Spaces:
Sleeping
Sleeping
update model name
Browse files
app.py
CHANGED
@@ -107,21 +107,21 @@ def get_model(model_name):
|
|
107 |
backbone_class=tf.keras.applications.ResNet50V2,
|
108 |
nb_classes = n_classes,load_weights=False,finer_model=True,backbone_name ='Resnet50v2')
|
109 |
model.load_weights('model_classification/rock-170.h5')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
elif model_name == 'Fossils 142':
|
111 |
-
n_classes = 142
|
112 |
-
model = get_triplet_model_beit(input_shape = (384, 384, 3),
|
113 |
-
embedding_units = 256,
|
114 |
-
embedding_depth = 2,
|
115 |
-
n_classes = n_classes)
|
116 |
-
model.load_weights('model_classification/fossil-142.h5')
|
117 |
-
elif model_name == 'Fossils new':
|
118 |
-
n_classes = 142
|
119 |
-
model = get_triplet_model_beit(input_shape = (384, 384, 3),
|
120 |
-
embedding_units = 256,
|
121 |
-
embedding_depth = 2,
|
122 |
-
n_classes = n_classes)
|
123 |
-
model.load_weights('model_classification/fossil-new.h5')
|
124 |
-
elif model_name == 'Fossils':
|
125 |
n_classes = 142
|
126 |
model,_,_ = get_resnet_model('model_classification/fossil-model.h5')
|
127 |
else:
|
@@ -145,17 +145,17 @@ def classify_image(input_image, model_name):
|
|
145 |
model, n_classes= get_model(model_name)
|
146 |
result = inference_resnet_finer(input_image,model,size=600,n_classes=n_classes)
|
147 |
return result
|
148 |
-
elif 'Fossils
|
149 |
-
from inference_beit import inference_resnet_finer_beit
|
150 |
-
model,n_classes = get_model(model_name)
|
151 |
-
result = inference_resnet_finer_beit(input_image,model,size=384,n_classes=n_classes)
|
152 |
-
return result
|
153 |
-
elif 'Fossils new' ==model_name:
|
154 |
from inference_beit import inference_resnet_finer_beit
|
155 |
model,n_classes = get_model(model_name)
|
156 |
result = inference_resnet_finer_beit(input_image,model,size=384,n_classes=n_classes)
|
157 |
return result
|
158 |
-
elif 'Fossils' ==model_name:
|
|
|
|
|
|
|
|
|
|
|
159 |
from inference_beit import inference_resnet_finer_beit
|
160 |
model,n_classes = get_model(model_name)
|
161 |
result = inference_resnet_finer_v2(input_image,model,size=384,n_classes=n_classes)
|
@@ -173,17 +173,17 @@ def get_embeddings(input_image,model_name):
|
|
173 |
model, n_classes= get_model(model_name)
|
174 |
result = inference_resnet_embedding(input_image,model,size=600,n_classes=n_classes)
|
175 |
return result
|
176 |
-
elif 'Fossils
|
177 |
from inference_beit import inference_resnet_embedding_beit
|
178 |
model,n_classes = get_model(model_name)
|
179 |
result = inference_resnet_embedding_beit(input_image,model,size=384,n_classes=n_classes)
|
180 |
return result
|
181 |
-
elif 'Fossils new' ==model_name:
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
elif 'Fossils' ==model_name:
|
187 |
from inference_beit import inference_resnet_embedding_beit
|
188 |
model,n_classes = get_model(model_name)
|
189 |
result = inference_resnet_embedding_v2(input_image,model,size=384,n_classes=n_classes)
|
@@ -204,7 +204,7 @@ def generate_diagram_closest(input_image,model_name,top_k):
|
|
204 |
|
205 |
def explain_image(input_image,model_name,explain_method,nb_samples):
|
206 |
model,n_classes= get_model(model_name)
|
207 |
-
if model_name=='Fossils
|
208 |
size = 384
|
209 |
else:
|
210 |
size = 600
|
@@ -244,7 +244,7 @@ def update_display(image):
|
|
244 |
original_image = image
|
245 |
processed_image = preprocess_image(image)
|
246 |
instruction = "Image ready. Please switch to the 'Specimen Workbench' tab to check out further analysis and outputs."
|
247 |
-
model_name = "Fossils"
|
248 |
|
249 |
# gr.Dropdown(
|
250 |
# ["Mummified 170", "Rock 170","Fossils 142","Fossils new"],
|
@@ -315,9 +315,9 @@ with gr.Blocks(theme='sudeepshouche/minimalist') as demo:
|
|
315 |
|
316 |
with gr.Column():
|
317 |
model_name = gr.Dropdown(
|
318 |
-
["Mummified 170", "Rock 170","Fossils
|
319 |
multiselect=False,
|
320 |
-
value="Fossils", # default option
|
321 |
label="Model",
|
322 |
interactive=True,
|
323 |
info="Choose the model you'd like to use"
|
|
|
107 |
backbone_class=tf.keras.applications.ResNet50V2,
|
108 |
nb_classes = n_classes,load_weights=False,finer_model=True,backbone_name ='Resnet50v2')
|
109 |
model.load_weights('model_classification/rock-170.h5')
|
110 |
+
# elif model_name == 'Fossils 142':
|
111 |
+
# n_classes = 142
|
112 |
+
# model = get_triplet_model_beit(input_shape = (384, 384, 3),
|
113 |
+
# embedding_units = 256,
|
114 |
+
# embedding_depth = 2,
|
115 |
+
# n_classes = n_classes)
|
116 |
+
# model.load_weights('model_classification/fossil-142.h5')
|
117 |
+
# elif model_name == 'Fossils new':
|
118 |
+
# n_classes = 142
|
119 |
+
# model = get_triplet_model_beit(input_shape = (384, 384, 3),
|
120 |
+
# embedding_units = 256,
|
121 |
+
# embedding_depth = 2,
|
122 |
+
# n_classes = n_classes)
|
123 |
+
# model.load_weights('model_classification/fossil-new.h5')
|
124 |
elif model_name == 'Fossils 142':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
n_classes = 142
|
126 |
model,_,_ = get_resnet_model('model_classification/fossil-model.h5')
|
127 |
else:
|
|
|
145 |
model, n_classes= get_model(model_name)
|
146 |
result = inference_resnet_finer(input_image,model,size=600,n_classes=n_classes)
|
147 |
return result
|
148 |
+
elif 'Fossils BEiT' ==model_name:
|
|
|
|
|
|
|
|
|
|
|
149 |
from inference_beit import inference_resnet_finer_beit
|
150 |
model,n_classes = get_model(model_name)
|
151 |
result = inference_resnet_finer_beit(input_image,model,size=384,n_classes=n_classes)
|
152 |
return result
|
153 |
+
# elif 'Fossils new' ==model_name:
|
154 |
+
# from inference_beit import inference_resnet_finer_beit
|
155 |
+
# model,n_classes = get_model(model_name)
|
156 |
+
# result = inference_resnet_finer_beit(input_image,model,size=384,n_classes=n_classes)
|
157 |
+
# return result
|
158 |
+
elif 'Fossils 142' ==model_name:
|
159 |
from inference_beit import inference_resnet_finer_beit
|
160 |
model,n_classes = get_model(model_name)
|
161 |
result = inference_resnet_finer_v2(input_image,model,size=384,n_classes=n_classes)
|
|
|
173 |
model, n_classes= get_model(model_name)
|
174 |
result = inference_resnet_embedding(input_image,model,size=600,n_classes=n_classes)
|
175 |
return result
|
176 |
+
elif 'Fossils BEiT' ==model_name:
|
177 |
from inference_beit import inference_resnet_embedding_beit
|
178 |
model,n_classes = get_model(model_name)
|
179 |
result = inference_resnet_embedding_beit(input_image,model,size=384,n_classes=n_classes)
|
180 |
return result
|
181 |
+
# elif 'Fossils new' ==model_name:
|
182 |
+
# from inference_beit import inference_resnet_embedding_beit
|
183 |
+
# model,n_classes = get_model(model_name)
|
184 |
+
# result = inference_resnet_embedding_beit(input_image,model,size=384,n_classes=n_classes)
|
185 |
+
# return result
|
186 |
+
elif 'Fossils 142' ==model_name:
|
187 |
from inference_beit import inference_resnet_embedding_beit
|
188 |
model,n_classes = get_model(model_name)
|
189 |
result = inference_resnet_embedding_v2(input_image,model,size=384,n_classes=n_classes)
|
|
|
204 |
|
205 |
def explain_image(input_image,model_name,explain_method,nb_samples):
|
206 |
model,n_classes= get_model(model_name)
|
207 |
+
if model_name=='Fossils BEiT' or 'Fossils 142':
|
208 |
size = 384
|
209 |
else:
|
210 |
size = 600
|
|
|
244 |
original_image = image
|
245 |
processed_image = preprocess_image(image)
|
246 |
instruction = "Image ready. Please switch to the 'Specimen Workbench' tab to check out further analysis and outputs."
|
247 |
+
model_name = "Fossils 142"
|
248 |
|
249 |
# gr.Dropdown(
|
250 |
# ["Mummified 170", "Rock 170","Fossils 142","Fossils new"],
|
|
|
315 |
|
316 |
with gr.Column():
|
317 |
model_name = gr.Dropdown(
|
318 |
+
["Mummified 170", "Rock 170","Fossils BEiT","Fossils 142"],
|
319 |
multiselect=False,
|
320 |
+
value="Fossils 142", # default option
|
321 |
label="Model",
|
322 |
interactive=True,
|
323 |
info="Choose the model you'd like to use"
|