuple[str] = ("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D"),
|
98 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
99 |
+
layers_per_block: int = 2,
|
100 |
+
downsample_padding: int = 1,
|
101 |
+
mid_block_scale_factor: float = 1,
|
102 |
+
act_fn: str = "silu",
|
103 |
+
norm_num_groups: Optional[int] = 32,
|
104 |
+
norm_eps: float = 1e-5,
|
105 |
+
cross_attention_dim: int = 1024,
|
106 |
+
attention_head_dim: Union[int, Tuple[int]] = 64,
|
107 |
+
):
|
108 |
+
super().__init__()
|
109 |
+
|
110 |
+
self.sample_size = sample_size
|
111 |
+
self.gradient_checkpointing = False
|
112 |
+
# Check inputs
|
113 |
+
if len(down_block_types) != len(up_block_types):
|
114 |
+
raise ValueError(
|
115 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
116 |
+
)
|
117 |
+
|
118 |
+
if len(block_out_channels) != len(down_block_types):
|
119 |
+
raise ValueError(
|
120 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
121 |
+
)
|
122 |
+
|
123 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
124 |
+
raise ValueError(
|
125 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
126 |
+
)
|
127 |
+
|
128 |
+
# input
|
129 |
+
conv_in_kernel = 3
|
130 |
+
conv_out_kernel = 3
|
131 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
132 |
+
self.conv_in = nn.Conv2d(
|
133 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
134 |
+
)
|
135 |
+
|
136 |
+
# time
|
137 |
+
time_embed_dim = block_out_channels[0] * 4
|
138 |
+
self.time_proj = Timesteps(block_out_channels[0], True, 0)
|
139 |
+
timestep_input_dim = block_out_channels[0]
|
140 |
+
|
141 |
+
self.time_embedding = TimestepEmbedding(
|
142 |
+
timestep_input_dim,
|
143 |
+
time_embed_dim,
|
144 |
+
act_fn=act_fn,
|
145 |
+
)
|
146 |
+
|
147 |
+
self.transformer_in = TransformerTemporalModel(
|
148 |
+
num_attention_heads=8,
|
149 |
+
attention_head_dim=attention_head_dim,
|
150 |
+
in_channels=block_out_channels[0],
|
151 |
+
num_layers=1,
|
152 |
+
)
|
153 |
+
|
154 |
+
# class embedding
|
155 |
+
self.down_blocks = nn.ModuleList([])
|
156 |
+
self.up_blocks = nn.ModuleList([])
|
157 |
+
|
158 |
+
if isinstance(attention_head_dim, int):
|
159 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
160 |
+
|
161 |
+
# down
|
162 |
+
output_channel = block_out_channels[0]
|
163 |
+
for i, down_block_type in enumerate(down_block_types):
|
164 |
+
input_channel = output_channel
|
165 |
+
output_channel = block_out_channels[i]
|
166 |
+
is_final_block = i == len(block_out_channels) - 1
|
167 |
+
|
168 |
+
down_block = get_down_block(
|
169 |
+
down_block_type,
|
170 |
+
num_layers=layers_per_block,
|
171 |
+
in_channels=input_channel,
|
172 |
+
out_channels=output_channel,
|
173 |
+
temb_channels=time_embed_dim,
|
174 |
+
add_downsample=not is_final_block,
|
175 |
+
resnet_eps=norm_eps,
|
176 |
+
resnet_act_fn=act_fn,
|
177 |
+
resnet_groups=norm_num_groups,
|
178 |
+
cross_attention_dim=cross_attention_dim,
|
179 |
+
attn_num_head_channels=attention_head_dim[i],
|
180 |
+
downsample_padding=downsample_padding,
|
181 |
+
dual_cross_attention=False,
|
182 |
+
)
|
183 |
+
self.down_blocks.append(down_block)
|
184 |
+
|
185 |
+
# mid
|
186 |
+
self.mid_block = UNetMidBlock3DCrossAttn(
|
187 |
+
in_channels=block_out_channels[-1],
|
188 |
+
temb_channels=time_embed_dim,
|
189 |
+
resnet_eps=norm_eps,
|
190 |
+
resnet_act_fn=act_fn,
|
191 |
+
output_scale_factor=mid_block_scale_factor,
|
192 |
+
cross_attention_dim=cross_attention_dim,
|
193 |
+
attn_num_head_channels=attention_head_dim[-1],
|
194 |
+
resnet_groups=norm_num_groups,
|
195 |
+
dual_cross_attention=False,
|
196 |
+
)
|
197 |
+
|
198 |
+
# count how many layers upsample the images
|
199 |
+
self.num_upsamplers = 0
|
200 |
+
|
201 |
+
# up
|
202 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
203 |
+
reversed_attention_head_dim = list(reversed(attention_head_dim))
|
204 |
+
|
205 |
+
output_channel = reversed_block_out_channels[0]
|
206 |
+
for i, up_block_type in enumerate(up_block_types):
|
207 |
+
is_final_block = i == len(block_out_channels) - 1
|
208 |
+
|
209 |
+
prev_output_channel = output_channel
|
210 |
+
output_channel = reversed_block_out_channels[i]
|
211 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
212 |
+
|
213 |
+
# add upsample block for all BUT final layer
|
214 |
+
if not is_final_block:
|
215 |
+
add_upsample = True
|
216 |
+
self.num_upsamplers += 1
|
217 |
+
else:
|
218 |
+
add_upsample = False
|
219 |
+
|
220 |
+
up_block = get_up_block(
|
221 |
+
up_block_type,
|
222 |
+
num_layers=layers_per_block + 1,
|
223 |
+
in_channels=input_channel,
|
224 |
+
out_channels=output_channel,
|
225 |
+
prev_output_channel=prev_output_channel,
|
226 |
+
temb_channels=time_embed_dim,
|
227 |
+
add_upsample=add_upsample,
|
228 |
+
resnet_eps=norm_eps,
|
229 |
+
resnet_act_fn=act_fn,
|
230 |
+
resnet_groups=norm_num_groups,
|
231 |
+
cross_attention_dim=cross_attention_dim,
|
232 |
+
attn_num_head_channels=reversed_attention_head_dim[i],
|
233 |
+
dual_cross_attention=False,
|
234 |
+
)
|
235 |
+
self.up_blocks.append(up_block)
|
236 |
+
prev_output_channel = output_channel
|
237 |
+
|
238 |
+
# out
|
239 |
+
if norm_num_groups is not None:
|
240 |
+
self.conv_norm_out = nn.GroupNorm(
|
241 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
242 |
+
)
|
243 |
+
self.conv_act = nn.SiLU()
|
244 |
+
else:
|
245 |
+
self.conv_norm_out = None
|
246 |
+
self.conv_act = None
|
247 |
+
|
248 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
249 |
+
self.conv_out = nn.Conv2d(
|
250 |
+
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
251 |
+
)
|
252 |
+
|
253 |
+
def set_attention_slice(self, slice_size):
|
254 |
+
r"""
|
255 |
+
Enable sliced attention computation.
|
256 |
+
|
257 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
258 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
259 |
+
|
260 |
+
Args:
|
261 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
262 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
263 |
+
`"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
|
264 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
265 |
+
must be a multiple of `slice_size`.
|
266 |
+
"""
|
267 |
+
sliceable_head_dims = []
|
268 |
+
|
269 |
+
def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
|
270 |
+
if hasattr(module, "set_attention_slice"):
|
271 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
272 |
+
|
273 |
+
for child in module.children():
|
274 |
+
fn_recursive_retrieve_slicable_dims(child)
|
275 |
+
|
276 |
+
# retrieve number of attention layers
|
277 |
+
for module in self.children():
|
278 |
+
fn_recursive_retrieve_slicable_dims(module)
|
279 |
+
|
280 |
+
num_slicable_layers = len(sliceable_head_dims)
|
281 |
+
|
282 |
+
if slice_size == "auto":
|
283 |
+
# half the attention head size is usually a good trade-off between
|
284 |
+
# speed and memory
|
285 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
286 |
+
elif slice_size == "max":
|
287 |
+
# make smallest slice possible
|
288 |
+
slice_size = num_slicable_layers * [1]
|
289 |
+
|
290 |
+
slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
291 |
+
|
292 |
+
if len(slice_size) != len(sliceable_head_dims):
|
293 |
+
raise ValueError(
|
294 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
295 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
296 |
+
)
|
297 |
+
|
298 |
+
for i in range(len(slice_size)):
|
299 |
+
size = slice_size[i]
|
300 |
+
dim = sliceable_head_dims[i]
|
301 |
+
if size is not None and size > dim:
|
302 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
303 |
+
|
304 |
+
# Recursively walk through all the children.
|
305 |
+
# Any children which exposes the set_attention_slice method
|
306 |
+
# gets the message
|
307 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
308 |
+
if hasattr(module, "set_attention_slice"):
|
309 |
+
module.set_attention_slice(slice_size.pop())
|
310 |
+
|
311 |
+
for child in module.children():
|
312 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
313 |
+
|
314 |
+
reversed_slice_size = list(reversed(slice_size))
|
315 |
+
for module in self.children():
|
316 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
317 |
+
|
318 |
+
def _set_gradient_checkpointing(self, value=False):
|
319 |
+
self.gradient_checkpointing = value
|
320 |
+
self.mid_block.gradient_checkpointing = value
|
321 |
+
for module in self.down_blocks + self.up_blocks:
|
322 |
+
if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)):
|
323 |
+
module.gradient_checkpointing = value
|
324 |
+
|
325 |
+
def forward(
|
326 |
+
self,
|
327 |
+
sample: torch.FloatTensor,
|
328 |
+
timestep: Union[torch.Tensor, float, int],
|
329 |
+
encoder_hidden_states: torch.Tensor,
|
330 |
+
class_labels: Optional[torch.Tensor] = None,
|
331 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
332 |
+
attention_mask: Optional[torch.Tensor] = None,
|
333 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
334 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
335 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
336 |
+
return_dict: bool = True,
|
337 |
+
) -> Union[UNet3DConditionOutput, Tuple]:
|
338 |
+
r"""
|
339 |
+
Args:
|
340 |
+
sample (`torch.FloatTensor`): (batch, num_frames, channel, height, width) noisy inputs tensor
|
341 |
+
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
|
342 |
+
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
|
343 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
344 |
+
Whether or not to return a [`models.unet_2d_condition.UNet3DConditionOutput`] instead of a plain tuple.
|
345 |
+
cross_attention_kwargs (`dict`, *optional*):
|
346 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
347 |
+
`self.processor` in
|
348 |
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
349 |
+
|
350 |
+
Returns:
|
351 |
+
[`~models.unet_2d_condition.UNet3DConditionOutput`] or `tuple`:
|
352 |
+
[`~models.unet_2d_condition.UNet3DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
353 |
+
returning a tuple, the first element is the sample tensor.
|
354 |
+
"""
|
355 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
356 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
|
357 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
358 |
+
# on the fly if necessary.
|
359 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
360 |
+
|
361 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
362 |
+
forward_upsample_size = False
|
363 |
+
upsample_size = None
|
364 |
+
|
365 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
366 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
367 |
+
forward_upsample_size = True
|
368 |
+
|
369 |
+
# prepare attention_mask
|
370 |
+
if attention_mask is not None:
|
371 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
372 |
+
attention_mask = attention_mask.unsqueeze(1)
|
373 |
+
|
374 |
+
# 1. time
|
375 |
+
timesteps = timestep
|
376 |
+
if not torch.is_tensor(timesteps):
|
377 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
378 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
379 |
+
is_mps = sample.device.type == "mps"
|
380 |
+
if isinstance(timestep, float):
|
381 |
+
dtype = torch.float32 if is_mps else torch.float64
|
382 |
+
else:
|
383 |
+
dtype = torch.int32 if is_mps else torch.int64
|
384 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
385 |
+
elif len(timesteps.shape) == 0:
|
386 |
+
timesteps = timesteps[None].to(sample.device)
|
387 |
+
|
388 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
389 |
+
num_frames = sample.shape[2]
|
390 |
+
timesteps = timesteps.expand(sample.shape[0])
|
391 |
+
|
392 |
+
t_emb = self.time_proj(timesteps)
|
393 |
+
|
394 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
395 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
396 |
+
# there might be better ways to encapsulate this.
|
397 |
+
t_emb = t_emb.to(dtype=self.dtype)
|
398 |
+
|
399 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
400 |
+
emb = emb.repeat_interleave(repeats=num_frames, dim=0)
|
401 |
+
encoder_hidden_states = encoder_hidden_states.repeat_interleave(repeats=num_frames, dim=0)
|
402 |
+
|
403 |
+
# 2. pre-process
|
404 |
+
sample = sample.permute(0, 2, 1, 3, 4).reshape((sample.shape[0] * num_frames, -1) + sample.shape[3:])
|
405 |
+
sample = self.conv_in(sample)
|
406 |
+
|
407 |
+
if self.gradient_checkpointing:
|
408 |
+
sample = transformer_g_c(self.transformer_in, sample, num_frames)
|
409 |
+
else:
|
410 |
+
sample = self.transformer_in(sample, num_frames=num_frames).sample
|
411 |
+
|
412 |
+
# 3. down
|
413 |
+
down_block_res_samples = (sample,)
|
414 |
+
for downsample_block in self.down_blocks:
|
415 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
416 |
+
sample, res_samples = downsample_block(
|
417 |
+
hidden_states=sample,
|
418 |
+
temb=emb,
|
419 |
+
encoder_hidden_states=encoder_hidden_states,
|
420 |
+
attention_mask=attention_mask,
|
421 |
+
num_frames=num_frames,
|
422 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
423 |
+
)
|
424 |
+
else:
|
425 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb, num_frames=num_frames)
|
426 |
+
|
427 |
+
down_block_res_samples += res_samples
|
428 |
+
|
429 |
+
if down_block_additional_residuals is not None:
|
430 |
+
new_down_block_res_samples = ()
|
431 |
+
|
432 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
433 |
+
down_block_res_samples, down_block_additional_residuals
|
434 |
+
):
|
435 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
436 |
+
new_down_block_res_samples += (down_block_res_sample,)
|
437 |
+
|
438 |
+
down_block_res_samples = new_down_block_res_samples
|
439 |
+
|
440 |
+
# 4. mid
|
441 |
+
if self.mid_block is not None:
|
442 |
+
sample = self.mid_block(
|
443 |
+
sample,
|
444 |
+
emb,
|
445 |
+
encoder_hidden_states=encoder_hidden_states,
|
446 |
+
attention_mask=attention_mask,
|
447 |
+
num_frames=num_frames,
|
448 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
449 |
+
)
|
450 |
+
|
451 |
+
if mid_block_additional_residual is not None:
|
452 |
+
sample = sample + mid_block_additional_residual
|
453 |
+
|
454 |
+
# 5. up
|
455 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
456 |
+
is_final_block = i == len(self.up_blocks) - 1
|
457 |
+
|
458 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
459 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
460 |
+
|
461 |
+
# if we have not reached the final block and need to forward the
|
462 |
+
# upsample size, we do it here
|
463 |
+
if not is_final_block and forward_upsample_size:
|
464 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
465 |
+
|
466 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
467 |
+
sample = upsample_block(
|
468 |
+
hidden_states=sample,
|
469 |
+
temb=emb,
|
470 |
+
res_hidden_states_tuple=res_samples,
|
471 |
+
encoder_hidden_states=encoder_hidden_states,
|
472 |
+
upsample_size=upsample_size,
|
473 |
+
attention_mask=attention_mask,
|
474 |
+
num_frames=num_frames,
|
475 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
476 |
+
)
|
477 |
+
else:
|
478 |
+
sample = upsample_block(
|
479 |
+
hidden_states=sample,
|
480 |
+
temb=emb,
|
481 |
+
res_hidden_states_tuple=res_samples,
|
482 |
+
upsample_size=upsample_size,
|
483 |
+
num_frames=num_frames,
|
484 |
+
)
|
485 |
+
|
486 |
+
# 6. post-process
|
487 |
+
if self.conv_norm_out:
|
488 |
+
sample = self.conv_norm_out(sample)
|
489 |
+
sample = self.conv_act(sample)
|
490 |
+
|
491 |
+
sample = self.conv_out(sample)
|
492 |
+
|
493 |
+
# reshape to (batch, channel, framerate, width, height)
|
494 |
+
sample = sample[None, :].reshape((-1, num_frames) + sample.shape[1:]).permute(0, 2, 1, 3, 4)
|
495 |
+
|
496 |
+
if not return_dict:
|
497 |
+
return (sample,)
|
498 |
+
|
499 |
+
return UNet3DConditionOutput(sample=sample)
|