Spaces:
Sleeping
Sleeping
File size: 9,281 Bytes
44a7013 430b249 44a7013 e5c07ce 430b249 e5c07ce c7cb1f7 df8ff5c 430b249 e5c07ce 430b249 e5c07ce c7cb1f7 44a7013 430b249 7dee455 44a7013 430b249 44a7013 e5c07ce 44a7013 430b249 44a7013 430b249 44a7013 e5c07ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import os
import requests
import gradio as gr
import moviepy.editor as mp
from TTS.api import TTS
import torch
import assemblyai as aai
os.environ["COQUI_TOS_AGREED"] = "1"
# Download necessary models if not already present
model_files = {
"wav2lip.pth": "https://github.com/justinjohn0306/Wav2Lip/releases/download/models/wav2lip.pth",
"wav2lip_gan.pth": "https://github.com/justinjohn0306/Wav2Lip/releases/download/models/wav2lip_gan.pth",
"resnet50.pth": "https://github.com/justinjohn0306/Wav2Lip/releases/download/models/resnet50.pth",
"mobilenet.pth": "https://github.com/justinjohn0306/Wav2Lip/releases/download/models/mobilenet.pth",
"s3fd.pth": "https://www.adrianbulat.com/downloads/python-fan/s3fd-619a316812.pth"
}
device = "cpu"
# Initialize TTS model
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device)
# Download models
for filename, url in model_files.items():
file_path = os.path.join("checkpoints" if "pth" in filename else "face_detection", filename)
if not os.path.exists(file_path):
print(f"Downloading {filename}...")
r = requests.get(url)
with open(file_path, 'wb') as f:
f.write(r.content)
# Translation class
class translation:
def __init__(self, video_path, original_language, target_language):
self.video_path = video_path
self.original_language = original_language
self.target_language = target_language
def org_language_parameters(self, original_language):
language_codes = {'English': 'en', 'German': 'de', 'Italian': 'it', 'Spanish': 'es'}
self.lan_code = language_codes.get(original_language, '')
def target_language_parameters(self, target_language):
language_codes = {'English': 'en', 'German': 'de', 'Italian': 'it', 'Spanish': 'es'}
self.tran_code = language_codes.get(target_language, '')
def extract_audio(self):
video = mp.VideoFileClip(self.video_path)
audio = video.audio
audio_path = "output_audio.wav"
audio.write_audiofile(audio_path)
return audio_path
def transcribe_audio(self, audio_path):
aai.settings.api_key = os.getenv("ASSEMBLYAI_API_KEY")
config = aai.TranscriptionConfig(language_code=self.lan_code)
transcriber = aai.Transcriber(config=config)
transcript = transcriber.transcribe(audio_path)
return transcript.text
def translate_text(self, transcript_text):
base_url = "https://api.cognitive.microsofttranslator.com/translate"
headers = {
"Ocp-Apim-Subscription-Key": os.getenv("MICROSOFT_TRANSLATOR_API_KEY"),
"Content-Type": "application/json",
"Ocp-Apim-Subscription-Region": "southeastasia"
}
params = {"api-version": "3.0", "from": self.lan_code, "to": self.tran_code}
body = [{"text": transcript_text}]
response = requests.post(base_url, headers=headers, params=params, json=body)
translation = response.json()[0]["translations"][0]["text"]
return translation
def generate_audio(self, translated_text):
tts.tts_to_file(text=translated_text, speaker_wav='output_audio.wav', file_path="output_synth.wav", language=self.tran_code)
return "output_synth.wav"
def translate_video(self):
audio_path = self.extract_audio()
self.org_language_parameters(self.original_language)
self.target_language_parameters(self.target_language)
transcript_text = self.transcribe_audio(audio_path)
translated_text = self.translate_text(transcript_text)
translated_audio_path = self.generate_audio(translated_text)
# Run Wav2Lip inference (update the path to inference.py)
inference_script_path = "inference.py" # Update this to the actual location of inference.py
os.system(f"python {inference_script_path} --checkpoint_path 'checkpoints/wav2lip_gan.pth' --face {self.video_path} --audio {translated_audio_path} --outfile 'output_video.mp4'")
return 'output_video.mp4'
# Gradio Interface
def app(video_path, original_language, target_language):
translator = translation(video_path, original_language, target_language)
video_file = translator.translate_video()
return video_file
interface = gr.Interface(
fn=app,
inputs=[
gr.Video(label="Video Path"),
gr.Dropdown(["English", "German", "Italian", "Spanish"], label="Original Language"),
gr.Dropdown(["English", "German", "Italian", "Spanish"], label="Targeted Language"),
],
outputs=gr.Video(label="Translated Video")
)
interface.launch()
# import os
# import requests
# import gradio as gr
# import moviepy.editor as mp
# from TTS.api import TTS
# import torch
# import assemblyai as aai
# os.environ["COQUI_TOS_AGREED"] = "1"
# # Download necessary models if not already present
# model_files = {
# "wav2lip.pth": "https://github.com/justinjohn0306/Wav2Lip/releases/download/models/wav2lip.pth",
# "wav2lip_gan.pth": "https://github.com/justinjohn0306/Wav2Lip/releases/download/models/wav2lip_gan.pth",
# "resnet50.pth": "https://github.com/justinjohn0306/Wav2Lip/releases/download/models/resnet50.pth",
# "mobilenet.pth": "https://github.com/justinjohn0306/Wav2Lip/releases/download/models/mobilenet.pth",
# "s3fd.pth": "https://www.adrianbulat.com/downloads/python-fan/s3fd-619a316812.pth"
# }
# device = "cpu"
# tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device)
# for filename, url in model_files.items():
# file_path = os.path.join("checkpoints" if "pth" in filename else "face_detection", filename)
# if not os.path.exists(file_path):
# print(f"Downloading {filename}...")
# r = requests.get(url)
# with open(file_path, 'wb') as f:
# f.write(r.content)
# # Translation class
# class translation:
# def __init__(self, video_path, original_language, target_language):
# self.video_path = video_path
# self.original_language = original_language
# self.target_language = target_language
# def org_language_parameters(self, original_language):
# language_codes = {'English': 'en', 'German': 'de', 'Italian': 'it', 'Spanish': 'es'}
# self.lan_code = language_codes.get(original_language, '')
# def target_language_parameters(self, target_language):
# language_codes = {'English': 'en', 'German': 'de', 'Italian': 'it', 'Spanish': 'es'}
# self.tran_code = language_codes.get(target_language, '')
# def extract_audio(self):
# video = mp.VideoFileClip(self.video_path)
# audio = video.audio
# audio_path = "output_audio.wav"
# audio.write_audiofile(audio_path)
# return audio_path
# def transcribe_audio(self, audio_path):
# aai.settings.api_key = os.getenv("ASSEMBLYAI_API_KEY")
# config = aai.TranscriptionConfig(language_code=self.lan_code)
# transcriber = aai.Transcriber(config=config)
# transcript = transcriber.transcribe(audio_path)
# return transcript.text
# def translate_text(self, transcript_text):
# base_url = "https://api.cognitive.microsofttranslator.com/translate"
# headers = {
# "Ocp-Apim-Subscription-Key": os.getenv("MICROSOFT_TRANSLATOR_API_KEY"),
# "Content-Type": "application/json",
# "Ocp-Apim-Subscription-Region": "southeastasia"
# }
# params = {"api-version": "3.0", "from": self.lan_code, "to": self.tran_code}
# body = [{"text": transcript_text}]
# response = requests.post(base_url, headers=headers, params=params, json=body)
# translation = response.json()[0]["translations"][0]["text"]
# return translation
# def generate_audio(self, translated_text):
# tts.tts_to_file(text=translated_text, speaker_wav='output_audio.wav', file_path="output_synth.wav", language=self.tran_code)
# return "output_synth.wav"
# def translate_video(self):
# audio_path = self.extract_audio()
# self.org_language_parameters(self.original_language)
# self.target_language_parameters(self.target_language)
# transcript_text = self.transcribe_audio(audio_path)
# translated_text = self.translate_text(transcript_text)
# translated_audio_path = self.generate_audio(translated_text)
# # Run Wav2Lip inference
# os.system(f"python inference.py --checkpoint_path 'checkpoints/wav2lip_gan.pth' --face {self.video_path} --audio {translated_audio_path} --outfile 'output_video.mp4'")
# return 'output_video.mp4'
# # Gradio Interface
# def app(video_path, original_language, target_language):
# translator = translation(video_path, original_language, target_language)
# video_file = translator.translate_video()
# return video_file
# interface = gr.Interface(
# fn=app,
# inputs=[
# gr.Video(label="Video Path"),
# gr.Dropdown(["English", "German", "Italian", "Spanish"], label="Original Language"),
# gr.Dropdown(["English", "German", "Italian", "Spanish"], label="Targeted Language"),
# ],
# outputs=gr.Video(label="Translated Video")
# )
# interface.launch() |