Spaces:
Runtime error
Runtime error
import argparse | |
import cv2 | |
import glob | |
import mimetypes | |
import numpy as np | |
import os | |
import shutil | |
import subprocess | |
import torch | |
from basicsr.archs.rrdbnet_arch import RRDBNet | |
from basicsr.utils.download_util import load_file_from_url | |
from os import path as osp | |
from tqdm import tqdm | |
from realesrgan import RealESRGANer | |
from realesrgan.archs.srvgg_arch import SRVGGNetCompact | |
try: | |
import ffmpeg | |
except ImportError: | |
import pip | |
pip.main(["install", "--user", "ffmpeg-python"]) | |
import ffmpeg | |
def get_video_meta_info(video_path): | |
ret = {} | |
probe = ffmpeg.probe(video_path) | |
video_streams = [ | |
stream for stream in probe["streams"] if stream["codec_type"] == "video" | |
] | |
has_audio = any(stream["codec_type"] == "audio" for stream in probe["streams"]) | |
ret["width"] = video_streams[0]["width"] | |
ret["height"] = video_streams[0]["height"] | |
ret["fps"] = eval(video_streams[0]["avg_frame_rate"]) | |
ret["audio"] = ffmpeg.input(video_path).audio if has_audio else None | |
ret["nb_frames"] = int(video_streams[0]["nb_frames"]) | |
return ret | |
def get_sub_video(args, num_process, process_idx): | |
if num_process == 1: | |
return args.input | |
meta = get_video_meta_info(args.input) | |
duration = int(meta["nb_frames"] / meta["fps"]) | |
part_time = duration // num_process | |
print(f"duration: {duration}, part_time: {part_time}") | |
os.makedirs( | |
osp.join(args.output, f"{args.video_name}_inp_tmp_videos"), exist_ok=True | |
) | |
out_path = osp.join( | |
args.output, f"{args.video_name}_inp_tmp_videos", f"{process_idx:03d}.mp4" | |
) | |
cmd = [ | |
args.ffmpeg_bin, | |
f"-i {args.input}", | |
"-ss", | |
f"{part_time * process_idx}", | |
f"-to {part_time * (process_idx + 1)}" | |
if process_idx != num_process - 1 | |
else "", | |
"-async 1", | |
out_path, | |
"-y", | |
] | |
print(" ".join(cmd)) | |
subprocess.call(" ".join(cmd), shell=True) | |
return out_path | |
class Reader: | |
def __init__(self, args, total_workers=1, worker_idx=0): | |
self.args = args | |
input_type = mimetypes.guess_type(args.input)[0] | |
self.input_type = "folder" if input_type is None else input_type | |
self.paths = [] # for image&folder type | |
self.audio = None | |
self.input_fps = None | |
if self.input_type.startswith("video"): | |
video_path = get_sub_video(args, total_workers, worker_idx) | |
self.stream_reader = ( | |
ffmpeg.input(video_path) | |
.output("pipe:", format="rawvideo", pix_fmt="bgr24", loglevel="error") | |
.run_async(pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin) | |
) | |
meta = get_video_meta_info(video_path) | |
self.width = meta["width"] | |
self.height = meta["height"] | |
self.input_fps = meta["fps"] | |
self.audio = meta["audio"] | |
self.nb_frames = meta["nb_frames"] | |
else: | |
if self.input_type.startswith("image"): | |
self.paths = [args.input] | |
else: | |
paths = sorted(glob.glob(os.path.join(args.input, "*"))) | |
tot_frames = len(paths) | |
num_frame_per_worker = tot_frames // total_workers + ( | |
1 if tot_frames % total_workers else 0 | |
) | |
self.paths = paths[ | |
num_frame_per_worker | |
* worker_idx : num_frame_per_worker | |
* (worker_idx + 1) | |
] | |
self.nb_frames = len(self.paths) | |
assert self.nb_frames > 0, "empty folder" | |
from PIL import Image | |
tmp_img = Image.open(self.paths[0]) | |
self.width, self.height = tmp_img.size | |
self.idx = 0 | |
def get_resolution(self): | |
return self.height, self.width | |
def get_fps(self): | |
if self.args.fps is not None: | |
return self.args.fps | |
elif self.input_fps is not None: | |
return self.input_fps | |
return 24 | |
def get_audio(self): | |
return self.audio | |
def __len__(self): | |
return self.nb_frames | |
def get_frame_from_stream(self): | |
img_bytes = self.stream_reader.stdout.read( | |
self.width * self.height * 3 | |
) # 3 bytes for one pixel | |
if not img_bytes: | |
return None | |
img = np.frombuffer(img_bytes, np.uint8).reshape([self.height, self.width, 3]) | |
return img | |
def get_frame_from_list(self): | |
if self.idx >= self.nb_frames: | |
return None | |
img = cv2.imread(self.paths[self.idx]) | |
self.idx += 1 | |
return img | |
def get_frame(self): | |
if self.input_type.startswith("video"): | |
return self.get_frame_from_stream() | |
else: | |
return self.get_frame_from_list() | |
def close(self): | |
if self.input_type.startswith("video"): | |
self.stream_reader.stdin.close() | |
self.stream_reader.wait() | |
class Writer: | |
def __init__(self, args, audio, height, width, video_save_path, fps): | |
out_width, out_height = int(width * args.outscale), int(height * args.outscale) | |
if out_height > 2160: | |
print( | |
"You are generating video that is larger than 4K, which will be very slow due to IO speed.", | |
"We highly recommend to decrease the outscale(aka, -s).", | |
) | |
if audio is not None: | |
self.stream_writer = ( | |
ffmpeg.input( | |
"pipe:", | |
format="rawvideo", | |
pix_fmt="bgr24", | |
s=f"{out_width}x{out_height}", | |
framerate=fps, | |
) | |
.output( | |
audio, | |
video_save_path, | |
pix_fmt="yuv420p", | |
vcodec="libx264", | |
loglevel="error", | |
acodec="copy", | |
) | |
.overwrite_output() | |
.run_async(pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin) | |
) | |
else: | |
self.stream_writer = ( | |
ffmpeg.input( | |
"pipe:", | |
format="rawvideo", | |
pix_fmt="bgr24", | |
s=f"{out_width}x{out_height}", | |
framerate=fps, | |
) | |
.output( | |
video_save_path, | |
pix_fmt="yuv420p", | |
vcodec="libx264", | |
loglevel="error", | |
) | |
.overwrite_output() | |
.run_async(pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin) | |
) | |
def write_frame(self, frame): | |
frame = frame.astype(np.uint8).tobytes() | |
self.stream_writer.stdin.write(frame) | |
def close(self): | |
self.stream_writer.stdin.close() | |
self.stream_writer.wait() | |
def inference_video(args, video_save_path, device=None, total_workers=1, worker_idx=0): | |
# ---------------------- determine models according to model names ---------------------- # | |
args.model_name = args.model_name.split(".pth")[0] | |
if args.model_name == "RealESRGAN_x4plus": # x4 RRDBNet model | |
model = RRDBNet( | |
num_in_ch=3, | |
num_out_ch=3, | |
num_feat=64, | |
num_block=23, | |
num_grow_ch=32, | |
scale=4, | |
) | |
netscale = 4 | |
file_url = [ | |
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth" | |
] | |
elif args.model_name == "RealESRNet_x4plus": # x4 RRDBNet model | |
model = RRDBNet( | |
num_in_ch=3, | |
num_out_ch=3, | |
num_feat=64, | |
num_block=23, | |
num_grow_ch=32, | |
scale=4, | |
) | |
netscale = 4 | |
file_url = [ | |
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth" | |
] | |
elif ( | |
args.model_name == "RealESRGAN_x4plus_anime_6B" | |
): # x4 RRDBNet model with 6 blocks | |
model = RRDBNet( | |
num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4 | |
) | |
netscale = 4 | |
file_url = [ | |
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth" | |
] | |
elif args.model_name == "RealESRGAN_x2plus": # x2 RRDBNet model | |
model = RRDBNet( | |
num_in_ch=3, | |
num_out_ch=3, | |
num_feat=64, | |
num_block=23, | |
num_grow_ch=32, | |
scale=2, | |
) | |
netscale = 2 | |
file_url = [ | |
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth" | |
] | |
elif args.model_name == "realesr-animevideov3": # x4 VGG-style model (XS size) | |
model = SRVGGNetCompact( | |
num_in_ch=3, | |
num_out_ch=3, | |
num_feat=64, | |
num_conv=16, | |
upscale=4, | |
act_type="prelu", | |
) | |
netscale = 4 | |
file_url = [ | |
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth" | |
] | |
elif args.model_name == "realesr-general-x4v3": # x4 VGG-style model (S size) | |
model = SRVGGNetCompact( | |
num_in_ch=3, | |
num_out_ch=3, | |
num_feat=64, | |
num_conv=32, | |
upscale=4, | |
act_type="prelu", | |
) | |
netscale = 4 | |
file_url = [ | |
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth", | |
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth", | |
] | |
# ---------------------- determine model paths ---------------------- # | |
model_path = os.path.join("weights", args.model_name + ".pth") | |
if not os.path.isfile(model_path): | |
ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
for url in file_url: | |
# model_path will be updated | |
model_path = load_file_from_url( | |
url=url, | |
model_dir=os.path.join(ROOT_DIR, "weights"), | |
progress=True, | |
file_name=None, | |
) | |
# use dni to control the denoise strength | |
dni_weight = None | |
if args.model_name == "realesr-general-x4v3" and args.denoise_strength != 1: | |
wdn_model_path = model_path.replace( | |
"realesr-general-x4v3", "realesr-general-wdn-x4v3" | |
) | |
model_path = [model_path, wdn_model_path] | |
dni_weight = [args.denoise_strength, 1 - args.denoise_strength] | |
# restorer | |
upsampler = RealESRGANer( | |
scale=netscale, | |
model_path=model_path, | |
dni_weight=dni_weight, | |
model=model, | |
tile=args.tile, | |
tile_pad=args.tile_pad, | |
pre_pad=args.pre_pad, | |
half=not args.fp32, | |
device=device, | |
) | |
if "anime" in args.model_name and args.face_enhance: | |
print( | |
"face_enhance is not supported in anime models, we turned this option off for you. " | |
"if you insist on turning it on, please manually comment the relevant lines of code." | |
) | |
args.face_enhance = False | |
if args.face_enhance: # Use GFPGAN for face enhancement | |
from gfpgan import GFPGANer | |
face_enhancer = GFPGANer( | |
model_path="https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth", | |
upscale=args.outscale, | |
arch="clean", | |
channel_multiplier=2, | |
bg_upsampler=upsampler, | |
) # TODO support custom device | |
else: | |
face_enhancer = None | |
reader = Reader(args, total_workers, worker_idx) | |
audio = reader.get_audio() | |
height, width = reader.get_resolution() | |
fps = reader.get_fps() | |
writer = Writer(args, audio, height, width, video_save_path, fps) | |
pbar = tqdm(total=len(reader), unit="frame", desc="inference") | |
while True: | |
img = reader.get_frame() | |
if img is None: | |
break | |
try: | |
if args.face_enhance: | |
_, _, output = face_enhancer.enhance( | |
img, has_aligned=False, only_center_face=False, paste_back=True | |
) | |
else: | |
output, _ = upsampler.enhance(img, outscale=args.outscale) | |
except RuntimeError as error: | |
print("Error", error) | |
print( | |
"If you encounter CUDA out of memory, try to set --tile with a smaller number." | |
) | |
else: | |
writer.write_frame(output) | |
torch.cuda.synchronize(device) | |
pbar.update(1) | |
reader.close() | |
writer.close() | |
def run(args): | |
args.video_name = osp.splitext(os.path.basename(args.input))[0] | |
video_save_path = osp.join(args.output, f"{args.video_name}_{args.suffix}.mp4") | |
if args.extract_frame_first: | |
tmp_frames_folder = osp.join(args.output, f"{args.video_name}_inp_tmp_frames") | |
os.makedirs(tmp_frames_folder, exist_ok=True) | |
os.system( | |
f"ffmpeg -i {args.input} -qscale:v 1 -qmin 1 -qmax 1 -vsync 0 {tmp_frames_folder}/frame%08d.png" | |
) | |
args.input = tmp_frames_folder | |
num_gpus = torch.cuda.device_count() | |
num_process = num_gpus * args.num_process_per_gpu | |
if num_process == 1: | |
inference_video(args, video_save_path) | |
return | |
ctx = torch.multiprocessing.get_context("spawn") | |
pool = ctx.Pool(num_process) | |
os.makedirs( | |
osp.join(args.output, f"{args.video_name}_out_tmp_videos"), exist_ok=True | |
) | |
pbar = tqdm(total=num_process, unit="sub_video", desc="inference") | |
for i in range(num_process): | |
sub_video_save_path = osp.join( | |
args.output, f"{args.video_name}_out_tmp_videos", f"{i:03d}.mp4" | |
) | |
pool.apply_async( | |
inference_video, | |
args=( | |
args, | |
sub_video_save_path, | |
torch.device(i % num_gpus), | |
num_process, | |
i, | |
), | |
callback=lambda arg: pbar.update(1), | |
) | |
pool.close() | |
pool.join() | |
# combine sub videos | |
# prepare vidlist.txt | |
with open(f"{args.output}/{args.video_name}_vidlist.txt", "w") as f: | |
for i in range(num_process): | |
f.write(f"file '{args.video_name}_out_tmp_videos/{i:03d}.mp4'\n") | |
cmd = [ | |
args.ffmpeg_bin, | |
"-f", | |
"concat", | |
"-safe", | |
"0", | |
"-i", | |
f"{args.output}/{args.video_name}_vidlist.txt", | |
"-c", | |
"copy", | |
f"{video_save_path}", | |
] | |
print(" ".join(cmd)) | |
subprocess.call(cmd) | |
shutil.rmtree(osp.join(args.output, f"{args.video_name}_out_tmp_videos")) | |
if osp.exists(osp.join(args.output, f"{args.video_name}_inp_tmp_videos")): | |
shutil.rmtree(osp.join(args.output, f"{args.video_name}_inp_tmp_videos")) | |
os.remove(f"{args.output}/{args.video_name}_vidlist.txt") | |
def main(): | |
"""Inference demo for Real-ESRGAN. | |
It mainly for restoring anime videos. | |
""" | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"-i", "--input", type=str, default="inputs", help="Input video, image or folder" | |
) | |
parser.add_argument( | |
"-n", | |
"--model_name", | |
type=str, | |
default="realesr-animevideov3", | |
help=( | |
"Model names: realesr-animevideov3 | RealESRGAN_x4plus_anime_6B | RealESRGAN_x4plus | RealESRNet_x4plus |" | |
" RealESRGAN_x2plus | realesr-general-x4v3" | |
"Default:realesr-animevideov3" | |
), | |
) | |
parser.add_argument( | |
"-o", "--output", type=str, default="results", help="Output folder" | |
) | |
parser.add_argument( | |
"-dn", | |
"--denoise_strength", | |
type=float, | |
default=0.5, | |
help=( | |
"Denoise strength. 0 for weak denoise (keep noise), 1 for strong denoise ability. " | |
"Only used for the realesr-general-x4v3 model" | |
), | |
) | |
parser.add_argument( | |
"-s", | |
"--outscale", | |
type=float, | |
default=4, | |
help="The final upsampling scale of the image", | |
) | |
parser.add_argument( | |
"--suffix", type=str, default="out", help="Suffix of the restored video" | |
) | |
parser.add_argument( | |
"-t", | |
"--tile", | |
type=int, | |
default=0, | |
help="Tile size, 0 for no tile during testing", | |
) | |
parser.add_argument("--tile_pad", type=int, default=10, help="Tile padding") | |
parser.add_argument( | |
"--pre_pad", type=int, default=0, help="Pre padding size at each border" | |
) | |
parser.add_argument( | |
"--face_enhance", action="store_true", help="Use GFPGAN to enhance face" | |
) | |
parser.add_argument( | |
"--fp32", | |
action="store_true", | |
help="Use fp32 precision during inference. Default: fp16 (half precision).", | |
) | |
parser.add_argument( | |
"--fps", type=float, default=None, help="FPS of the output video" | |
) | |
parser.add_argument( | |
"--ffmpeg_bin", type=str, default="ffmpeg", help="The path to ffmpeg" | |
) | |
parser.add_argument("--extract_frame_first", action="store_true") | |
parser.add_argument("--num_process_per_gpu", type=int, default=1) | |
parser.add_argument( | |
"--alpha_upsampler", | |
type=str, | |
default="realesrgan", | |
help="The upsampler for the alpha channels. Options: realesrgan | bicubic", | |
) | |
parser.add_argument( | |
"--ext", | |
type=str, | |
default="auto", | |
help="Image extension. Options: auto | jpg | png, auto means using the same extension as inputs", | |
) | |
args = parser.parse_args() | |
args.input = args.input.rstrip("/").rstrip("\\") | |
os.makedirs(args.output, exist_ok=True) | |
if mimetypes.guess_type(args.input)[0] is not None and mimetypes.guess_type( | |
args.input | |
)[0].startswith("video"): | |
is_video = True | |
else: | |
is_video = False | |
if is_video and args.input.endswith(".flv"): | |
mp4_path = args.input.replace(".flv", ".mp4") | |
os.system(f"ffmpeg -i {args.input} -codec copy {mp4_path}") | |
args.input = mp4_path | |
if args.extract_frame_first and not is_video: | |
args.extract_frame_first = False | |
run(args) | |
if args.extract_frame_first: | |
tmp_frames_folder = osp.join(args.output, f"{args.video_name}_inp_tmp_frames") | |
shutil.rmtree(tmp_frames_folder) | |
if __name__ == "__main__": | |
main() | |