Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- app.py +27 -0
- requirements.txt +5 -0
- utils.py +177 -0
app.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from utils import (
|
4 |
+
predict,
|
5 |
+
get_html,
|
6 |
+
get_examples
|
7 |
+
)
|
8 |
+
|
9 |
+
examples = get_examples()
|
10 |
+
placeholder = 'Enter a word/phrase or multiple words/phrases separated by commas...'
|
11 |
+
|
12 |
+
|
13 |
+
with gr.Blocks() as interface:
|
14 |
+
gr.HTML(value=get_html, show_label=True)
|
15 |
+
with gr.Row():
|
16 |
+
inputs = [gr.Image(type="pil"),
|
17 |
+
gr.Textbox(label='Text Prompts', placeholder=placeholder, lines=3)]
|
18 |
+
|
19 |
+
with gr.Row():
|
20 |
+
outputs = gr.AnnotatedImage(label="Segmentation Masks")
|
21 |
+
|
22 |
+
with gr.Row():
|
23 |
+
button = gr.Button("Visualize Segments")
|
24 |
+
button.click(predict, inputs=inputs, outputs=outputs)
|
25 |
+
|
26 |
+
with gr.Row():
|
27 |
+
gr.Examples(examples=examples, inputs=inputs, outputs=outputs, fn=predict, cache_examples=True)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
pillow
|
3 |
+
gradio
|
4 |
+
torchvision
|
5 |
+
git+https://github.com/openai/CLIP.git
|
utils.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from torchvision import transforms
|
5 |
+
from clipseg import CLIPDensePredT
|
6 |
+
|
7 |
+
|
8 |
+
transform = transforms.Compose([
|
9 |
+
transforms.ToTensor(),
|
10 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
11 |
+
transforms.Resize((352, 352)),
|
12 |
+
])
|
13 |
+
|
14 |
+
|
15 |
+
model = CLIPDensePredT(version='ViT-B/16', reduce_dim=64)
|
16 |
+
model.eval()
|
17 |
+
model.load_state_dict(torch.load('weights/rd64-uni.pth',
|
18 |
+
map_location=torch.device('cpu')), strict=False)
|
19 |
+
|
20 |
+
|
21 |
+
def predict(image, prompts):
|
22 |
+
"""
|
23 |
+
Predict segmentation masks for the given image based on the provided prompts.
|
24 |
+
|
25 |
+
Parameters:
|
26 |
+
- image (PIL.Image): The input image.
|
27 |
+
- prompts (str): A comma-separated string of prompts.
|
28 |
+
- Model (torch.nn): Segmentation Model.
|
29 |
+
|
30 |
+
Returns:
|
31 |
+
- tuple: A tuple containing the resized input image and a list of segmentation masks.
|
32 |
+
"""
|
33 |
+
|
34 |
+
img = transform(image).unsqueeze(0)
|
35 |
+
|
36 |
+
# Split the prompts string into a list of individual prompts
|
37 |
+
prompts = prompts.split(',')
|
38 |
+
num_prompts = len(prompts)
|
39 |
+
|
40 |
+
# Ensure no gradient computation during prediction for performance
|
41 |
+
with torch.no_grad():
|
42 |
+
# Get model predictions for each prompt
|
43 |
+
preds = model(img.repeat(len(prompts), 1, 1, 1), prompts)[0]
|
44 |
+
|
45 |
+
# Convert model predictions to segmentation masks
|
46 |
+
masks = [torch.sigmoid(preds[i][0]) for i in range(num_prompts)]
|
47 |
+
masks = [(m.squeeze(0).numpy(), prompts[i]) for i, m in enumerate(masks)]
|
48 |
+
|
49 |
+
# Return the resized input image and the list of segmentation masks
|
50 |
+
return (image.resize((352, 352), Image.LANCZOS), masks)
|
51 |
+
|
52 |
+
def get_examples():
|
53 |
+
examples = [
|
54 |
+
['images/000010.jpg', 'deer, tree, grass'],
|
55 |
+
['images/000002.jpg', 'train, tracks, electric pole, house'],
|
56 |
+
['images/00125.jpg', 'dog, flowers'],
|
57 |
+
['images/000010.jpg', 'horse, man, fence, buildings, hill'],
|
58 |
+
['images/000004.jpg', 'car, truck, building, sky, traffic light, tree, clouds']
|
59 |
+
]
|
60 |
+
return(examples)
|
61 |
+
|
62 |
+
|
63 |
+
def get_html():
|
64 |
+
html_string = """
|
65 |
+
<!DOCTYPE html>
|
66 |
+
<html lang="en">
|
67 |
+
|
68 |
+
<head>
|
69 |
+
<meta charset="UTF-8">
|
70 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
71 |
+
<title>Multi-Prompt Image Segmentation</title>
|
72 |
+
<link href="https://fonts.googleapis.com/css2?family=Roboto+Slab:wght@400;700&display=swap" rel="stylesheet">
|
73 |
+
|
74 |
+
<style>
|
75 |
+
/* General styling */
|
76 |
+
body {
|
77 |
+
font-family: 'Roboto Slab', serif;
|
78 |
+
margin: 0;
|
79 |
+
padding: 0;
|
80 |
+
background-color: #f4f4f4;
|
81 |
+
}
|
82 |
+
|
83 |
+
.app-header {
|
84 |
+
background: linear-gradient(135deg, #4a90e2, #50e3c2);
|
85 |
+
color: #fff;
|
86 |
+
text-align: center;
|
87 |
+
padding: 40px 0;
|
88 |
+
border-radius: 20px;
|
89 |
+
position: relative;
|
90 |
+
overflow: hidden;
|
91 |
+
box-shadow: 0px 10px 20px rgba(0, 0, 0, 0.1);
|
92 |
+
}
|
93 |
+
|
94 |
+
/* Ellipse Overlay */
|
95 |
+
.app-header::before {
|
96 |
+
content: "";
|
97 |
+
position: absolute;
|
98 |
+
top: -50%;
|
99 |
+
left: -50%;
|
100 |
+
width: 200%;
|
101 |
+
height: 200%;
|
102 |
+
background: rgba(255, 255, 255, 0.1);
|
103 |
+
transform: rotate(45deg);
|
104 |
+
border-radius: 50%;
|
105 |
+
}
|
106 |
+
|
107 |
+
/* Floating Shapes */
|
108 |
+
.app-header::after {
|
109 |
+
content: "";
|
110 |
+
position: absolute;
|
111 |
+
top: 20%;
|
112 |
+
right: 10%;
|
113 |
+
width: 70px;
|
114 |
+
height: 70px;
|
115 |
+
background: rgba(255, 255, 255, 0.2);
|
116 |
+
border-radius: 50%;
|
117 |
+
}
|
118 |
+
|
119 |
+
.floating-shape {
|
120 |
+
content: "";
|
121 |
+
position: absolute;
|
122 |
+
top: 10%;
|
123 |
+
left: 5%;
|
124 |
+
width: 50px;
|
125 |
+
height: 50px;
|
126 |
+
background: rgba(255, 255, 255, 0.2);
|
127 |
+
border-radius: 50%;
|
128 |
+
}
|
129 |
+
|
130 |
+
/* Text Styling */
|
131 |
+
.app-title {
|
132 |
+
font-size: 28px;
|
133 |
+
margin: 0;
|
134 |
+
font-weight: 700;
|
135 |
+
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.2);
|
136 |
+
}
|
137 |
+
|
138 |
+
.app-description {
|
139 |
+
font-size: 18px;
|
140 |
+
margin-top: 15px;
|
141 |
+
opacity: 0.9;
|
142 |
+
text-shadow: 1px 1px 3px rgba(0, 0, 0, 0.1);
|
143 |
+
}
|
144 |
+
|
145 |
+
/* Wavy Bottom */
|
146 |
+
.wavy-bottom {
|
147 |
+
position: absolute;
|
148 |
+
bottom: -10px;
|
149 |
+
left: 0;
|
150 |
+
width: 100%;
|
151 |
+
height: 20px;
|
152 |
+
background: #f4f4f4;
|
153 |
+
border-radius: 100% 100% 0 0;
|
154 |
+
}
|
155 |
+
</style>
|
156 |
+
</head>
|
157 |
+
|
158 |
+
<body>
|
159 |
+
|
160 |
+
<!-- App Header -->
|
161 |
+
<div class="app-header">
|
162 |
+
<h1 class="app-title">Multi-Prompt Image Segmentation</h1>
|
163 |
+
<p class="app-description">Upload an image and provide multiple text prompts separated by commas. Get segmented masks for each prompt.</p>
|
164 |
+
<div class="floating-shape"></div>
|
165 |
+
<div class="wavy-bottom"></div>
|
166 |
+
</div>
|
167 |
+
|
168 |
+
<!-- Rest of the app content will go here -->
|
169 |
+
|
170 |
+
</body>
|
171 |
+
|
172 |
+
</html>
|
173 |
+
|
174 |
+
|
175 |
+
"""
|
176 |
+
|
177 |
+
return(html_string)
|