Ritvik19 commited on
Commit
a6a480f
·
verified ·
1 Parent(s): 7112b8c

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +27 -9
  2. autoqa_chains.py +4 -46
app.py CHANGED
@@ -15,7 +15,7 @@ from chat_chains import (
15
  parse_context_and_question,
16
  ai_response_format,
17
  )
18
- from autoqa_chains import auto_qa_chain, auto_qa_output_parser, followup_qa_chain
19
  from chain_of_density import chain_of_density_chain
20
  from insights_bullet_chain import insights_bullet_chain
21
  from insights_mind_map_chain import insights_mind_map_chain
@@ -292,16 +292,34 @@ def auto_qa_chain_wrapper(inputs):
292
  raise InvalidArgumentError("Please provide snippet ids")
293
  document = "\n\n".join([st.session_state.documents[c].page_content for c in inputs])
294
  llm = ChatOpenAI(model=st.session_state.model, temperature=0)
 
 
295
  with get_openai_callback() as cb:
296
- auto_qa_response = auto_qa_output_parser.invoke(
297
- auto_qa_chain(llm).invoke({"paper": document})
298
- )["questions"]
299
- formated_response = "\n\n".join(
300
- f"#### {qa['question']}\n\n{qa['answer']}" for qa in auto_qa_response
301
- )
302
  stats = cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
303
  st.session_state.messages.append(
304
- (f"/auto-insight {inputs}", formated_response, "identity")
305
  )
306
  st.session_state.costing.append(
307
  {
@@ -311,7 +329,7 @@ def auto_qa_chain_wrapper(inputs):
311
  }
312
  )
313
  return (
314
- formated_response,
315
  "identity",
316
  )
317
 
 
15
  parse_context_and_question,
16
  ai_response_format,
17
  )
18
+ from autoqa_chains import auto_qa_chain
19
  from chain_of_density import chain_of_density_chain
20
  from insights_bullet_chain import insights_bullet_chain
21
  from insights_mind_map_chain import insights_mind_map_chain
 
292
  raise InvalidArgumentError("Please provide snippet ids")
293
  document = "\n\n".join([st.session_state.documents[c].page_content for c in inputs])
294
  llm = ChatOpenAI(model=st.session_state.model, temperature=0)
295
+ retriever = st.session_state.retriever
296
+ formatted_response = ""
297
  with get_openai_callback() as cb:
298
+ auto_qa_response = auto_qa_chain(llm).invoke({"paper": document})
 
 
 
 
 
299
  stats = cb
300
+ for section in auto_qa_response:
301
+ section_name = section["section_name"]
302
+ formatted_response += f"# {section_name}\n"
303
+ for question in section["questions"]:
304
+ response = (
305
+ qa_chain(ChatOpenAI(model=st.session_state.model, temperature=0))
306
+ .invoke(
307
+ {
308
+ "context": format_docs(
309
+ retriever.get_relevant_documents(question)
310
+ ),
311
+ "question": question,
312
+ }
313
+ )
314
+ .content
315
+ )
316
+ answer = parse_model_response(response)["answer"]
317
+ formatted_response += f"## {question}\n"
318
+ formatted_response += f"* {answer}\n"
319
+ formatted_response = "```\n" + formatted_response + "\n```"
320
+
321
  st.session_state.messages.append(
322
+ (f"/auto-insight {inputs}", formatted_response, "identity")
323
  )
324
  st.session_state.costing.append(
325
  {
 
329
  }
330
  )
331
  return (
332
+ formatted_response,
333
  "identity",
334
  )
335
 
autoqa_chains.py CHANGED
@@ -1,57 +1,15 @@
1
- from langchain_core.pydantic_v1 import BaseModel, Field
2
- from typing import List
3
  from langchain_core.output_parsers import JsonOutputParser
4
  from langchain_core.prompts import PromptTemplate
5
 
6
-
7
- class QA(BaseModel):
8
- question: str = Field(description="question")
9
- answer: str = Field(description="answer")
10
-
11
-
12
- class AutoQA(BaseModel):
13
- questions: List[QA] = Field(description="list of question and answers")
14
-
15
-
16
  qa_prompt_template = """
17
- Generate 10 insightful questions and their corresponding detailed answers about the key aspects of a specific machine learning research paper.
18
- The focus should be on the paper's objectives, methodology, key findings, and implications for future research or application.
19
- The answers must be based on the content of the research paper, offering clear and comprehensive insights for readers.
20
- Ensure that the questions cover a broad range of topics related to the paper, including but not limited to the introduction, literature review, \
21
- methodology, results, discussion, and conclusions.
22
- The goal is to capture the essence of the paper in a way that is accessible to an expert audience.
23
- Your response should be recorded in the following json format: {format_instructions}.
24
 
25
- here is the research paper: ####{paper}####
26
  """
27
 
28
- auto_qa_output_parser = JsonOutputParser(pydantic_object=AutoQA)
29
  qa_prompt = PromptTemplate(
30
  template=qa_prompt_template,
31
  input_variables=["paper"],
32
- partial_variables={
33
- "format_instructions": auto_qa_output_parser.get_format_instructions()
34
- },
35
- )
36
- auto_qa_chain = lambda model: qa_prompt | model
37
-
38
-
39
- followup_prompt_template = """
40
- Question: {question}
41
- Answer: {answer}
42
- Based on the above question and answer and the research paper as your context, come up with a followup question and its answer.
43
- The answer should be a bit detailed and strictly based on the research paper.
44
- Your response should be recorded in the following json format: {format_instructions}.
45
-
46
- here is the research paper: ####{paper}####
47
- """
48
-
49
- followup_prompt = PromptTemplate(
50
- template=followup_prompt_template,
51
- input_variables=["paper", "question", "answer"],
52
- partial_variables={
53
- "format_instructions": auto_qa_output_parser.get_format_instructions()
54
- },
55
  )
56
-
57
- followup_qa_chain = lambda model: followup_prompt | model
 
 
 
1
  from langchain_core.output_parsers import JsonOutputParser
2
  from langchain_core.prompts import PromptTemplate
3
 
 
 
 
 
 
 
 
 
 
 
4
  qa_prompt_template = """
5
+ Create a mind map of questions (based on the given abstract) that will help understand a machine learning research paper.
6
+ Ensure that the outline is structured in the following JSON array for clarity, such that each section should have two keys: "section_name" and "questions"
 
 
 
 
 
7
 
8
+ Here is the research paper abstract: ####{paper}####
9
  """
10
 
 
11
  qa_prompt = PromptTemplate(
12
  template=qa_prompt_template,
13
  input_variables=["paper"],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  )
15
+ auto_qa_chain = lambda model: qa_prompt | model | JsonOutputParser()