Spaces:
Running
Running
update model name and hyperlink
#11
by
MINGYISU
- opened
- app.py +3 -2
- results.csv +7 -7
- utils.py +21 -0
app.py
CHANGED
@@ -61,13 +61,14 @@ with gr.Blocks() as block:
|
|
61 |
elem_id="tasks-select"
|
62 |
)
|
63 |
|
|
|
64 |
data_component = gr.components.Dataframe(
|
65 |
-
value=df[COLUMN_NAMES],
|
66 |
headers=COLUMN_NAMES,
|
67 |
type="pandas",
|
68 |
datatype=DATA_TITLE_TYPE,
|
69 |
interactive=False,
|
70 |
-
visible=True
|
71 |
)
|
72 |
|
73 |
refresh_button = gr.Button("Refresh")
|
|
|
61 |
elem_id="tasks-select"
|
62 |
)
|
63 |
|
64 |
+
print(create_hyperlinked_names(df)[COLUMN_NAMES])
|
65 |
data_component = gr.components.Dataframe(
|
66 |
+
value=create_hyperlinked_names(df)[COLUMN_NAMES],
|
67 |
headers=COLUMN_NAMES,
|
68 |
type="pandas",
|
69 |
datatype=DATA_TITLE_TYPE,
|
70 |
interactive=False,
|
71 |
+
visible=True
|
72 |
)
|
73 |
|
74 |
refresh_button = gr.Button("Refresh")
|
results.csv
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
Models,Model Size(B),Data Source,Overall,IND,OOD,Classification,VQA,Retrieval,Grounding
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
UniIR (BLIP_FF),0.247,TIGER-Lab,42.8,44.7,40.4,42.1,15.0,60.1,62.2
|
7 |
UniIR (CLIP_SF),0.428,TIGER-Lab,44.7,47.1,41.7,44.3,16.2,61.8,65.3
|
8 |
-
|
9 |
Magiclens,0.428,TIGER-Lab,27.8,31.0,23.7,38.8,8.3,35.4,26.0
|
10 |
-
CLIP-
|
11 |
-
OpenCLIP-
|
12 |
VLM2Vec (Phi-3.5-V-FFT),4.15,TIGER-Lab,55.9,62.8,47.4,52.8,50.3,57.8,72.3
|
13 |
VLM2Vec (Phi-3.5-V-LoRA),4.15,TIGER-Lab,60.1,66.5,52.0,54.8,54.9,62.3,79.5
|
14 |
VLM2Vec (LLaVA-1.6-LoRA-LowRes),7.57,TIGER-Lab,55.0,61.0,47.5,54.7,50.3,56.2,64.0
|
|
|
1 |
Models,Model Size(B),Data Source,Overall,IND,OOD,Classification,VQA,Retrieval,Grounding
|
2 |
+
clip-vit-large-patch14,0.428,TIGER-Lab,37.8,37.1,38.7,42.8,9.1,53.0,51.8
|
3 |
+
blip2-opt-2.7b,3.74,TIGER-Lab,25.2,25.3,25.1,27.0,4.2,33.9,47.0
|
4 |
+
siglip-base-patch16-224,0.203,TIGER-Lab,34.8,32.3,38.0,40.3,8.4,31.6,59.5
|
5 |
+
CLIP-ViT-H-14-laion2B-s32B-b79K,0.986,TIGER-Lab,39.7,39.3,40.2,47.8,10.9,52.3,53.3
|
6 |
UniIR (BLIP_FF),0.247,TIGER-Lab,42.8,44.7,40.4,42.1,15.0,60.1,62.2
|
7 |
UniIR (CLIP_SF),0.428,TIGER-Lab,44.7,47.1,41.7,44.3,16.2,61.8,65.3
|
8 |
+
e5-v,8.36,TIGER-Lab,13.3,14.9,11.5,21.8,4.9,11.5,19.0
|
9 |
Magiclens,0.428,TIGER-Lab,27.8,31.0,23.7,38.8,8.3,35.4,26.0
|
10 |
+
CLIP-FullFineTuned,0.428,TIGER-Lab,45.4,47.6,42.8,55.2,19.7,53.2,62.2
|
11 |
+
OpenCLIP-FullFineTuned,0.632,TIGER-Lab,47.2,50.5,43.1,56.0,21.9,55.4,64.1
|
12 |
VLM2Vec (Phi-3.5-V-FFT),4.15,TIGER-Lab,55.9,62.8,47.4,52.8,50.3,57.8,72.3
|
13 |
VLM2Vec (Phi-3.5-V-LoRA),4.15,TIGER-Lab,60.1,66.5,52.0,54.8,54.9,62.3,79.5
|
14 |
VLM2Vec (LLaVA-1.6-LoRA-LowRes),7.57,TIGER-Lab,55.0,61.0,47.5,54.7,50.3,56.2,64.0
|
utils.py
CHANGED
@@ -96,6 +96,27 @@ SUBMIT_INTRODUCTION = """# Submit on MMEB Leaderboard Introduction
|
|
96 |
Please send us an email at [email protected], attaching the JSON file. We will review your submission and update the leaderboard accordingly.
|
97 |
"""
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
def get_df():
|
100 |
# fetch the leaderboard data
|
101 |
url = "https://huggingface.co/spaces/TIGER-Lab/MMEB/resolve/main/results.csv"
|
|
|
96 |
Please send us an email at [email protected], attaching the JSON file. We will review your submission and update the leaderboard accordingly.
|
97 |
"""
|
98 |
|
99 |
+
MODEL_URLS = {
|
100 |
+
"clip-vit-large-patch14": "https://huggingface.co/openai/clip-vit-large-patch14",
|
101 |
+
"blip2-opt-2.7b": "https://huggingface.co/Salesforce/blip2-opt-2.7b",
|
102 |
+
"siglip-base-patch16-224": "https://huggingface.co/google/siglip-base-patch16-224",
|
103 |
+
"CLIP-ViT-H-14-laion2B-s32B-b79K": "https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K",
|
104 |
+
"e5-v": "https://huggingface.co/royokong/e5-v",
|
105 |
+
"MagicLens": "https://github.com/google-deepmind/magiclens",
|
106 |
+
|
107 |
+
}
|
108 |
+
|
109 |
+
def create_hyperlinked_names(df):
|
110 |
+
def add_link_to_model_name(model_name):
|
111 |
+
if model_name in MODEL_URLS:
|
112 |
+
return f"<a href='{MODEL_URLS[model_name]}'>{model_name}</a>"
|
113 |
+
else:
|
114 |
+
return model_name
|
115 |
+
|
116 |
+
df = df.copy()
|
117 |
+
df['Models'] = df['Models'].apply(add_link_to_model_name)
|
118 |
+
return df
|
119 |
+
|
120 |
def get_df():
|
121 |
# fetch the leaderboard data
|
122 |
url = "https://huggingface.co/spaces/TIGER-Lab/MMEB/resolve/main/results.csv"
|