Kokoro-TTS-Zero / app.py
Remsky's picture
Set default voice to 'af_sky' if available when updating voice choices
462e867
raw
history blame
9.97 kB
import os
import gradio as gr
import spaces
import time
import matplotlib.pyplot as plt
import numpy as np
import torch
import os
from tts_model import TTSModel
from lib import format_audio_output
from lib.ui_content import header_html, demo_text_info
# Set HF_HOME for faster restarts with cached models/voices
os.environ["HF_HOME"] = "/data/.huggingface"
# Create TTS model instance
model = TTSModel()
def initialize_model():
"""Initialize model and get voices"""
if model.model is None:
if not model.initialize():
raise gr.Error("Failed to initialize model")
voices = model.list_voices()
if not voices:
raise gr.Error("No voices found. Please check the voices directory.")
default_voice = 'af_sky' if 'af_sky' in voices else voices[0] if voices else None
return gr.update(choices=voices, value=default_voice)
def update_progress(chunk_num, total_chunks, tokens_per_sec, rtf, progress_state, start_time, gpu_timeout, progress):
# Calculate time metrics
elapsed = time.time() - start_time
gpu_time_left = max(0, gpu_timeout - elapsed)
# Calculate chunk time more accurately
prev_total_time = sum(progress_state["chunk_times"]) if progress_state["chunk_times"] else 0
chunk_time = elapsed - prev_total_time
# Validate metrics before adding to state
if chunk_time > 0 and tokens_per_sec >= 0:
# Update progress state with validated metrics
progress_state["progress"] = chunk_num / total_chunks
progress_state["total_chunks"] = total_chunks
progress_state["gpu_time_left"] = gpu_time_left
progress_state["tokens_per_sec"].append(float(tokens_per_sec))
progress_state["rtf"].append(float(rtf))
progress_state["chunk_times"].append(chunk_time)
# Only update progress display during processing
progress(progress_state["progress"], desc=f"Processing chunk {chunk_num}/{total_chunks} | GPU Time Left: {int(gpu_time_left)}s")
def generate_speech_from_ui(text, voice_names, speed, gpu_timeout, progress=gr.Progress(track_tqdm=False)):
"""Handle text-to-speech generation from the Gradio UI"""
try:
if not text or not voice_names:
raise gr.Error("Please enter text and select at least one voice")
start_time = time.time()
# Create progress state with explicit type initialization
progress_state = {
"progress": 0.0,
"tokens_per_sec": [], # Initialize as empty list
"rtf": [], # Initialize as empty list
"chunk_times": [], # Initialize as empty list
"gpu_time_left": float(gpu_timeout), # Ensure float
"total_chunks": 0
}
# Handle single or multiple voices
if isinstance(voice_names, str):
voice_names = [voice_names]
# Generate speech with progress tracking using combined voice
audio_array, duration, metrics = model.generate_speech(
text,
voice_names,
speed,
gpu_timeout=gpu_timeout,
progress_callback=update_progress,
progress_state=progress_state,
progress=progress
)
# Format output for Gradio
audio_output, duration_text = format_audio_output(audio_array)
# Create plot and metrics text outside GPU context
fig, metrics_text = create_performance_plot(metrics, voice_names)
return (
audio_output,
fig,
metrics_text
)
except Exception as e:
raise gr.Error(f"Generation failed: {str(e)}")
def create_performance_plot(metrics, voice_names):
"""Create performance plot and metrics text from generation metrics"""
# Clean and process the data
tokens_per_sec = np.array(metrics["tokens_per_sec"])
rtf_values = np.array(metrics["rtf"])
# Calculate statistics using cleaned data
median_tps = float(np.median(tokens_per_sec))
mean_tps = float(np.mean(tokens_per_sec))
std_tps = float(np.std(tokens_per_sec))
# Set y-axis limits based on data range
y_min = max(0, np.min(tokens_per_sec) * 0.9)
y_max = np.max(tokens_per_sec) * 1.1
# Create plot
fig, ax = plt.subplots(figsize=(10, 5))
fig.patch.set_facecolor('black')
ax.set_facecolor('black')
# Plot data points
chunk_nums = list(range(1, len(tokens_per_sec) + 1))
# Plot data points
ax.bar(chunk_nums, tokens_per_sec, color='#ff2a6d', alpha=0.6)
# Set y-axis limits with padding
padding = 0.1 * (y_max - y_min)
ax.set_ylim(max(0, y_min - padding), y_max + padding)
# Add median line
ax.axhline(y=median_tps, color='#05d9e8', linestyle='--',
label=f'Median: {median_tps:.1f} tokens/sec')
# Style improvements
ax.set_xlabel('Chunk Number', fontsize=24, labelpad=20, color='white')
ax.set_ylabel('Tokens per Second', fontsize=24, labelpad=20, color='white')
ax.set_title('Processing Speed by Chunk', fontsize=28, pad=30, color='white')
ax.tick_params(axis='both', which='major', labelsize=20, colors='white')
ax.spines['bottom'].set_color('white')
ax.spines['top'].set_color('white')
ax.spines['left'].set_color('white')
ax.spines['right'].set_color('white')
ax.grid(False)
ax.legend(fontsize=20, facecolor='black', edgecolor='#05d9e8', loc='lower left',
labelcolor='white')
plt.tight_layout()
# Calculate average RTF from individual chunk RTFs
rtf = np.mean(rtf_values)
# Prepare metrics text
metrics_text = (
f"Median Speed: {median_tps:.1f} tokens/sec (o200k_base)\n" +
f"Real-time Factor: {rtf:.3f}\n" +
f"Real Time Speed: {int(1/rtf)}x\n" +
f"Processing Time: {int(metrics['total_time'])}s\n" +
f"Total Tokens: {metrics['total_tokens']} (o200k_base)\n" +
f"Voices: {', '.join(voice_names)}"
)
return fig, metrics_text
# Create Gradio interface
with gr.Blocks(title="Kokoro TTS Demo", css="""
.equal-height {
min-height: 400px;
display: flex;
flex-direction: column;
}
""") as demo:
gr.HTML(header_html)
with gr.Row():
# Column 1: Text Input
with open("the_time_machine_hgwells.txt") as f:
text = f.readlines()[:200]
text = "".join(text)
with gr.Column(elem_classes="equal-height"):
text_input = gr.TextArea(
label="Text to speak",
placeholder="Enter text here or upload a .txt file",
lines=10,
value=text
)
# Column 2: Controls
with gr.Column(elem_classes="equal-height"):
file_input = gr.File(
label="Upload .txt file",
file_types=[".txt"],
type="binary"
)
def load_text_from_file(file_bytes):
if file_bytes is None:
return None
try:
return file_bytes.decode('utf-8')
except Exception as e:
raise gr.Error(f"Failed to read file: {str(e)}")
file_input.change(
fn=load_text_from_file,
inputs=[file_input],
outputs=[text_input]
)
with gr.Group():
voice_dropdown = gr.Dropdown(
label="Voice(s)",
choices=[], # Start empty, will be populated after initialization
value=None,
allow_custom_value=True,
multiselect=True
)
# Add refresh button to manually update voice list
refresh_btn = gr.Button("🔄 Refresh Voices", size="sm")
speed_slider = gr.Slider(
label="Speed",
minimum=0.5,
maximum=2.0,
value=1.0,
step=0.1
)
gpu_timeout_slider = gr.Slider(
label="GPU Timeout (seconds)",
minimum=15,
maximum=120,
value=60,
step=1,
info="Maximum time allowed for GPU processing"
)
submit_btn = gr.Button("Generate Speech", variant="primary")
# Column 3: Output
with gr.Column(elem_classes="equal-height"):
audio_output = gr.Audio(
label="Generated Speech",
type="numpy",
format="wav",
autoplay=False
)
progress_bar = gr.Progress(track_tqdm=False)
metrics_text = gr.Textbox(
label="Performance Summary",
interactive=False,
lines=5
)
metrics_plot = gr.Plot(
label="Processing Metrics",
show_label=True,
format="png" # Explicitly set format to PNG which is supported by matplotlib
)
# Set up event handlers
refresh_btn.click(
fn=initialize_model,
outputs=[voice_dropdown]
)
submit_btn.click(
fn=generate_speech_from_ui,
inputs=[text_input, voice_dropdown, speed_slider, gpu_timeout_slider],
outputs=[audio_output, metrics_plot, metrics_text],
show_progress=True
)
# Add text analysis info
with gr.Row():
with gr.Column():
gr.Markdown(demo_text_info)
# Initialize voices on load
demo.load(
fn=initialize_model,
outputs=[voice_dropdown]
)
# Launch the app
if __name__ == "__main__":
demo.launch()