andy-wyx commited on
Commit
85494ec
·
1 Parent(s): 03e873d

update model name

Browse files
Files changed (1) hide show
  1. app.py +32 -32
app.py CHANGED
@@ -107,21 +107,21 @@ def get_model(model_name):
107
  backbone_class=tf.keras.applications.ResNet50V2,
108
  nb_classes = n_classes,load_weights=False,finer_model=True,backbone_name ='Resnet50v2')
109
  model.load_weights('model_classification/rock-170.h5')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
  elif model_name == 'Fossils 142':
111
- n_classes = 142
112
- model = get_triplet_model_beit(input_shape = (384, 384, 3),
113
- embedding_units = 256,
114
- embedding_depth = 2,
115
- n_classes = n_classes)
116
- model.load_weights('model_classification/fossil-142.h5')
117
- elif model_name == 'Fossils new':
118
- n_classes = 142
119
- model = get_triplet_model_beit(input_shape = (384, 384, 3),
120
- embedding_units = 256,
121
- embedding_depth = 2,
122
- n_classes = n_classes)
123
- model.load_weights('model_classification/fossil-new.h5')
124
- elif model_name == 'Fossils':
125
  n_classes = 142
126
  model,_,_ = get_resnet_model('model_classification/fossil-model.h5')
127
  else:
@@ -145,17 +145,17 @@ def classify_image(input_image, model_name):
145
  model, n_classes= get_model(model_name)
146
  result = inference_resnet_finer(input_image,model,size=600,n_classes=n_classes)
147
  return result
148
- elif 'Fossils 142' ==model_name:
149
- from inference_beit import inference_resnet_finer_beit
150
- model,n_classes = get_model(model_name)
151
- result = inference_resnet_finer_beit(input_image,model,size=384,n_classes=n_classes)
152
- return result
153
- elif 'Fossils new' ==model_name:
154
  from inference_beit import inference_resnet_finer_beit
155
  model,n_classes = get_model(model_name)
156
  result = inference_resnet_finer_beit(input_image,model,size=384,n_classes=n_classes)
157
  return result
158
- elif 'Fossils' ==model_name:
 
 
 
 
 
159
  from inference_beit import inference_resnet_finer_beit
160
  model,n_classes = get_model(model_name)
161
  result = inference_resnet_finer_v2(input_image,model,size=384,n_classes=n_classes)
@@ -173,17 +173,17 @@ def get_embeddings(input_image,model_name):
173
  model, n_classes= get_model(model_name)
174
  result = inference_resnet_embedding(input_image,model,size=600,n_classes=n_classes)
175
  return result
176
- elif 'Fossils 142' ==model_name:
177
  from inference_beit import inference_resnet_embedding_beit
178
  model,n_classes = get_model(model_name)
179
  result = inference_resnet_embedding_beit(input_image,model,size=384,n_classes=n_classes)
180
  return result
181
- elif 'Fossils new' ==model_name:
182
- from inference_beit import inference_resnet_embedding_beit
183
- model,n_classes = get_model(model_name)
184
- result = inference_resnet_embedding_beit(input_image,model,size=384,n_classes=n_classes)
185
- return result
186
- elif 'Fossils' ==model_name:
187
  from inference_beit import inference_resnet_embedding_beit
188
  model,n_classes = get_model(model_name)
189
  result = inference_resnet_embedding_v2(input_image,model,size=384,n_classes=n_classes)
@@ -204,7 +204,7 @@ def generate_diagram_closest(input_image,model_name,top_k):
204
 
205
  def explain_image(input_image,model_name,explain_method,nb_samples):
206
  model,n_classes= get_model(model_name)
207
- if model_name=='Fossils 142' or 'Fossils new':
208
  size = 384
209
  else:
210
  size = 600
@@ -244,7 +244,7 @@ def update_display(image):
244
  original_image = image
245
  processed_image = preprocess_image(image)
246
  instruction = "Image ready. Please switch to the 'Specimen Workbench' tab to check out further analysis and outputs."
247
- model_name = "Fossils"
248
 
249
  # gr.Dropdown(
250
  # ["Mummified 170", "Rock 170","Fossils 142","Fossils new"],
@@ -315,9 +315,9 @@ with gr.Blocks(theme='sudeepshouche/minimalist') as demo:
315
 
316
  with gr.Column():
317
  model_name = gr.Dropdown(
318
- ["Mummified 170", "Rock 170","Fossils 142","Fossils new","Fossils"],
319
  multiselect=False,
320
- value="Fossils", # default option
321
  label="Model",
322
  interactive=True,
323
  info="Choose the model you'd like to use"
 
107
  backbone_class=tf.keras.applications.ResNet50V2,
108
  nb_classes = n_classes,load_weights=False,finer_model=True,backbone_name ='Resnet50v2')
109
  model.load_weights('model_classification/rock-170.h5')
110
+ # elif model_name == 'Fossils 142':
111
+ # n_classes = 142
112
+ # model = get_triplet_model_beit(input_shape = (384, 384, 3),
113
+ # embedding_units = 256,
114
+ # embedding_depth = 2,
115
+ # n_classes = n_classes)
116
+ # model.load_weights('model_classification/fossil-142.h5')
117
+ # elif model_name == 'Fossils new':
118
+ # n_classes = 142
119
+ # model = get_triplet_model_beit(input_shape = (384, 384, 3),
120
+ # embedding_units = 256,
121
+ # embedding_depth = 2,
122
+ # n_classes = n_classes)
123
+ # model.load_weights('model_classification/fossil-new.h5')
124
  elif model_name == 'Fossils 142':
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125
  n_classes = 142
126
  model,_,_ = get_resnet_model('model_classification/fossil-model.h5')
127
  else:
 
145
  model, n_classes= get_model(model_name)
146
  result = inference_resnet_finer(input_image,model,size=600,n_classes=n_classes)
147
  return result
148
+ elif 'Fossils BEiT' ==model_name:
 
 
 
 
 
149
  from inference_beit import inference_resnet_finer_beit
150
  model,n_classes = get_model(model_name)
151
  result = inference_resnet_finer_beit(input_image,model,size=384,n_classes=n_classes)
152
  return result
153
+ # elif 'Fossils new' ==model_name:
154
+ # from inference_beit import inference_resnet_finer_beit
155
+ # model,n_classes = get_model(model_name)
156
+ # result = inference_resnet_finer_beit(input_image,model,size=384,n_classes=n_classes)
157
+ # return result
158
+ elif 'Fossils 142' ==model_name:
159
  from inference_beit import inference_resnet_finer_beit
160
  model,n_classes = get_model(model_name)
161
  result = inference_resnet_finer_v2(input_image,model,size=384,n_classes=n_classes)
 
173
  model, n_classes= get_model(model_name)
174
  result = inference_resnet_embedding(input_image,model,size=600,n_classes=n_classes)
175
  return result
176
+ elif 'Fossils BEiT' ==model_name:
177
  from inference_beit import inference_resnet_embedding_beit
178
  model,n_classes = get_model(model_name)
179
  result = inference_resnet_embedding_beit(input_image,model,size=384,n_classes=n_classes)
180
  return result
181
+ # elif 'Fossils new' ==model_name:
182
+ # from inference_beit import inference_resnet_embedding_beit
183
+ # model,n_classes = get_model(model_name)
184
+ # result = inference_resnet_embedding_beit(input_image,model,size=384,n_classes=n_classes)
185
+ # return result
186
+ elif 'Fossils 142' ==model_name:
187
  from inference_beit import inference_resnet_embedding_beit
188
  model,n_classes = get_model(model_name)
189
  result = inference_resnet_embedding_v2(input_image,model,size=384,n_classes=n_classes)
 
204
 
205
  def explain_image(input_image,model_name,explain_method,nb_samples):
206
  model,n_classes= get_model(model_name)
207
+ if model_name=='Fossils BEiT' or 'Fossils 142':
208
  size = 384
209
  else:
210
  size = 600
 
244
  original_image = image
245
  processed_image = preprocess_image(image)
246
  instruction = "Image ready. Please switch to the 'Specimen Workbench' tab to check out further analysis and outputs."
247
+ model_name = "Fossils 142"
248
 
249
  # gr.Dropdown(
250
  # ["Mummified 170", "Rock 170","Fossils 142","Fossils new"],
 
315
 
316
  with gr.Column():
317
  model_name = gr.Dropdown(
318
+ ["Mummified 170", "Rock 170","Fossils BEiT","Fossils 142"],
319
  multiselect=False,
320
+ value="Fossils 142", # default option
321
  label="Model",
322
  interactive=True,
323
  info="Choose the model you'd like to use"