Remsky commited on
Commit
0a639cb
·
1 Parent(s): 9868c44

Add initial implementation of Kokoro TTS Demo Space with Gradio interface and dependencies

Browse files
Files changed (6) hide show
  1. README.md +59 -1
  2. app.py +127 -0
  3. packages.txt +1 -0
  4. requirements.txt +12 -0
  5. the_time_machine_hgwells.txt +0 -0
  6. tts_model.py +329 -0
README.md CHANGED
@@ -11,4 +11,62 @@ license: apache-2.0
11
  short_description: A100 GPU Accelerated Inference applied to Kokoro-82M TTS
12
  ---
13
 
14
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  short_description: A100 GPU Accelerated Inference applied to Kokoro-82M TTS
12
  ---
13
 
14
+ # Kokoro TTS Demo Space
15
+
16
+ A Zero GPU-optimized Hugging Face Space for the Kokoro TTS model.
17
+
18
+ ## Overview
19
+
20
+ This Space provides a Gradio interface for the Kokoro TTS model, allowing users to:
21
+ - Convert text to speech using multiple voices
22
+ - Adjust speech speed
23
+ - Get instant audio playback
24
+
25
+ ## Technical Details
26
+
27
+ - Uses Zero GPU for efficient GPU resource management
28
+ - Dynamically loads required modules from hexgrad/Kokoro-82M repository
29
+ - Automatically downloads model and voice files from Hugging Face Hub
30
+ - Implements proper GPU memory handling
31
+ - Includes caching in /data/.huggingface for faster restarts
32
+
33
+ ## Dependencies
34
+
35
+ The Space uses modules from two repositories:
36
+ - remsky/Kokoro-FastAPI: This repository (UI and Zero GPU implementation)
37
+ - hexgrad/Kokoro-82M: Original model repository (core TTS functionality)
38
+
39
+ All dependencies are automatically handled:
40
+ - Core modules (kokoro.py, models.py, etc.) are downloaded from hexgrad/Kokoro-82M
41
+ - Model weights and voice files are cached in /data/.huggingface
42
+ - System dependencies (espeak-ng) are installed via packages.txt
43
+
44
+ ## Environment
45
+
46
+ - Python 3.10.13
47
+ - PyTorch 2.2.2
48
+ - Gradio 5.9.1
49
+ - Zero GPU compatible
50
+
51
+ ## Available Voices
52
+
53
+ Adult Female voices:
54
+ - af: Confident, Friendly
55
+ - af_sky: You know and Love her
56
+ - af_bella: Warm and Self-Assured
57
+ - af_nicole: Whispered, ASMR
58
+ - af_sarah: Bright and Professional
59
+ - bf_emma: Pensive and Confident, British
60
+ - bf_isabella: Young Professional, British
61
+
62
+ Adult Male voices:
63
+ - am_adam: Deep Narrative Voice
64
+ - am_michael: Trustworthy and Thoughtful
65
+ - bm_george: Distinguished older voice, British
66
+ - bm_lewis: Assured and Raspy, British
67
+
68
+ ## Notes
69
+
70
+ - First generation may take longer due to model initialization
71
+ - GPU is allocated only during speech generation
72
+ - Model and voices are cached in /data/.huggingface for faster subsequent runs
app.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ import spaces
4
+ from tts_model import TTSModel
5
+ import numpy as np
6
+
7
+ # Set HF_HOME for faster restarts with cached models/voices
8
+ os.environ["HF_HOME"] = "/data/.huggingface"
9
+
10
+ # Create TTS model instance
11
+ model = TTSModel()
12
+
13
+ @spaces.GPU(duration=10) # Quick initialization
14
+ def initialize_model():
15
+ """Initialize model and get voices"""
16
+ if model.model is None:
17
+ if not model.initialize():
18
+ raise gr.Error("Failed to initialize model")
19
+ return model.list_voices()
20
+
21
+ # Get initial voice list
22
+ voice_list = initialize_model()
23
+
24
+ @spaces.GPU(duration=120) # Allow 5 minutes for processing
25
+ def generate_speech_from_ui(text, voice_name, speed):
26
+ """Handle text-to-speech generation from the Gradio UI"""
27
+ try:
28
+ audio_array, duration = model.generate_speech(text, voice_name, speed)
29
+ # Convert float array to int16 range (-32768 to 32767)
30
+ audio_array = np.array(audio_array, dtype=np.float32)
31
+ audio_array = (audio_array * 32767).astype(np.int16)
32
+ return (24000, audio_array), f"Audio Duration: {duration:.2f} seconds\nProcessing complete - check console for detailed metrics"
33
+ except Exception as e:
34
+ raise gr.Error(str(e))
35
+
36
+ # Create Gradio interface
37
+ with gr.Blocks(title="Kokoro TTS Demo") as demo:
38
+ gr.HTML(
39
+ """
40
+ <div style="text-align: center; max-width: 800px; margin: 0 auto;">
41
+ <h1>Kokoro TTS Demo</h1>
42
+ <p>Convert text to natural-sounding speech using various voices.</p>
43
+ </div>
44
+ """
45
+ )
46
+
47
+ with gr.Row():
48
+ with gr.Column(scale=3):
49
+ # Input components
50
+ text_input = gr.TextArea(
51
+ label="Text to speak",
52
+ placeholder="Enter text here...",
53
+ lines=3,
54
+ value=open("the_time_machine_hgwells.txt").read()[:1000]
55
+ )
56
+ voice_dropdown = gr.Dropdown(
57
+ label="Voice",
58
+ choices=voice_list,
59
+ value=voice_list[0] if voice_list else None,
60
+ allow_custom_value=True # Allow custom values to avoid warnings
61
+ )
62
+ speed_slider = gr.Slider(
63
+ label="Speed",
64
+ minimum=0.5,
65
+ maximum=2.0,
66
+ value=1.0,
67
+ step=0.1
68
+ )
69
+ submit_btn = gr.Button("Generate Speech")
70
+
71
+ with gr.Column(scale=2):
72
+ # Output components
73
+ audio_output = gr.Audio(
74
+ label="Generated Speech",
75
+ type="numpy",
76
+ format="wav",
77
+ autoplay=False
78
+ )
79
+ duration_text = gr.Textbox(
80
+ label="Processing Info",
81
+ interactive=False,
82
+ lines=4
83
+ )
84
+
85
+ # Set up event handler
86
+ submit_btn.click(
87
+ fn=generate_speech_from_ui,
88
+ inputs=[text_input, voice_dropdown, speed_slider],
89
+ outputs=[audio_output, duration_text]
90
+ )
91
+
92
+ # Add voice descriptions
93
+ gr.Markdown("""
94
+ ### Available Voices
95
+ - Adult Female (af): Base female voice
96
+ - Bella (af_bella): Warm and friendly
97
+ - Nicole (af_nicole): Warm and Whispered
98
+ - Sarah (af_sarah): Soft and gentle
99
+ - Sky (af_sky): You know her, you love her
100
+ - Adult Male (am): Base male voice
101
+ - Adam (am_adam): Clear and Friendly
102
+ - Michael (am_michael): Smooth and natural
103
+ - Young Female (bf):
104
+ - Emma (bf_emma): Sweet and cheerful
105
+ - Isabella (bf_isabella): Lively and expressive
106
+ - Young Male (bm):
107
+ - George (bm_george): Young and energetic
108
+ - Lewis (bm_lewis): Deep and confident
109
+ """)
110
+
111
+ # Add text analysis info
112
+ with gr.Row():
113
+ with gr.Column():
114
+ gr.Markdown("""
115
+ ### Demo Text Info
116
+ The demo text is loaded from H.G. Wells' "The Time Machine". This classic text demonstrates the system's ability to handle long-form content through chunking.
117
+ """)
118
+
119
+ text_stats = gr.Textbox(
120
+ label="Text Statistics",
121
+ interactive=False,
122
+ value=f"Characters: {len(open('the_time_machine_hgwells.txt').read())}\nEstimated chunks: {len(open('the_time_machine_hgwells.txt').read()) // 300 + 1}"
123
+ )
124
+
125
+ # Launch the app
126
+ if __name__ == "__main__":
127
+ demo.launch()
packages.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ espeak-ng
requirements.txt ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ gradio==5.9.1
2
+ torch==2.2.2
3
+ numpy<2
4
+ scipy==1.14.1
5
+ huggingface_hub>=0.25.1
6
+ soundfile==0.12.1
7
+ phonemizer==3.3.0
8
+ regex==2024.11.6
9
+ tiktoken==0.8.0
10
+ transformers==4.47.1
11
+ munch==4.0.0
12
+
the_time_machine_hgwells.txt ADDED
The diff for this file is too large to render. See raw diff
 
tts_model.py ADDED
@@ -0,0 +1,329 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import io
3
+ import spaces
4
+ import torch
5
+ import numpy as np
6
+ import time
7
+ import tiktoken
8
+ import scipy.io.wavfile as wavfile
9
+ from huggingface_hub import hf_hub_download
10
+ import importlib.util
11
+ import sys
12
+
13
+ def load_module_from_file(module_name, file_path):
14
+ """Load a Python module from file path"""
15
+ spec = importlib.util.spec_from_file_location(module_name, file_path)
16
+ if spec is None or spec.loader is None:
17
+ raise ImportError(f"Cannot load module {module_name} from {file_path}")
18
+ module = importlib.util.module_from_spec(spec)
19
+ sys.modules[module_name] = module
20
+ spec.loader.exec_module(module)
21
+ return module
22
+
23
+ # Download and load required Python modules
24
+ py_modules = ["istftnet", "plbert", "models"]
25
+ for py_module in py_modules:
26
+ path = hf_hub_download(repo_id="hexgrad/Kokoro-82M", filename=f"{py_module}.py")
27
+ load_module_from_file(py_module, path)
28
+
29
+ # Load the kokoro module
30
+ kokoro_path = hf_hub_download(repo_id="hexgrad/Kokoro-82M", filename="kokoro.py")
31
+ kokoro = load_module_from_file("kokoro", kokoro_path)
32
+
33
+ # Import required functions
34
+ generate = kokoro.generate
35
+ normalize_text = kokoro.normalize_text
36
+ models = sys.modules['models']
37
+ build_model = models.build_model
38
+
39
+ # Set HF_HOME for faster restarts
40
+ os.environ["HF_HOME"] = "/data/.huggingface"
41
+
42
+ class TTSModel:
43
+ """Self-contained TTS model manager for Hugging Face Spaces"""
44
+
45
+ def __init__(self):
46
+ self.model = None
47
+ self.voices_dir = "voices"
48
+ self.model_repo = "hexgrad/Kokoro-82M"
49
+ os.makedirs(self.voices_dir, exist_ok=True)
50
+
51
+ def initialize(self):
52
+ """Initialize model and download voices"""
53
+ try:
54
+ print("Initializing model...")
55
+
56
+ # Download model and config
57
+ model_path = hf_hub_download(
58
+ repo_id=self.model_repo,
59
+ filename="kokoro-v0_19.pth"
60
+ )
61
+ config_path = hf_hub_download(
62
+ repo_id=self.model_repo,
63
+ filename="config.json"
64
+ )
65
+
66
+ # Build model directly on GPU if available
67
+ with torch.cuda.device(0):
68
+ torch.cuda.set_device(0)
69
+ self.model = build_model(model_path, 'cuda')
70
+ self._model_on_gpu = True
71
+
72
+ # Download all available voices
73
+ voices = [
74
+ "af_bella.pt", "af_nicole.pt", "af_sarah.pt", "af_sky.pt", "af.pt",
75
+ "am_adam.pt", "am_michael.pt",
76
+ "bf_emma.pt", "bf_isabella.pt",
77
+ "bm_george.pt", "bm_lewis.pt"
78
+ ]
79
+ for voice in voices:
80
+ try:
81
+ # Download voice file
82
+ # Create full destination path
83
+ voice_path = os.path.join(self.voices_dir, voice)
84
+ print(f"Attempting to download voice {voice} to {voice_path}")
85
+
86
+ # Ensure directory exists
87
+ os.makedirs(self.voices_dir, exist_ok=True)
88
+
89
+ # Download with explicit destination
90
+ try:
91
+ downloaded_path = hf_hub_download(
92
+ repo_id=self.model_repo,
93
+ filename=f"voices/{voice}",
94
+ local_dir=self.voices_dir,
95
+ local_dir_use_symlinks=False,
96
+ force_filename=voice
97
+ )
98
+ print(f"Download completed to: {downloaded_path}")
99
+
100
+ # Verify file exists
101
+ if not os.path.exists(voice_path):
102
+ print(f"Warning: File not found at expected path {voice_path}")
103
+ print(f"Checking download location: {downloaded_path}")
104
+ if os.path.exists(downloaded_path):
105
+ print(f"Moving file from {downloaded_path} to {voice_path}")
106
+ os.rename(downloaded_path, voice_path)
107
+ else:
108
+ print(f"Verified voice file exists: {voice_path}")
109
+
110
+ except Exception as e:
111
+ print(f"Error downloading voice {voice}: {str(e)}")
112
+ import traceback
113
+ traceback.print_exc()
114
+
115
+ except Exception as e:
116
+ print(f"Error downloading voice {voice}: {str(e)}")
117
+ import traceback
118
+ traceback.print_exc()
119
+
120
+ print("Model initialization complete")
121
+ return True
122
+
123
+ except Exception as e:
124
+ print(f"Error initializing model: {str(e)}")
125
+ return False
126
+
127
+ def list_voices(self):
128
+ """List available voices"""
129
+ voices = []
130
+ try:
131
+ # Verify voices directory exists
132
+ if not os.path.exists(self.voices_dir):
133
+ print(f"Voices directory does not exist: {self.voices_dir}")
134
+ return voices
135
+
136
+ # Get list of files
137
+ files = os.listdir(self.voices_dir)
138
+ print(f"Found {len(files)} files in voices directory")
139
+
140
+ # Filter for .pt files
141
+ for file in files:
142
+ if file.endswith(".pt"):
143
+ voices.append(file[:-3]) # Remove .pt extension
144
+ print(f"Found voice: {file[:-3]}")
145
+
146
+ if not voices:
147
+ print("No voice files found in voices directory")
148
+
149
+ except Exception as e:
150
+ print(f"Error listing voices: {str(e)}")
151
+ import traceback
152
+ traceback.print_exc()
153
+
154
+ return sorted(voices)
155
+
156
+ def _ensure_model_on_gpu(self):
157
+ """Ensure model is on GPU and stays there"""
158
+ if not hasattr(self, '_model_on_gpu') or not self._model_on_gpu:
159
+ print("Moving model to GPU...")
160
+ with torch.cuda.device(0):
161
+ torch.cuda.set_device(0)
162
+ # Move model to GPU using torch.nn.Module method
163
+ if hasattr(self.model, 'to'):
164
+ self.model.to('cuda')
165
+ else:
166
+ # Fallback for Munch object - move parameters individually
167
+ for name in self.model:
168
+ if isinstance(self.model[name], torch.Tensor):
169
+ self.model[name] = self.model[name].cuda()
170
+ self._model_on_gpu = True
171
+
172
+ def _generate_audio(self, text: str, voicepack: torch.Tensor, lang: str, speed: float) -> np.ndarray:
173
+ """GPU-accelerated audio generation"""
174
+ try:
175
+ with torch.cuda.device(0):
176
+ torch.cuda.set_device(0)
177
+
178
+ # Move everything to GPU in a single context
179
+ if not hasattr(self, '_model_on_gpu') or not self._model_on_gpu:
180
+ print("Moving model to GPU...")
181
+ if hasattr(self.model, 'to'):
182
+ self.model.to('cuda')
183
+ else:
184
+ for name in self.model:
185
+ if isinstance(self.model[name], torch.Tensor):
186
+ self.model[name] = self.model[name].cuda()
187
+ self._model_on_gpu = True
188
+
189
+ # Move voicepack to GPU
190
+ voicepack = voicepack.cuda()
191
+
192
+ # Run generation with everything on GPU
193
+ audio, _ = generate(
194
+ self.model,
195
+ text,
196
+ voicepack,
197
+ lang=lang,
198
+ speed=speed
199
+ )
200
+
201
+ return audio
202
+
203
+ except Exception as e:
204
+ print(f"Error in audio generation: {str(e)}")
205
+ raise e
206
+
207
+ def chunk_text(self, text: str, max_chars: int = 300) -> list[str]:
208
+ """Break text into chunks at natural boundaries"""
209
+ chunks = []
210
+ current_chunk = ""
211
+
212
+ # Split on sentence boundaries first
213
+ sentences = text.replace(".", ".|").replace("!", "!|").replace("?", "?|").replace(";", ";|").split("|")
214
+
215
+ for sentence in sentences:
216
+ if not sentence.strip():
217
+ continue
218
+
219
+ # If sentence is already too long, break on commas
220
+ if len(sentence) > max_chars:
221
+ parts = sentence.split(",")
222
+ for part in parts:
223
+ if len(current_chunk) + len(part) <= max_chars:
224
+ current_chunk += part + ","
225
+ else:
226
+ # If part is still too long, break on whitespace
227
+ if len(part) > max_chars:
228
+ words = part.split()
229
+ for word in words:
230
+ if len(current_chunk) + len(word) > max_chars:
231
+ chunks.append(current_chunk.strip())
232
+ current_chunk = word + " "
233
+ else:
234
+ current_chunk += word + " "
235
+ else:
236
+ chunks.append(current_chunk.strip())
237
+ current_chunk = part + ","
238
+ else:
239
+ if len(current_chunk) + len(sentence) <= max_chars:
240
+ current_chunk += sentence
241
+ else:
242
+ chunks.append(current_chunk.strip())
243
+ current_chunk = sentence
244
+
245
+ if current_chunk:
246
+ chunks.append(current_chunk.strip())
247
+
248
+ return chunks
249
+
250
+ def generate_speech(self, text: str, voice_name: str, speed: float = 1.0) -> tuple[np.ndarray, float]:
251
+ """Generate speech from text. Returns (audio_array, duration)"""
252
+ try:
253
+ if not text or not voice_name:
254
+ raise ValueError("Text and voice name are required")
255
+
256
+ start_time = time.time()
257
+
258
+ # Initialize tokenizer
259
+ enc = tiktoken.get_encoding("cl100k_base")
260
+ total_tokens = len(enc.encode(text))
261
+
262
+ # Normalize text
263
+ text = normalize_text(text)
264
+ if not text:
265
+ raise ValueError("Text is empty after normalization")
266
+
267
+ # Load voice and process within GPU context
268
+ with torch.cuda.device(0):
269
+ torch.cuda.set_device(0)
270
+
271
+ voice_path = os.path.join(self.voices_dir, f"{voice_name}.pt")
272
+ if not os.path.exists(voice_path):
273
+ raise ValueError(f"Voice not found: {voice_name}")
274
+
275
+ # Load voice directly to GPU
276
+ voicepack = torch.load(voice_path, map_location='cuda', weights_only=True)
277
+
278
+ # Break text into chunks for better memory management
279
+ chunks = self.chunk_text(text)
280
+ print(f"Processing {len(chunks)} chunks...")
281
+
282
+ # Ensure model is initialized and on GPU
283
+ if self.model is None:
284
+ print("Model not initialized, reinitializing...")
285
+ if not self.initialize():
286
+ raise ValueError("Failed to initialize model")
287
+
288
+ # Move model to GPU if needed
289
+ if not hasattr(self, '_model_on_gpu') or not self._model_on_gpu:
290
+ print("Moving model to GPU...")
291
+ if hasattr(self.model, 'to'):
292
+ self.model.to('cuda')
293
+ else:
294
+ for name in self.model:
295
+ if isinstance(self.model[name], torch.Tensor):
296
+ self.model[name] = self.model[name].cuda()
297
+ self._model_on_gpu = True
298
+
299
+ # Process all chunks within same GPU context
300
+ audio_chunks = []
301
+ for i, chunk in enumerate(chunks):
302
+ chunk_start = time.time()
303
+ chunk_audio = self._generate_audio(
304
+ text=chunk,
305
+ voicepack=voicepack,
306
+ lang=voice_name[0],
307
+ speed=speed
308
+ )
309
+ chunk_time = time.time() - chunk_start
310
+ print(f"Chunk {i+1}/{len(chunks)} processed in {chunk_time:.2f}s")
311
+ audio_chunks.append(chunk_audio)
312
+
313
+ # Concatenate audio chunks
314
+ audio = np.concatenate(audio_chunks)
315
+
316
+ # Calculate metrics
317
+ total_time = time.time() - start_time
318
+ tokens_per_second = total_tokens / total_time
319
+
320
+ print(f"\nProcessing Metrics:")
321
+ print(f"Total tokens: {total_tokens}")
322
+ print(f"Total time: {total_time:.2f}s")
323
+ print(f"Tokens per second: {tokens_per_second:.2f}")
324
+
325
+ return audio, len(audio) / 24000 # Return audio array and duration
326
+
327
+ except Exception as e:
328
+ print(f"Error generating speech: {str(e)}")
329
+ raise