Spaces:
Running
Running
File size: 1,140 Bytes
05be9b2 f2b5de1 05be9b2 35ceb6f f2b5de1 35ceb6f f2b5de1 35ceb6f 373c79f f2b5de1 35ceb6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import gradio as gr
from transformers import pipeline
# Charger le pipeline
pipe = pipeline("zero-shot-image-classification", model="patrickjohncyh/fashion-clip")
# Définir l'interface Gradio
def classify_image_with_text(text, image):
# Effectuer la classification d'image à l'aide du texte
result = pipe(image, text)
labels = result["labels"]
scores = result["scores"]
return {label: score for label, score in zip(labels, scores)}
# Créer l'interface Gradio
with gr.Blocks(title="SD Models") as my_interface:
with gr.Column(scale=12):
with gr.Row():
with gr.Row(scale=6):
primary_prompt = gr.Textbox(label="Prompt", value="")
input_image = gr.Image(label="Image")
with gr.Row(scale=6):
with gr.Row():
api = gr.Button("Api", variant="primary")
with gr.Row():
api_image_output = gr.Textbox(label='Api OutPut')
api.click(classify_image_with_text, inputs=[primary_prompt,input_image], outputs=[api_image_output], api_name='generate')
# Lancer l'interface
iface.launch()
|