Spaces:
Running
Running
import gradio as gr | |
from transformers import pipeline | |
# Charger le pipeline | |
pipe = pipeline("zero-shot-image-classification", model="patrickjohncyh/fashion-clip") | |
# Définir l'interface Gradio | |
def classify_image_with_text(text, image): | |
# Effectuer la classification d'image à l'aide du texte | |
result = pipe(image, text) | |
labels = result["labels"] | |
scores = result["scores"] | |
return {label: score for label, score in zip(labels, scores)} | |
# Créer l'interface Gradio | |
with gr.Blocks(title="SD Models") as my_interface: | |
with gr.Column(scale=12): | |
with gr.Row(): | |
with gr.Row(scale=6): | |
primary_prompt = gr.Textbox(label="Prompt", value="") | |
input_image = gr.Image(label="Image") | |
with gr.Row(scale=6): | |
with gr.Row(): | |
api = gr.Button("Api", variant="primary") | |
with gr.Row(): | |
api_image_output = gr.Textbox(label='Api OutPut') | |
api.click(classify_image_with_text, inputs=[primary_prompt,input_image], outputs=[api_image_output], api_name='generate') | |
# Lancer l'interface | |
iface.launch() | |