Sijuade commited on
Commit
fee9635
·
1 Parent(s): d193fbc

Upload 10 files

Browse files
clipseg.py ADDED
@@ -0,0 +1,538 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from os.path import basename, dirname, join, isfile
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as nnf
6
+ from torch.nn.modules.activation import ReLU
7
+
8
+
9
+ def get_prompt_list(prompt):
10
+ if prompt == 'plain':
11
+ return ['{}']
12
+ elif prompt == 'fixed':
13
+ return ['a photo of a {}.']
14
+ elif prompt == 'shuffle':
15
+ return ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.']
16
+ elif prompt == 'shuffle+':
17
+ return ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.',
18
+ 'a cropped photo of a {}.', 'a good photo of a {}.', 'a photo of one {}.',
19
+ 'a bad photo of a {}.', 'a photo of the {}.']
20
+ else:
21
+ raise ValueError('Invalid value for prompt')
22
+
23
+
24
+ def forward_multihead_attention(x, b, with_aff=False, attn_mask=None):
25
+ """
26
+ Simplified version of multihead attention (taken from torch source code but without tons of if clauses).
27
+ The mlp and layer norm come from CLIP.
28
+ x: input.
29
+ b: multihead attention module.
30
+ """
31
+
32
+ x_ = b.ln_1(x)
33
+ q, k, v = nnf.linear(x_, b.attn.in_proj_weight, b.attn.in_proj_bias).chunk(3, dim=-1)
34
+ tgt_len, bsz, embed_dim = q.size()
35
+
36
+ head_dim = embed_dim // b.attn.num_heads
37
+ scaling = float(head_dim) ** -0.5
38
+
39
+ q = q.contiguous().view(tgt_len, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
40
+ k = k.contiguous().view(-1, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
41
+ v = v.contiguous().view(-1, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
42
+
43
+ q = q * scaling
44
+
45
+ attn_output_weights = torch.bmm(q, k.transpose(1, 2)) # n_heads * batch_size, tokens^2, tokens^2
46
+ if attn_mask is not None:
47
+
48
+
49
+ attn_mask_type, attn_mask = attn_mask
50
+ n_heads = attn_output_weights.size(0) // attn_mask.size(0)
51
+ attn_mask = attn_mask.repeat(n_heads, 1)
52
+
53
+ if attn_mask_type == 'cls_token':
54
+ # the mask only affects similarities compared to the readout-token.
55
+ attn_output_weights[:, 0, 1:] = attn_output_weights[:, 0, 1:] * attn_mask[None,...]
56
+ # attn_output_weights[:, 0, 0] = 0*attn_output_weights[:, 0, 0]
57
+
58
+ if attn_mask_type == 'all':
59
+ # print(attn_output_weights.shape, attn_mask[:, None].shape)
60
+ attn_output_weights[:, 1:, 1:] = attn_output_weights[:, 1:, 1:] * attn_mask[:, None]
61
+
62
+
63
+ attn_output_weights = torch.softmax(attn_output_weights, dim=-1)
64
+
65
+ attn_output = torch.bmm(attn_output_weights, v)
66
+ attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
67
+ attn_output = b.attn.out_proj(attn_output)
68
+
69
+ x = x + attn_output
70
+ x = x + b.mlp(b.ln_2(x))
71
+
72
+ if with_aff:
73
+ return x, attn_output_weights
74
+ else:
75
+ return x
76
+
77
+
78
+ class CLIPDenseBase(nn.Module):
79
+
80
+ def __init__(self, version, reduce_cond, reduce_dim, prompt, n_tokens):
81
+ super().__init__()
82
+
83
+ import clip
84
+
85
+ # prec = torch.FloatTensor
86
+ self.clip_model, _ = clip.load(version, device='cpu', jit=False)
87
+ self.model = self.clip_model.visual
88
+
89
+ # if not None, scale conv weights such that we obtain n_tokens.
90
+ self.n_tokens = n_tokens
91
+
92
+ for p in self.clip_model.parameters():
93
+ p.requires_grad_(False)
94
+
95
+ # conditional
96
+ if reduce_cond is not None:
97
+ self.reduce_cond = nn.Linear(512, reduce_cond)
98
+ for p in self.reduce_cond.parameters():
99
+ p.requires_grad_(False)
100
+ else:
101
+ self.reduce_cond = None
102
+
103
+ self.film_mul = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
104
+ self.film_add = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
105
+
106
+ self.reduce = nn.Linear(768, reduce_dim)
107
+
108
+ self.prompt_list = get_prompt_list(prompt)
109
+
110
+ # precomputed prompts
111
+ import pickle
112
+ if isfile('precomputed_prompt_vectors.pickle'):
113
+ precomp = pickle.load(open('precomputed_prompt_vectors.pickle', 'rb'))
114
+ self.precomputed_prompts = {k: torch.from_numpy(v) for k, v in precomp.items()}
115
+ else:
116
+ self.precomputed_prompts = dict()
117
+
118
+ def rescaled_pos_emb(self, new_size):
119
+ assert len(new_size) == 2
120
+
121
+ a = self.model.positional_embedding[1:].T.view(1, 768, *self.token_shape)
122
+ b = nnf.interpolate(a, new_size, mode='bicubic', align_corners=False).squeeze(0).view(768, new_size[0]*new_size[1]).T
123
+ return torch.cat([self.model.positional_embedding[:1], b])
124
+
125
+ def visual_forward(self, x_inp, extract_layers=(), skip=False, mask=None):
126
+
127
+
128
+ with torch.no_grad():
129
+
130
+ inp_size = x_inp.shape[2:]
131
+
132
+ if self.n_tokens is not None:
133
+ stride2 = x_inp.shape[2] // self.n_tokens
134
+ conv_weight2 = nnf.interpolate(self.model.conv1.weight, (stride2, stride2), mode='bilinear', align_corners=True)
135
+ x = nnf.conv2d(x_inp, conv_weight2, bias=self.model.conv1.bias, stride=stride2, dilation=self.model.conv1.dilation)
136
+ else:
137
+ x = self.model.conv1(x_inp) # shape = [*, width, grid, grid]
138
+
139
+ x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
140
+ x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
141
+
142
+ x = torch.cat([self.model.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
143
+
144
+ standard_n_tokens = 50 if self.model.conv1.kernel_size[0] == 32 else 197
145
+
146
+ if x.shape[1] != standard_n_tokens:
147
+ new_shape = int(math.sqrt(x.shape[1]-1))
148
+ x = x + self.rescaled_pos_emb((new_shape, new_shape)).to(x.dtype)[None,:,:]
149
+ else:
150
+ x = x + self.model.positional_embedding.to(x.dtype)
151
+
152
+ x = self.model.ln_pre(x)
153
+
154
+ x = x.permute(1, 0, 2) # NLD -> LND
155
+
156
+ activations, affinities = [], []
157
+ for i, res_block in enumerate(self.model.transformer.resblocks):
158
+
159
+ if mask is not None:
160
+ mask_layer, mask_type, mask_tensor = mask
161
+ if mask_layer == i or mask_layer == 'all':
162
+ # import ipdb; ipdb.set_trace()
163
+ size = int(math.sqrt(x.shape[0] - 1))
164
+
165
+ attn_mask = (mask_type, nnf.interpolate(mask_tensor.unsqueeze(1).float(), (size, size)).view(mask_tensor.shape[0], size * size))
166
+
167
+ else:
168
+ attn_mask = None
169
+ else:
170
+ attn_mask = None
171
+
172
+ x, aff_per_head = forward_multihead_attention(x, res_block, with_aff=True, attn_mask=attn_mask)
173
+
174
+ if i in extract_layers:
175
+ affinities += [aff_per_head]
176
+
177
+ #if self.n_tokens is not None:
178
+ # activations += [nnf.interpolate(x, inp_size, mode='bilinear', align_corners=True)]
179
+ #else:
180
+ activations += [x]
181
+
182
+ if len(extract_layers) > 0 and i == max(extract_layers) and skip:
183
+ print('early skip')
184
+ break
185
+
186
+ x = x.permute(1, 0, 2) # LND -> NLD
187
+ x = self.model.ln_post(x[:, 0, :])
188
+
189
+ if self.model.proj is not None:
190
+ x = x @ self.model.proj
191
+
192
+ return x, activations, affinities
193
+
194
+ def sample_prompts(self, words, prompt_list=None):
195
+
196
+ prompt_list = prompt_list if prompt_list is not None else self.prompt_list
197
+
198
+ prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True)
199
+ prompts = [prompt_list[i] for i in prompt_indices]
200
+ return [promt.format(w) for promt, w in zip(prompts, words)]
201
+
202
+ def get_cond_vec(self, conditional, batch_size):
203
+ # compute conditional from a single string
204
+ if conditional is not None and type(conditional) == str:
205
+ cond = self.compute_conditional(conditional)
206
+ cond = cond.repeat(batch_size, 1)
207
+
208
+ # compute conditional from string list/tuple
209
+ elif conditional is not None and type(conditional) in {list, tuple} and type(conditional[0]) == str:
210
+ assert len(conditional) == batch_size
211
+ cond = self.compute_conditional(conditional)
212
+
213
+ # use conditional directly
214
+ elif conditional is not None and type(conditional) == torch.Tensor and conditional.ndim == 2:
215
+ cond = conditional
216
+
217
+ # compute conditional from image
218
+ elif conditional is not None and type(conditional) == torch.Tensor:
219
+ with torch.no_grad():
220
+ cond, _, _ = self.visual_forward(conditional)
221
+ else:
222
+ raise ValueError('invalid conditional')
223
+ return cond
224
+
225
+ def compute_conditional(self, conditional):
226
+ import clip
227
+
228
+ dev = next(self.parameters()).device
229
+
230
+ if type(conditional) in {list, tuple}:
231
+ text_tokens = clip.tokenize(conditional).to(dev)
232
+ cond = self.clip_model.encode_text(text_tokens)
233
+ else:
234
+ if conditional in self.precomputed_prompts:
235
+ cond = self.precomputed_prompts[conditional].float().to(dev)
236
+ else:
237
+ text_tokens = clip.tokenize([conditional]).to(dev)
238
+ cond = self.clip_model.encode_text(text_tokens)[0]
239
+
240
+ if self.shift_vector is not None:
241
+ return cond + self.shift_vector
242
+ else:
243
+ return cond
244
+
245
+
246
+ def clip_load_untrained(version):
247
+ assert version == 'ViT-B/16'
248
+ from clip.model import CLIP
249
+ from clip.clip import _MODELS, _download
250
+ model = torch.jit.load(_download(_MODELS['ViT-B/16'])).eval()
251
+ state_dict = model.state_dict()
252
+
253
+ vision_width = state_dict["visual.conv1.weight"].shape[0]
254
+ vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
255
+ vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
256
+ grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
257
+ image_resolution = vision_patch_size * grid_size
258
+ embed_dim = state_dict["text_projection"].shape[1]
259
+ context_length = state_dict["positional_embedding"].shape[0]
260
+ vocab_size = state_dict["token_embedding.weight"].shape[0]
261
+ transformer_width = state_dict["ln_final.weight"].shape[0]
262
+ transformer_heads = transformer_width // 64
263
+ transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
264
+
265
+ return CLIP(embed_dim, image_resolution, vision_layers, vision_width, vision_patch_size,
266
+ context_length, vocab_size, transformer_width, transformer_heads, transformer_layers)
267
+
268
+
269
+ class CLIPDensePredT(CLIPDenseBase):
270
+
271
+ def __init__(self, version='ViT-B/32', extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4, prompt='fixed',
272
+ extra_blocks=0, reduce_cond=None, fix_shift=False,
273
+ learn_trans_conv_only=False, limit_to_clip_only=False, upsample=False,
274
+ add_calibration=False, rev_activations=False, trans_conv=None, n_tokens=None, complex_trans_conv=False):
275
+
276
+ super().__init__(version, reduce_cond, reduce_dim, prompt, n_tokens)
277
+ # device = 'cpu'
278
+
279
+ self.extract_layers = extract_layers
280
+ self.cond_layer = cond_layer
281
+ self.limit_to_clip_only = limit_to_clip_only
282
+ self.process_cond = None
283
+ self.rev_activations = rev_activations
284
+
285
+ depth = len(extract_layers)
286
+
287
+ if add_calibration:
288
+ self.calibration_conds = 1
289
+
290
+ self.upsample_proj = nn.Conv2d(reduce_dim, 1, kernel_size=1) if upsample else None
291
+
292
+ self.add_activation1 = True
293
+
294
+ self.version = version
295
+
296
+ self.token_shape = {'ViT-B/32': (7, 7), 'ViT-B/16': (14, 14)}[version]
297
+
298
+ if fix_shift:
299
+ # self.shift_vector = nn.Parameter(torch.load(join(dirname(basename(__file__)), 'clip_text_shift_vector.pth')), requires_grad=False)
300
+ self.shift_vector = nn.Parameter(torch.load(join(dirname(basename(__file__)), 'shift_text_to_vis.pth')), requires_grad=False)
301
+ # self.shift_vector = nn.Parameter(-1*torch.load(join(dirname(basename(__file__)), 'shift2.pth')), requires_grad=False)
302
+ else:
303
+ self.shift_vector = None
304
+
305
+ if trans_conv is None:
306
+ trans_conv_ks = {'ViT-B/32': (32, 32), 'ViT-B/16': (16, 16)}[version]
307
+ else:
308
+ # explicitly define transposed conv kernel size
309
+ trans_conv_ks = (trans_conv, trans_conv)
310
+
311
+ if not complex_trans_conv:
312
+ self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
313
+ else:
314
+ assert trans_conv_ks[0] == trans_conv_ks[1]
315
+
316
+ tp_kernels = (trans_conv_ks[0] // 4, trans_conv_ks[0] // 4)
317
+
318
+ self.trans_conv = nn.Sequential(
319
+ nn.Conv2d(reduce_dim, reduce_dim, kernel_size=3, padding=1),
320
+ nn.ReLU(),
321
+ nn.ConvTranspose2d(reduce_dim, reduce_dim // 2, kernel_size=tp_kernels[0], stride=tp_kernels[0]),
322
+ nn.ReLU(),
323
+ nn.ConvTranspose2d(reduce_dim // 2, 1, kernel_size=tp_kernels[1], stride=tp_kernels[1]),
324
+ )
325
+
326
+ # self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
327
+
328
+ assert len(self.extract_layers) == depth
329
+
330
+ self.reduces = nn.ModuleList([nn.Linear(768, reduce_dim) for _ in range(depth)])
331
+ self.blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(len(self.extract_layers))])
332
+ self.extra_blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(extra_blocks)])
333
+
334
+ # refinement and trans conv
335
+
336
+ if learn_trans_conv_only:
337
+ for p in self.parameters():
338
+ p.requires_grad_(False)
339
+
340
+ for p in self.trans_conv.parameters():
341
+ p.requires_grad_(True)
342
+
343
+ self.prompt_list = get_prompt_list(prompt)
344
+
345
+
346
+ def forward(self, inp_image, conditional=None, return_features=False, mask=None):
347
+
348
+ assert type(return_features) == bool
349
+
350
+ inp_image = inp_image.to(self.model.positional_embedding.device)
351
+
352
+ if mask is not None:
353
+ raise ValueError('mask not supported')
354
+
355
+ # x_inp = normalize(inp_image)
356
+ x_inp = inp_image
357
+
358
+ bs, dev = inp_image.shape[0], x_inp.device
359
+
360
+ cond = self.get_cond_vec(conditional, bs)
361
+
362
+ visual_q, activations, _ = self.visual_forward(x_inp, extract_layers=[0] + list(self.extract_layers))
363
+
364
+ activation1 = activations[0]
365
+ activations = activations[1:]
366
+
367
+ _activations = activations[::-1] if not self.rev_activations else activations
368
+
369
+ a = None
370
+ for i, (activation, block, reduce) in enumerate(zip(_activations, self.blocks, self.reduces)):
371
+
372
+ if a is not None:
373
+ a = reduce(activation) + a
374
+ else:
375
+ a = reduce(activation)
376
+
377
+ if i == self.cond_layer:
378
+ if self.reduce_cond is not None:
379
+ cond = self.reduce_cond(cond)
380
+
381
+ a = self.film_mul(cond) * a + self.film_add(cond)
382
+
383
+ a = block(a)
384
+
385
+ for block in self.extra_blocks:
386
+ a = a + block(a)
387
+
388
+ a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens
389
+
390
+ size = int(math.sqrt(a.shape[2]))
391
+
392
+ a = a.view(bs, a.shape[1], size, size)
393
+
394
+ a = self.trans_conv(a)
395
+
396
+ if self.n_tokens is not None:
397
+ a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear', align_corners=True)
398
+
399
+ if self.upsample_proj is not None:
400
+ a = self.upsample_proj(a)
401
+ a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear')
402
+
403
+ if return_features:
404
+ return a, visual_q, cond, [activation1] + activations
405
+ else:
406
+ return a,
407
+
408
+
409
+
410
+ class CLIPDensePredTMasked(CLIPDensePredT):
411
+
412
+ def __init__(self, version='ViT-B/32', extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4,
413
+ prompt='fixed', extra_blocks=0, reduce_cond=None, fix_shift=False, learn_trans_conv_only=False,
414
+ refine=None, limit_to_clip_only=False, upsample=False, add_calibration=False, n_tokens=None):
415
+
416
+ super().__init__(version=version, extract_layers=extract_layers, cond_layer=cond_layer, reduce_dim=reduce_dim,
417
+ n_heads=n_heads, prompt=prompt, extra_blocks=extra_blocks, reduce_cond=reduce_cond,
418
+ fix_shift=fix_shift, learn_trans_conv_only=learn_trans_conv_only,
419
+ limit_to_clip_only=limit_to_clip_only, upsample=upsample, add_calibration=add_calibration,
420
+ n_tokens=n_tokens)
421
+
422
+ def visual_forward_masked(self, img_s, seg_s):
423
+ return super().visual_forward(img_s, mask=('all', 'cls_token', seg_s))
424
+
425
+ def forward(self, img_q, cond_or_img_s, seg_s=None, return_features=False):
426
+
427
+ if seg_s is None:
428
+ cond = cond_or_img_s
429
+ else:
430
+ img_s = cond_or_img_s
431
+
432
+ with torch.no_grad():
433
+ cond, _, _ = self.visual_forward_masked(img_s, seg_s)
434
+
435
+ return super().forward(img_q, cond, return_features=return_features)
436
+
437
+
438
+
439
+ class CLIPDenseBaseline(CLIPDenseBase):
440
+
441
+ def __init__(self, version='ViT-B/32', cond_layer=0,
442
+ extract_layer=9, reduce_dim=128, reduce2_dim=None, prompt='fixed',
443
+ reduce_cond=None, limit_to_clip_only=False, n_tokens=None):
444
+
445
+ super().__init__(version, reduce_cond, reduce_dim, prompt, n_tokens)
446
+ device = 'cpu'
447
+
448
+ # self.cond_layer = cond_layer
449
+ self.extract_layer = extract_layer
450
+ self.limit_to_clip_only = limit_to_clip_only
451
+ self.shift_vector = None
452
+
453
+ self.token_shape = {'ViT-B/32': (7, 7), 'ViT-B/16': (14, 14)}[version]
454
+
455
+ assert reduce2_dim is not None
456
+
457
+ self.reduce2 = nn.Sequential(
458
+ nn.Linear(reduce_dim, reduce2_dim),
459
+ nn.ReLU(),
460
+ nn.Linear(reduce2_dim, reduce_dim)
461
+ )
462
+
463
+ trans_conv_ks = {'ViT-B/32': (32, 32), 'ViT-B/16': (16, 16)}[version]
464
+ self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
465
+
466
+
467
+ def forward(self, inp_image, conditional=None, return_features=False):
468
+
469
+ inp_image = inp_image.to(self.model.positional_embedding.device)
470
+
471
+ # x_inp = normalize(inp_image)
472
+ x_inp = inp_image
473
+
474
+ bs, dev = inp_image.shape[0], x_inp.device
475
+
476
+ cond = self.get_cond_vec(conditional, bs)
477
+
478
+ visual_q, activations, affinities = self.visual_forward(x_inp, extract_layers=[self.extract_layer])
479
+
480
+ a = activations[0]
481
+ a = self.reduce(a)
482
+ a = self.film_mul(cond) * a + self.film_add(cond)
483
+
484
+ if self.reduce2 is not None:
485
+ a = self.reduce2(a)
486
+
487
+ # the original model would execute a transformer block here
488
+
489
+ a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens
490
+
491
+ size = int(math.sqrt(a.shape[2]))
492
+
493
+ a = a.view(bs, a.shape[1], size, size)
494
+ a = self.trans_conv(a)
495
+
496
+ if return_features:
497
+ return a, visual_q, cond, activations
498
+ else:
499
+ return a,
500
+
501
+
502
+ class CLIPSegMultiLabel(nn.Module):
503
+
504
+ def __init__(self, model) -> None:
505
+ super().__init__()
506
+
507
+ from third_party.JoEm.data_loader import get_seen_idx, get_unseen_idx, VOC
508
+
509
+ self.pascal_classes = VOC
510
+
511
+ from models.clipseg import CLIPDensePredT
512
+ from general_utils import load_model
513
+ # self.clipseg = load_model('rd64-vit16-neg0.2-phrasecut', strict=False)
514
+ self.clipseg = load_model(model, strict=False)
515
+
516
+ self.clipseg.eval()
517
+
518
+ def forward(self, x):
519
+
520
+ bs = x.shape[0]
521
+ out = torch.ones(21, bs, 352, 352).to(x.device) * -10
522
+
523
+ for class_id, class_name in enumerate(self.pascal_classes):
524
+
525
+ fac = 3 if class_name == 'background' else 1
526
+
527
+ with torch.no_grad():
528
+ pred = torch.sigmoid(self.clipseg(x, class_name)[0][:,0]) * fac
529
+
530
+ out[class_id] += pred
531
+
532
+
533
+ out = out.permute(1, 0, 2, 3)
534
+
535
+ return out
536
+
537
+ # construct output tensor
538
+
images/000002.jpg ADDED
images/000004.jpg ADDED
images/000010.jpg ADDED
images/000013.jpg ADDED
images/00125.jpg ADDED
vitseg.py ADDED
@@ -0,0 +1,286 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from posixpath import basename, dirname, join
3
+ # import clip
4
+ from clip.model import convert_weights
5
+ import torch
6
+ import json
7
+ from torch import nn
8
+ from torch.nn import functional as nnf
9
+ from torch.nn.modules import activation
10
+ from torch.nn.modules.activation import ReLU
11
+ from torchvision import transforms
12
+
13
+ normalize = transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
14
+
15
+ from torchvision.models import ResNet
16
+
17
+
18
+ def process_prompts(conditional, prompt_list, conditional_map):
19
+ # DEPRECATED
20
+
21
+ # randomly sample a synonym
22
+ words = [conditional_map[int(i)] for i in conditional]
23
+ words = [syns[torch.multinomial(torch.ones(len(syns)), 1, replacement=True).item()] for syns in words]
24
+ words = [w.replace('_', ' ') for w in words]
25
+
26
+ if prompt_list is not None:
27
+ prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True)
28
+ prompts = [prompt_list[i] for i in prompt_indices]
29
+ else:
30
+ prompts = ['a photo of {}'] * (len(words))
31
+
32
+ return [promt.format(w) for promt, w in zip(prompts, words)]
33
+
34
+
35
+ class VITDenseBase(nn.Module):
36
+
37
+ def rescaled_pos_emb(self, new_size):
38
+ assert len(new_size) == 2
39
+
40
+ a = self.model.positional_embedding[1:].T.view(1, 768, *self.token_shape)
41
+ b = nnf.interpolate(a, new_size, mode='bicubic', align_corners=False).squeeze(0).view(768, new_size[0]*new_size[1]).T
42
+ return torch.cat([self.model.positional_embedding[:1], b])
43
+
44
+ def visual_forward(self, x_inp, extract_layers=(), skip=False, mask=None):
45
+
46
+ with torch.no_grad():
47
+
48
+ x_inp = nnf.interpolate(x_inp, (384, 384))
49
+
50
+ x = self.model.patch_embed(x_inp)
51
+ cls_token = self.model.cls_token.expand(x.shape[0], -1, -1) # stole cls_tokens impl from Phil Wang, thanks
52
+ if self.model.dist_token is None:
53
+ x = torch.cat((cls_token, x), dim=1)
54
+ else:
55
+ x = torch.cat((cls_token, self.model.dist_token.expand(x.shape[0], -1, -1), x), dim=1)
56
+ x = self.model.pos_drop(x + self.model.pos_embed)
57
+
58
+ activations = []
59
+ for i, block in enumerate(self.model.blocks):
60
+ x = block(x)
61
+
62
+ if i in extract_layers:
63
+ # permute to be compatible with CLIP
64
+ activations += [x.permute(1,0,2)]
65
+
66
+ x = self.model.norm(x)
67
+ x = self.model.head(self.model.pre_logits(x[:, 0]))
68
+
69
+ # again for CLIP compatibility
70
+ # x = x.permute(1, 0, 2)
71
+
72
+ return x, activations, None
73
+
74
+ def sample_prompts(self, words, prompt_list=None):
75
+
76
+ prompt_list = prompt_list if prompt_list is not None else self.prompt_list
77
+
78
+ prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True)
79
+ prompts = [prompt_list[i] for i in prompt_indices]
80
+ return [promt.format(w) for promt, w in zip(prompts, words)]
81
+
82
+ def get_cond_vec(self, conditional, batch_size):
83
+ # compute conditional from a single string
84
+ if conditional is not None and type(conditional) == str:
85
+ cond = self.compute_conditional(conditional)
86
+ cond = cond.repeat(batch_size, 1)
87
+
88
+ # compute conditional from string list/tuple
89
+ elif conditional is not None and type(conditional) in {list, tuple} and type(conditional[0]) == str:
90
+ assert len(conditional) == batch_size
91
+ cond = self.compute_conditional(conditional)
92
+
93
+ # use conditional directly
94
+ elif conditional is not None and type(conditional) == torch.Tensor and conditional.ndim == 2:
95
+ cond = conditional
96
+
97
+ # compute conditional from image
98
+ elif conditional is not None and type(conditional) == torch.Tensor:
99
+ with torch.no_grad():
100
+ cond, _, _ = self.visual_forward(conditional)
101
+ else:
102
+ raise ValueError('invalid conditional')
103
+ return cond
104
+
105
+ def compute_conditional(self, conditional):
106
+ import clip
107
+
108
+ dev = next(self.parameters()).device
109
+
110
+ if type(conditional) in {list, tuple}:
111
+ text_tokens = clip.tokenize(conditional).to(dev)
112
+ cond = self.clip_model.encode_text(text_tokens)
113
+ else:
114
+ if conditional in self.precomputed_prompts:
115
+ cond = self.precomputed_prompts[conditional].float().to(dev)
116
+ else:
117
+ text_tokens = clip.tokenize([conditional]).to(dev)
118
+ cond = self.clip_model.encode_text(text_tokens)[0]
119
+
120
+ return cond
121
+
122
+
123
+ class VITDensePredT(VITDenseBase):
124
+
125
+ def __init__(self, extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4, prompt='fixed',
126
+ depth=3, extra_blocks=0, reduce_cond=None, fix_shift=False,
127
+ learn_trans_conv_only=False, refine=None, limit_to_clip_only=False, upsample=False,
128
+ add_calibration=False, process_cond=None, not_pretrained=False):
129
+ super().__init__()
130
+ # device = 'cpu'
131
+
132
+ self.extract_layers = extract_layers
133
+ self.cond_layer = cond_layer
134
+ self.limit_to_clip_only = limit_to_clip_only
135
+ self.process_cond = None
136
+
137
+ if add_calibration:
138
+ self.calibration_conds = 1
139
+
140
+ self.upsample_proj = nn.Conv2d(reduce_dim, 1, kernel_size=1) if upsample else None
141
+
142
+ self.add_activation1 = True
143
+
144
+ import timm
145
+ self.model = timm.create_model('vit_base_patch16_384', pretrained=True)
146
+ self.model.head = nn.Linear(768, 512 if reduce_cond is None else reduce_cond)
147
+
148
+ for p in self.model.parameters():
149
+ p.requires_grad_(False)
150
+
151
+ import clip
152
+ self.clip_model, _ = clip.load('ViT-B/16', device='cpu', jit=False)
153
+ # del self.clip_model.visual
154
+
155
+
156
+ self.token_shape = (14, 14)
157
+
158
+ # conditional
159
+ if reduce_cond is not None:
160
+ self.reduce_cond = nn.Linear(512, reduce_cond)
161
+ for p in self.reduce_cond.parameters():
162
+ p.requires_grad_(False)
163
+ else:
164
+ self.reduce_cond = None
165
+
166
+ # self.film = AVAILABLE_BLOCKS['film'](512, 128)
167
+ self.film_mul = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
168
+ self.film_add = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
169
+
170
+ # DEPRECATED
171
+ # self.conditional_map = {c['id']: c['synonyms'] for c in json.load(open(cond_map))}
172
+
173
+ assert len(self.extract_layers) == depth
174
+
175
+ self.reduces = nn.ModuleList([nn.Linear(768, reduce_dim) for _ in range(depth)])
176
+ self.blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(len(self.extract_layers))])
177
+ self.extra_blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(extra_blocks)])
178
+
179
+ trans_conv_ks = (16, 16)
180
+ self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
181
+
182
+ # refinement and trans conv
183
+
184
+ if learn_trans_conv_only:
185
+ for p in self.parameters():
186
+ p.requires_grad_(False)
187
+
188
+ for p in self.trans_conv.parameters():
189
+ p.requires_grad_(True)
190
+
191
+ if prompt == 'fixed':
192
+ self.prompt_list = ['a photo of a {}.']
193
+ elif prompt == 'shuffle':
194
+ self.prompt_list = ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.']
195
+ elif prompt == 'shuffle+':
196
+ self.prompt_list = ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.',
197
+ 'a cropped photo of a {}.', 'a good photo of a {}.', 'a photo of one {}.',
198
+ 'a bad photo of a {}.', 'a photo of the {}.']
199
+ elif prompt == 'shuffle_clip':
200
+ from models.clip_prompts import imagenet_templates
201
+ self.prompt_list = imagenet_templates
202
+
203
+ if process_cond is not None:
204
+ if process_cond == 'clamp' or process_cond[0] == 'clamp':
205
+
206
+ val = process_cond[1] if type(process_cond) in {list, tuple} else 0.2
207
+
208
+ def clamp_vec(x):
209
+ return torch.clamp(x, -val, val)
210
+
211
+ self.process_cond = clamp_vec
212
+
213
+ elif process_cond.endswith('.pth'):
214
+
215
+ shift = torch.load(process_cond)
216
+ def add_shift(x):
217
+ return x + shift.to(x.device)
218
+
219
+ self.process_cond = add_shift
220
+
221
+ import pickle
222
+ precomp = pickle.load(open('precomputed_prompt_vectors.pickle', 'rb'))
223
+ self.precomputed_prompts = {k: torch.from_numpy(v) for k, v in precomp.items()}
224
+
225
+
226
+ def forward(self, inp_image, conditional=None, return_features=False, mask=None):
227
+
228
+ assert type(return_features) == bool
229
+
230
+ # inp_image = inp_image.to(self.model.positional_embedding.device)
231
+
232
+ if mask is not None:
233
+ raise ValueError('mask not supported')
234
+
235
+ # x_inp = normalize(inp_image)
236
+ x_inp = inp_image
237
+
238
+ bs, dev = inp_image.shape[0], x_inp.device
239
+
240
+ inp_image_size = inp_image.shape[2:]
241
+
242
+ cond = self.get_cond_vec(conditional, bs)
243
+
244
+ visual_q, activations, _ = self.visual_forward(x_inp, extract_layers=[0] + list(self.extract_layers))
245
+
246
+ activation1 = activations[0]
247
+ activations = activations[1:]
248
+
249
+ a = None
250
+ for i, (activation, block, reduce) in enumerate(zip(activations[::-1], self.blocks, self.reduces)):
251
+
252
+ if a is not None:
253
+ a = reduce(activation) + a
254
+ else:
255
+ a = reduce(activation)
256
+
257
+ if i == self.cond_layer:
258
+ if self.reduce_cond is not None:
259
+ cond = self.reduce_cond(cond)
260
+
261
+ a = self.film_mul(cond) * a + self.film_add(cond)
262
+
263
+ a = block(a)
264
+
265
+ for block in self.extra_blocks:
266
+ a = a + block(a)
267
+
268
+ a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens
269
+
270
+ size = int(math.sqrt(a.shape[2]))
271
+
272
+ a = a.view(bs, a.shape[1], size, size)
273
+
274
+ if self.trans_conv is not None:
275
+ a = self.trans_conv(a)
276
+
277
+ if self.upsample_proj is not None:
278
+ a = self.upsample_proj(a)
279
+ a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear')
280
+
281
+ a = nnf.interpolate(a, inp_image_size)
282
+
283
+ if return_features:
284
+ return a, visual_q, cond, [activation1] + activations
285
+ else:
286
+ return a,
weights/rd16-uni.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61545cdb3a28f99d33d457c64a9721ade835a9dfbda604c459de6831c504167a
3
+ size 1118607
weights/rd64-uni-refined.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4956f9a7978a75630b08c9d6ec075b7c51cf43b4751b686e3a011d4012ddc9d
3
+ size 4720707
weights/rd64-uni.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13845f6cee4d54ca46f62ee19dd354822094a26e0efccc64e606be93d6a7e26f
3
+ size 4306645