File size: 9,970 Bytes
0a639cb
 
 
165abce
3fd1314
 
3c8cbc9
 
0a639cb
165abce
2490adb
0a639cb
 
 
 
 
 
 
 
 
 
 
 
3c8cbc9
 
 
 
 
462e867
 
 
0a639cb
3c8cbc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a639cb
3c8cbc9
0a639cb
 
3c8cbc9
 
 
165abce
 
3c8cbc9
165abce
 
3c8cbc9
 
 
 
3fd1314
165abce
 
3c8cbc9
 
 
165abce
3c8cbc9
 
 
 
165abce
3c8cbc9
 
 
 
165abce
3c8cbc9
165abce
 
 
3c8cbc9
 
165abce
 
 
3fd1314
 
165abce
0a639cb
165abce
0a639cb
3c8cbc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a639cb
2490adb
 
 
 
 
 
 
 
0a639cb
 
165abce
3c8cbc9
 
 
2490adb
0a639cb
 
165abce
 
3c8cbc9
0a639cb
165abce
 
2490adb
165abce
 
 
 
0a639cb
165abce
 
 
 
 
 
 
 
 
 
 
 
 
0a639cb
165abce
 
 
3c8cbc9
 
 
 
 
165abce
3c8cbc9
 
 
 
165abce
 
 
 
 
 
 
3c8cbc9
 
 
 
 
 
 
 
165abce
0a639cb
165abce
2490adb
0a639cb
 
 
 
 
 
165abce
 
3fd1314
165abce
3c8cbc9
165abce
3fd1314
 
 
 
0a639cb
 
3c8cbc9
 
 
 
 
 
0a639cb
 
3c8cbc9
3fd1314
165abce
0a639cb
 
 
 
 
2490adb
3c8cbc9
 
 
 
 
 
0a639cb
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import os
import gradio as gr
import spaces
import time
import matplotlib.pyplot as plt
import numpy as np
import torch
import os
from tts_model import TTSModel
from lib import format_audio_output
from lib.ui_content import header_html, demo_text_info

# Set HF_HOME for faster restarts with cached models/voices
os.environ["HF_HOME"] = "/data/.huggingface"

# Create TTS model instance
model = TTSModel()

def initialize_model():
    """Initialize model and get voices"""
    if model.model is None:
        if not model.initialize():
            raise gr.Error("Failed to initialize model")
    
    voices = model.list_voices()
    if not voices:
        raise gr.Error("No voices found. Please check the voices directory.")
        
    default_voice = 'af_sky' if 'af_sky' in voices else voices[0] if voices else None
    
    return gr.update(choices=voices, value=default_voice)

def update_progress(chunk_num, total_chunks, tokens_per_sec, rtf, progress_state, start_time, gpu_timeout, progress):
    # Calculate time metrics
    elapsed = time.time() - start_time
    gpu_time_left = max(0, gpu_timeout - elapsed)
    
    # Calculate chunk time more accurately
    prev_total_time = sum(progress_state["chunk_times"]) if progress_state["chunk_times"] else 0
    chunk_time = elapsed - prev_total_time
    
    # Validate metrics before adding to state
    if chunk_time > 0 and tokens_per_sec >= 0:
        # Update progress state with validated metrics
        progress_state["progress"] = chunk_num / total_chunks
        progress_state["total_chunks"] = total_chunks
        progress_state["gpu_time_left"] = gpu_time_left
        progress_state["tokens_per_sec"].append(float(tokens_per_sec))
        progress_state["rtf"].append(float(rtf))
        progress_state["chunk_times"].append(chunk_time)
    
    # Only update progress display during processing
    progress(progress_state["progress"], desc=f"Processing chunk {chunk_num}/{total_chunks} | GPU Time Left: {int(gpu_time_left)}s")

def generate_speech_from_ui(text, voice_names, speed, gpu_timeout, progress=gr.Progress(track_tqdm=False)):
    """Handle text-to-speech generation from the Gradio UI"""
    try:
        if not text or not voice_names:
            raise gr.Error("Please enter text and select at least one voice")
            
        start_time = time.time()
        
        # Create progress state with explicit type initialization
        progress_state = {
            "progress": 0.0,
            "tokens_per_sec": [],  # Initialize as empty list
            "rtf": [],  # Initialize as empty list
            "chunk_times": [],  # Initialize as empty list
            "gpu_time_left": float(gpu_timeout),  # Ensure float
            "total_chunks": 0
        }
        
        # Handle single or multiple voices
        if isinstance(voice_names, str):
            voice_names = [voice_names]
        
        # Generate speech with progress tracking using combined voice
        audio_array, duration, metrics = model.generate_speech(
            text,
            voice_names,
            speed,
            gpu_timeout=gpu_timeout,
            progress_callback=update_progress,
            progress_state=progress_state,
            progress=progress
        )
    
        # Format output for Gradio
        audio_output, duration_text = format_audio_output(audio_array)
        
        # Create plot and metrics text outside GPU context
        fig, metrics_text = create_performance_plot(metrics, voice_names)
        
        return (
            audio_output,
            fig,
            metrics_text
        )
    except Exception as e:
        raise gr.Error(f"Generation failed: {str(e)}")

def create_performance_plot(metrics, voice_names):
    """Create performance plot and metrics text from generation metrics"""
    # Clean and process the data
    tokens_per_sec = np.array(metrics["tokens_per_sec"])
    rtf_values = np.array(metrics["rtf"])
    
    # Calculate statistics using cleaned data
    median_tps = float(np.median(tokens_per_sec))
    mean_tps = float(np.mean(tokens_per_sec))
    std_tps = float(np.std(tokens_per_sec))
    
    # Set y-axis limits based on data range
    y_min = max(0, np.min(tokens_per_sec) * 0.9)
    y_max = np.max(tokens_per_sec) * 1.1
    
    # Create plot
    fig, ax = plt.subplots(figsize=(10, 5))
    fig.patch.set_facecolor('black')
    ax.set_facecolor('black')
    
    # Plot data points
    chunk_nums = list(range(1, len(tokens_per_sec) + 1))
    
    # Plot data points
    ax.bar(chunk_nums, tokens_per_sec, color='#ff2a6d', alpha=0.6)
    
    # Set y-axis limits with padding
    padding = 0.1 * (y_max - y_min)
    ax.set_ylim(max(0, y_min - padding), y_max + padding)
    
    # Add median line
    ax.axhline(y=median_tps, color='#05d9e8', linestyle='--', 
              label=f'Median: {median_tps:.1f} tokens/sec')
    
    # Style improvements
    ax.set_xlabel('Chunk Number', fontsize=24, labelpad=20, color='white')
    ax.set_ylabel('Tokens per Second', fontsize=24, labelpad=20, color='white')
    ax.set_title('Processing Speed by Chunk', fontsize=28, pad=30, color='white')
    ax.tick_params(axis='both', which='major', labelsize=20, colors='white')
    ax.spines['bottom'].set_color('white')
    ax.spines['top'].set_color('white')
    ax.spines['left'].set_color('white')
    ax.spines['right'].set_color('white')
    ax.grid(False)
    ax.legend(fontsize=20, facecolor='black', edgecolor='#05d9e8', loc='lower left', 
             labelcolor='white')
    
    plt.tight_layout()
    
    # Calculate average RTF from individual chunk RTFs
    rtf = np.mean(rtf_values)
    
    # Prepare metrics text
    metrics_text = (
        f"Median Speed: {median_tps:.1f} tokens/sec (o200k_base)\n" +
        f"Real-time Factor: {rtf:.3f}\n" +
        f"Real Time Speed: {int(1/rtf)}x\n" +
        f"Processing Time: {int(metrics['total_time'])}s\n" +
        f"Total Tokens: {metrics['total_tokens']} (o200k_base)\n" +
        f"Voices: {', '.join(voice_names)}"
    )
    
    return fig, metrics_text

# Create Gradio interface
with gr.Blocks(title="Kokoro TTS Demo", css="""
    .equal-height {
        min-height: 400px;
        display: flex;
        flex-direction: column;
    }
""") as demo:
    gr.HTML(header_html)
    
    with gr.Row():
        # Column 1: Text Input
        with open("the_time_machine_hgwells.txt") as f:
            text = f.readlines()[:200]
            text = "".join(text)
        with gr.Column(elem_classes="equal-height"):
            text_input = gr.TextArea(
                label="Text to speak",
                placeholder="Enter text here or upload a .txt file",
                lines=10,
                value=text
            )
        
        # Column 2: Controls
        with gr.Column(elem_classes="equal-height"):
            file_input = gr.File(
                label="Upload .txt file",
                file_types=[".txt"],
                type="binary"
            )
            
            def load_text_from_file(file_bytes):
                if file_bytes is None:
                    return None
                try:
                    return file_bytes.decode('utf-8')
                except Exception as e:
                    raise gr.Error(f"Failed to read file: {str(e)}")

            file_input.change(
                fn=load_text_from_file,
                inputs=[file_input],
                outputs=[text_input]
            )
            
            with gr.Group():
                voice_dropdown = gr.Dropdown(
                    label="Voice(s)",
                    choices=[],  # Start empty, will be populated after initialization
                    value=None,
                    allow_custom_value=True,
                    multiselect=True
                )
                
                # Add refresh button to manually update voice list
                refresh_btn = gr.Button("🔄 Refresh Voices", size="sm")
                
                speed_slider = gr.Slider(
                    label="Speed",
                    minimum=0.5,
                    maximum=2.0,
                    value=1.0,
                    step=0.1
                )
                gpu_timeout_slider = gr.Slider(
                    label="GPU Timeout (seconds)",
                    minimum=15,
                    maximum=120,
                    value=60,
                    step=1,
                    info="Maximum time allowed for GPU processing"
                )
                submit_btn = gr.Button("Generate Speech", variant="primary")
        
        # Column 3: Output
        with gr.Column(elem_classes="equal-height"):
            audio_output = gr.Audio(
                label="Generated Speech",
                type="numpy",
                format="wav",
                autoplay=False
            )
            progress_bar = gr.Progress(track_tqdm=False)
            metrics_text = gr.Textbox(
                label="Performance Summary",
                interactive=False,
                lines=5
            )
            metrics_plot = gr.Plot(
                label="Processing Metrics",
                show_label=True,
                format="png"  # Explicitly set format to PNG which is supported by matplotlib
            )
    
    # Set up event handlers
    refresh_btn.click(
        fn=initialize_model,
        outputs=[voice_dropdown]
    )
    
    submit_btn.click(
        fn=generate_speech_from_ui,
        inputs=[text_input, voice_dropdown, speed_slider, gpu_timeout_slider],
        outputs=[audio_output, metrics_plot, metrics_text],
        show_progress=True
    )
    
    # Add text analysis info
    with gr.Row():
        with gr.Column():
            gr.Markdown(demo_text_info)
    
    # Initialize voices on load
    demo.load(
        fn=initialize_model,
        outputs=[voice_dropdown]
    )

# Launch the app
if __name__ == "__main__":
    demo.launch()