Project / app.py
Salman11223's picture
Update app.py
e5c07ce verified
import os
import requests
import gradio as gr
import moviepy.editor as mp
from TTS.api import TTS
import torch
import assemblyai as aai
os.environ["COQUI_TOS_AGREED"] = "1"
# Download necessary models if not already present
model_files = {
"wav2lip.pth": "https://github.com/justinjohn0306/Wav2Lip/releases/download/models/wav2lip.pth",
"wav2lip_gan.pth": "https://github.com/justinjohn0306/Wav2Lip/releases/download/models/wav2lip_gan.pth",
"resnet50.pth": "https://github.com/justinjohn0306/Wav2Lip/releases/download/models/resnet50.pth",
"mobilenet.pth": "https://github.com/justinjohn0306/Wav2Lip/releases/download/models/mobilenet.pth",
"s3fd.pth": "https://www.adrianbulat.com/downloads/python-fan/s3fd-619a316812.pth"
}
device = "cpu"
# Initialize TTS model
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device)
# Download models
for filename, url in model_files.items():
file_path = os.path.join("checkpoints" if "pth" in filename else "face_detection", filename)
if not os.path.exists(file_path):
print(f"Downloading {filename}...")
r = requests.get(url)
with open(file_path, 'wb') as f:
f.write(r.content)
# Translation class
class translation:
def __init__(self, video_path, original_language, target_language):
self.video_path = video_path
self.original_language = original_language
self.target_language = target_language
def org_language_parameters(self, original_language):
language_codes = {'English': 'en', 'German': 'de', 'Italian': 'it', 'Spanish': 'es'}
self.lan_code = language_codes.get(original_language, '')
def target_language_parameters(self, target_language):
language_codes = {'English': 'en', 'German': 'de', 'Italian': 'it', 'Spanish': 'es'}
self.tran_code = language_codes.get(target_language, '')
def extract_audio(self):
video = mp.VideoFileClip(self.video_path)
audio = video.audio
audio_path = "output_audio.wav"
audio.write_audiofile(audio_path)
return audio_path
def transcribe_audio(self, audio_path):
aai.settings.api_key = os.getenv("ASSEMBLYAI_API_KEY")
config = aai.TranscriptionConfig(language_code=self.lan_code)
transcriber = aai.Transcriber(config=config)
transcript = transcriber.transcribe(audio_path)
return transcript.text
def translate_text(self, transcript_text):
base_url = "https://api.cognitive.microsofttranslator.com/translate"
headers = {
"Ocp-Apim-Subscription-Key": os.getenv("MICROSOFT_TRANSLATOR_API_KEY"),
"Content-Type": "application/json",
"Ocp-Apim-Subscription-Region": "southeastasia"
}
params = {"api-version": "3.0", "from": self.lan_code, "to": self.tran_code}
body = [{"text": transcript_text}]
response = requests.post(base_url, headers=headers, params=params, json=body)
translation = response.json()[0]["translations"][0]["text"]
return translation
def generate_audio(self, translated_text):
tts.tts_to_file(text=translated_text, speaker_wav='output_audio.wav', file_path="output_synth.wav", language=self.tran_code)
return "output_synth.wav"
def translate_video(self):
audio_path = self.extract_audio()
self.org_language_parameters(self.original_language)
self.target_language_parameters(self.target_language)
transcript_text = self.transcribe_audio(audio_path)
translated_text = self.translate_text(transcript_text)
translated_audio_path = self.generate_audio(translated_text)
# Run Wav2Lip inference (update the path to inference.py)
inference_script_path = "inference.py" # Update this to the actual location of inference.py
os.system(f"python {inference_script_path} --checkpoint_path 'checkpoints/wav2lip_gan.pth' --face {self.video_path} --audio {translated_audio_path} --outfile 'output_video.mp4'")
return 'output_video.mp4'
# Gradio Interface
def app(video_path, original_language, target_language):
translator = translation(video_path, original_language, target_language)
video_file = translator.translate_video()
return video_file
interface = gr.Interface(
fn=app,
inputs=[
gr.Video(label="Video Path"),
gr.Dropdown(["English", "German", "Italian", "Spanish"], label="Original Language"),
gr.Dropdown(["English", "German", "Italian", "Spanish"], label="Targeted Language"),
],
outputs=gr.Video(label="Translated Video")
)
interface.launch()
# import os
# import requests
# import gradio as gr
# import moviepy.editor as mp
# from TTS.api import TTS
# import torch
# import assemblyai as aai
# os.environ["COQUI_TOS_AGREED"] = "1"
# # Download necessary models if not already present
# model_files = {
# "wav2lip.pth": "https://github.com/justinjohn0306/Wav2Lip/releases/download/models/wav2lip.pth",
# "wav2lip_gan.pth": "https://github.com/justinjohn0306/Wav2Lip/releases/download/models/wav2lip_gan.pth",
# "resnet50.pth": "https://github.com/justinjohn0306/Wav2Lip/releases/download/models/resnet50.pth",
# "mobilenet.pth": "https://github.com/justinjohn0306/Wav2Lip/releases/download/models/mobilenet.pth",
# "s3fd.pth": "https://www.adrianbulat.com/downloads/python-fan/s3fd-619a316812.pth"
# }
# device = "cpu"
# tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device)
# for filename, url in model_files.items():
# file_path = os.path.join("checkpoints" if "pth" in filename else "face_detection", filename)
# if not os.path.exists(file_path):
# print(f"Downloading {filename}...")
# r = requests.get(url)
# with open(file_path, 'wb') as f:
# f.write(r.content)
# # Translation class
# class translation:
# def __init__(self, video_path, original_language, target_language):
# self.video_path = video_path
# self.original_language = original_language
# self.target_language = target_language
# def org_language_parameters(self, original_language):
# language_codes = {'English': 'en', 'German': 'de', 'Italian': 'it', 'Spanish': 'es'}
# self.lan_code = language_codes.get(original_language, '')
# def target_language_parameters(self, target_language):
# language_codes = {'English': 'en', 'German': 'de', 'Italian': 'it', 'Spanish': 'es'}
# self.tran_code = language_codes.get(target_language, '')
# def extract_audio(self):
# video = mp.VideoFileClip(self.video_path)
# audio = video.audio
# audio_path = "output_audio.wav"
# audio.write_audiofile(audio_path)
# return audio_path
# def transcribe_audio(self, audio_path):
# aai.settings.api_key = os.getenv("ASSEMBLYAI_API_KEY")
# config = aai.TranscriptionConfig(language_code=self.lan_code)
# transcriber = aai.Transcriber(config=config)
# transcript = transcriber.transcribe(audio_path)
# return transcript.text
# def translate_text(self, transcript_text):
# base_url = "https://api.cognitive.microsofttranslator.com/translate"
# headers = {
# "Ocp-Apim-Subscription-Key": os.getenv("MICROSOFT_TRANSLATOR_API_KEY"),
# "Content-Type": "application/json",
# "Ocp-Apim-Subscription-Region": "southeastasia"
# }
# params = {"api-version": "3.0", "from": self.lan_code, "to": self.tran_code}
# body = [{"text": transcript_text}]
# response = requests.post(base_url, headers=headers, params=params, json=body)
# translation = response.json()[0]["translations"][0]["text"]
# return translation
# def generate_audio(self, translated_text):
# tts.tts_to_file(text=translated_text, speaker_wav='output_audio.wav', file_path="output_synth.wav", language=self.tran_code)
# return "output_synth.wav"
# def translate_video(self):
# audio_path = self.extract_audio()
# self.org_language_parameters(self.original_language)
# self.target_language_parameters(self.target_language)
# transcript_text = self.transcribe_audio(audio_path)
# translated_text = self.translate_text(transcript_text)
# translated_audio_path = self.generate_audio(translated_text)
# # Run Wav2Lip inference
# os.system(f"python inference.py --checkpoint_path 'checkpoints/wav2lip_gan.pth' --face {self.video_path} --audio {translated_audio_path} --outfile 'output_video.mp4'")
# return 'output_video.mp4'
# # Gradio Interface
# def app(video_path, original_language, target_language):
# translator = translation(video_path, original_language, target_language)
# video_file = translator.translate_video()
# return video_file
# interface = gr.Interface(
# fn=app,
# inputs=[
# gr.Video(label="Video Path"),
# gr.Dropdown(["English", "German", "Italian", "Spanish"], label="Original Language"),
# gr.Dropdown(["English", "German", "Italian", "Spanish"], label="Targeted Language"),
# ],
# outputs=gr.Video(label="Translated Video")
# )
# interface.launch()