Upload 2 files
Browse files- app.py +9 -18
- autoqa_chains.py +3 -3
app.py
CHANGED
@@ -15,7 +15,7 @@ from chat_chains import (
|
|
15 |
parse_context_and_question,
|
16 |
ai_response_format,
|
17 |
)
|
18 |
-
from autoqa_chains import auto_qa_chain, auto_qa_output_parser
|
19 |
from chain_of_density import chain_of_density_chain
|
20 |
from insights_bullet_chain import insights_bullet_chain
|
21 |
from insights_mind_map_chain import insights_mind_map_chain
|
@@ -292,23 +292,17 @@ def auto_qa_chain_wrapper(inputs):
|
|
292 |
raise InvalidArgumentError("Please provide snippet ids")
|
293 |
document = "\n\n".join([st.session_state.documents[c].page_content for c in inputs])
|
294 |
llm = ChatOpenAI(model=st.session_state.model, temperature=0)
|
295 |
-
auto_qa_conversation = []
|
296 |
with get_openai_callback() as cb:
|
297 |
-
auto_qa_response =
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
for qa in auto_qa_response_parsed
|
304 |
-
]
|
305 |
stats = cb
|
306 |
st.session_state.messages.append(
|
307 |
-
(f"/auto-insight {inputs}",
|
308 |
)
|
309 |
-
for qa in auto_qa_conversation:
|
310 |
-
st.session_state.messages.append((qa[0], qa[1], "identity"))
|
311 |
-
|
312 |
st.session_state.costing.append(
|
313 |
{
|
314 |
"prompt tokens": stats.prompt_tokens,
|
@@ -317,10 +311,7 @@ def auto_qa_chain_wrapper(inputs):
|
|
317 |
}
|
318 |
)
|
319 |
return (
|
320 |
-
|
321 |
-
f"Q: {qa['question']}\n\nA: {qa['answer']}"
|
322 |
-
for qa in auto_qa_response_parsed
|
323 |
-
),
|
324 |
"identity",
|
325 |
)
|
326 |
|
|
|
15 |
parse_context_and_question,
|
16 |
ai_response_format,
|
17 |
)
|
18 |
+
from autoqa_chains import auto_qa_chain, auto_qa_output_parser, followup_qa_chain
|
19 |
from chain_of_density import chain_of_density_chain
|
20 |
from insights_bullet_chain import insights_bullet_chain
|
21 |
from insights_mind_map_chain import insights_mind_map_chain
|
|
|
292 |
raise InvalidArgumentError("Please provide snippet ids")
|
293 |
document = "\n\n".join([st.session_state.documents[c].page_content for c in inputs])
|
294 |
llm = ChatOpenAI(model=st.session_state.model, temperature=0)
|
|
|
295 |
with get_openai_callback() as cb:
|
296 |
+
auto_qa_response = auto_qa_output_parser.invoke(
|
297 |
+
auto_qa_chain(llm).invoke({"paper": document})
|
298 |
+
)["questions"]
|
299 |
+
formated_response = "\n\n".join(
|
300 |
+
f"#### {qa['question']}\n\n{qa['answer']}" for qa in auto_qa_response
|
301 |
+
)
|
|
|
|
|
302 |
stats = cb
|
303 |
st.session_state.messages.append(
|
304 |
+
(f"/auto-insight {inputs}", formated_response, "identity")
|
305 |
)
|
|
|
|
|
|
|
306 |
st.session_state.costing.append(
|
307 |
{
|
308 |
"prompt tokens": stats.prompt_tokens,
|
|
|
311 |
}
|
312 |
)
|
313 |
return (
|
314 |
+
formated_response,
|
|
|
|
|
|
|
315 |
"identity",
|
316 |
)
|
317 |
|
autoqa_chains.py
CHANGED
@@ -19,7 +19,7 @@ The focus should be on the paper's objectives, methodology, key findings, and im
|
|
19 |
The answers must be based on the content of the research paper, offering clear and comprehensive insights for readers.
|
20 |
Ensure that the questions cover a broad range of topics related to the paper, including but not limited to the introduction, literature review, \
|
21 |
methodology, results, discussion, and conclusions.
|
22 |
-
The goal is to capture the essence of the paper in a way that is accessible to
|
23 |
Your response should be recorded in the following json format: {format_instructions}.
|
24 |
|
25 |
here is the research paper: ####{paper}####
|
@@ -48,10 +48,10 @@ here is the research paper: ####{paper}####
|
|
48 |
|
49 |
followup_prompt = PromptTemplate(
|
50 |
template=followup_prompt_template,
|
51 |
-
input_variables=["paper"],
|
52 |
partial_variables={
|
53 |
"format_instructions": auto_qa_output_parser.get_format_instructions()
|
54 |
},
|
55 |
)
|
56 |
|
57 |
-
followup_qa_chain = lambda model:
|
|
|
19 |
The answers must be based on the content of the research paper, offering clear and comprehensive insights for readers.
|
20 |
Ensure that the questions cover a broad range of topics related to the paper, including but not limited to the introduction, literature review, \
|
21 |
methodology, results, discussion, and conclusions.
|
22 |
+
The goal is to capture the essence of the paper in a way that is accessible to an expert audience.
|
23 |
Your response should be recorded in the following json format: {format_instructions}.
|
24 |
|
25 |
here is the research paper: ####{paper}####
|
|
|
48 |
|
49 |
followup_prompt = PromptTemplate(
|
50 |
template=followup_prompt_template,
|
51 |
+
input_variables=["paper", "question", "answer"],
|
52 |
partial_variables={
|
53 |
"format_instructions": auto_qa_output_parser.get_format_instructions()
|
54 |
},
|
55 |
)
|
56 |
|
57 |
+
followup_qa_chain = lambda model: followup_prompt | model
|