Spaces:
Runtime error
Runtime error
File size: 18,599 Bytes
9842c28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
import argparse
import cv2
import glob
import mimetypes
import numpy as np
import os
import shutil
import subprocess
import torch
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils.download_util import load_file_from_url
from os import path as osp
from tqdm import tqdm
from realesrgan import RealESRGANer
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
try:
import ffmpeg
except ImportError:
import pip
pip.main(["install", "--user", "ffmpeg-python"])
import ffmpeg
def get_video_meta_info(video_path):
ret = {}
probe = ffmpeg.probe(video_path)
video_streams = [
stream for stream in probe["streams"] if stream["codec_type"] == "video"
]
has_audio = any(stream["codec_type"] == "audio" for stream in probe["streams"])
ret["width"] = video_streams[0]["width"]
ret["height"] = video_streams[0]["height"]
ret["fps"] = eval(video_streams[0]["avg_frame_rate"])
ret["audio"] = ffmpeg.input(video_path).audio if has_audio else None
ret["nb_frames"] = int(video_streams[0]["nb_frames"])
return ret
def get_sub_video(args, num_process, process_idx):
if num_process == 1:
return args.input
meta = get_video_meta_info(args.input)
duration = int(meta["nb_frames"] / meta["fps"])
part_time = duration // num_process
print(f"duration: {duration}, part_time: {part_time}")
os.makedirs(
osp.join(args.output, f"{args.video_name}_inp_tmp_videos"), exist_ok=True
)
out_path = osp.join(
args.output, f"{args.video_name}_inp_tmp_videos", f"{process_idx:03d}.mp4"
)
cmd = [
args.ffmpeg_bin,
f"-i {args.input}",
"-ss",
f"{part_time * process_idx}",
f"-to {part_time * (process_idx + 1)}"
if process_idx != num_process - 1
else "",
"-async 1",
out_path,
"-y",
]
print(" ".join(cmd))
subprocess.call(" ".join(cmd), shell=True)
return out_path
class Reader:
def __init__(self, args, total_workers=1, worker_idx=0):
self.args = args
input_type = mimetypes.guess_type(args.input)[0]
self.input_type = "folder" if input_type is None else input_type
self.paths = [] # for image&folder type
self.audio = None
self.input_fps = None
if self.input_type.startswith("video"):
video_path = get_sub_video(args, total_workers, worker_idx)
self.stream_reader = (
ffmpeg.input(video_path)
.output("pipe:", format="rawvideo", pix_fmt="bgr24", loglevel="error")
.run_async(pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin)
)
meta = get_video_meta_info(video_path)
self.width = meta["width"]
self.height = meta["height"]
self.input_fps = meta["fps"]
self.audio = meta["audio"]
self.nb_frames = meta["nb_frames"]
else:
if self.input_type.startswith("image"):
self.paths = [args.input]
else:
paths = sorted(glob.glob(os.path.join(args.input, "*")))
tot_frames = len(paths)
num_frame_per_worker = tot_frames // total_workers + (
1 if tot_frames % total_workers else 0
)
self.paths = paths[
num_frame_per_worker
* worker_idx : num_frame_per_worker
* (worker_idx + 1)
]
self.nb_frames = len(self.paths)
assert self.nb_frames > 0, "empty folder"
from PIL import Image
tmp_img = Image.open(self.paths[0])
self.width, self.height = tmp_img.size
self.idx = 0
def get_resolution(self):
return self.height, self.width
def get_fps(self):
if self.args.fps is not None:
return self.args.fps
elif self.input_fps is not None:
return self.input_fps
return 24
def get_audio(self):
return self.audio
def __len__(self):
return self.nb_frames
def get_frame_from_stream(self):
img_bytes = self.stream_reader.stdout.read(
self.width * self.height * 3
) # 3 bytes for one pixel
if not img_bytes:
return None
img = np.frombuffer(img_bytes, np.uint8).reshape([self.height, self.width, 3])
return img
def get_frame_from_list(self):
if self.idx >= self.nb_frames:
return None
img = cv2.imread(self.paths[self.idx])
self.idx += 1
return img
def get_frame(self):
if self.input_type.startswith("video"):
return self.get_frame_from_stream()
else:
return self.get_frame_from_list()
def close(self):
if self.input_type.startswith("video"):
self.stream_reader.stdin.close()
self.stream_reader.wait()
class Writer:
def __init__(self, args, audio, height, width, video_save_path, fps):
out_width, out_height = int(width * args.outscale), int(height * args.outscale)
if out_height > 2160:
print(
"You are generating video that is larger than 4K, which will be very slow due to IO speed.",
"We highly recommend to decrease the outscale(aka, -s).",
)
if audio is not None:
self.stream_writer = (
ffmpeg.input(
"pipe:",
format="rawvideo",
pix_fmt="bgr24",
s=f"{out_width}x{out_height}",
framerate=fps,
)
.output(
audio,
video_save_path,
pix_fmt="yuv420p",
vcodec="libx264",
loglevel="error",
acodec="copy",
)
.overwrite_output()
.run_async(pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin)
)
else:
self.stream_writer = (
ffmpeg.input(
"pipe:",
format="rawvideo",
pix_fmt="bgr24",
s=f"{out_width}x{out_height}",
framerate=fps,
)
.output(
video_save_path,
pix_fmt="yuv420p",
vcodec="libx264",
loglevel="error",
)
.overwrite_output()
.run_async(pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin)
)
def write_frame(self, frame):
frame = frame.astype(np.uint8).tobytes()
self.stream_writer.stdin.write(frame)
def close(self):
self.stream_writer.stdin.close()
self.stream_writer.wait()
def inference_video(args, video_save_path, device=None, total_workers=1, worker_idx=0):
# ---------------------- determine models according to model names ---------------------- #
args.model_name = args.model_name.split(".pth")[0]
if args.model_name == "RealESRGAN_x4plus": # x4 RRDBNet model
model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=4,
)
netscale = 4
file_url = [
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth"
]
elif args.model_name == "RealESRNet_x4plus": # x4 RRDBNet model
model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=4,
)
netscale = 4
file_url = [
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth"
]
elif (
args.model_name == "RealESRGAN_x4plus_anime_6B"
): # x4 RRDBNet model with 6 blocks
model = RRDBNet(
num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4
)
netscale = 4
file_url = [
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth"
]
elif args.model_name == "RealESRGAN_x2plus": # x2 RRDBNet model
model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=2,
)
netscale = 2
file_url = [
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth"
]
elif args.model_name == "realesr-animevideov3": # x4 VGG-style model (XS size)
model = SRVGGNetCompact(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_conv=16,
upscale=4,
act_type="prelu",
)
netscale = 4
file_url = [
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth"
]
elif args.model_name == "realesr-general-x4v3": # x4 VGG-style model (S size)
model = SRVGGNetCompact(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_conv=32,
upscale=4,
act_type="prelu",
)
netscale = 4
file_url = [
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth",
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth",
]
# ---------------------- determine model paths ---------------------- #
model_path = os.path.join("weights", args.model_name + ".pth")
if not os.path.isfile(model_path):
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
for url in file_url:
# model_path will be updated
model_path = load_file_from_url(
url=url,
model_dir=os.path.join(ROOT_DIR, "weights"),
progress=True,
file_name=None,
)
# use dni to control the denoise strength
dni_weight = None
if args.model_name == "realesr-general-x4v3" and args.denoise_strength != 1:
wdn_model_path = model_path.replace(
"realesr-general-x4v3", "realesr-general-wdn-x4v3"
)
model_path = [model_path, wdn_model_path]
dni_weight = [args.denoise_strength, 1 - args.denoise_strength]
# restorer
upsampler = RealESRGANer(
scale=netscale,
model_path=model_path,
dni_weight=dni_weight,
model=model,
tile=args.tile,
tile_pad=args.tile_pad,
pre_pad=args.pre_pad,
half=not args.fp32,
device=device,
)
if "anime" in args.model_name and args.face_enhance:
print(
"face_enhance is not supported in anime models, we turned this option off for you. "
"if you insist on turning it on, please manually comment the relevant lines of code."
)
args.face_enhance = False
if args.face_enhance: # Use GFPGAN for face enhancement
from gfpgan import GFPGANer
face_enhancer = GFPGANer(
model_path="https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth",
upscale=args.outscale,
arch="clean",
channel_multiplier=2,
bg_upsampler=upsampler,
) # TODO support custom device
else:
face_enhancer = None
reader = Reader(args, total_workers, worker_idx)
audio = reader.get_audio()
height, width = reader.get_resolution()
fps = reader.get_fps()
writer = Writer(args, audio, height, width, video_save_path, fps)
pbar = tqdm(total=len(reader), unit="frame", desc="inference")
while True:
img = reader.get_frame()
if img is None:
break
try:
if args.face_enhance:
_, _, output = face_enhancer.enhance(
img, has_aligned=False, only_center_face=False, paste_back=True
)
else:
output, _ = upsampler.enhance(img, outscale=args.outscale)
except RuntimeError as error:
print("Error", error)
print(
"If you encounter CUDA out of memory, try to set --tile with a smaller number."
)
else:
writer.write_frame(output)
torch.cuda.synchronize(device)
pbar.update(1)
reader.close()
writer.close()
def run(args):
args.video_name = osp.splitext(os.path.basename(args.input))[0]
video_save_path = osp.join(args.output, f"{args.video_name}_{args.suffix}.mp4")
if args.extract_frame_first:
tmp_frames_folder = osp.join(args.output, f"{args.video_name}_inp_tmp_frames")
os.makedirs(tmp_frames_folder, exist_ok=True)
os.system(
f"ffmpeg -i {args.input} -qscale:v 1 -qmin 1 -qmax 1 -vsync 0 {tmp_frames_folder}/frame%08d.png"
)
args.input = tmp_frames_folder
num_gpus = torch.cuda.device_count()
num_process = num_gpus * args.num_process_per_gpu
if num_process == 1:
inference_video(args, video_save_path)
return
ctx = torch.multiprocessing.get_context("spawn")
pool = ctx.Pool(num_process)
os.makedirs(
osp.join(args.output, f"{args.video_name}_out_tmp_videos"), exist_ok=True
)
pbar = tqdm(total=num_process, unit="sub_video", desc="inference")
for i in range(num_process):
sub_video_save_path = osp.join(
args.output, f"{args.video_name}_out_tmp_videos", f"{i:03d}.mp4"
)
pool.apply_async(
inference_video,
args=(
args,
sub_video_save_path,
torch.device(i % num_gpus),
num_process,
i,
),
callback=lambda arg: pbar.update(1),
)
pool.close()
pool.join()
# combine sub videos
# prepare vidlist.txt
with open(f"{args.output}/{args.video_name}_vidlist.txt", "w") as f:
for i in range(num_process):
f.write(f"file '{args.video_name}_out_tmp_videos/{i:03d}.mp4'\n")
cmd = [
args.ffmpeg_bin,
"-f",
"concat",
"-safe",
"0",
"-i",
f"{args.output}/{args.video_name}_vidlist.txt",
"-c",
"copy",
f"{video_save_path}",
]
print(" ".join(cmd))
subprocess.call(cmd)
shutil.rmtree(osp.join(args.output, f"{args.video_name}_out_tmp_videos"))
if osp.exists(osp.join(args.output, f"{args.video_name}_inp_tmp_videos")):
shutil.rmtree(osp.join(args.output, f"{args.video_name}_inp_tmp_videos"))
os.remove(f"{args.output}/{args.video_name}_vidlist.txt")
def main():
"""Inference demo for Real-ESRGAN.
It mainly for restoring anime videos.
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"-i", "--input", type=str, default="inputs", help="Input video, image or folder"
)
parser.add_argument(
"-n",
"--model_name",
type=str,
default="realesr-animevideov3",
help=(
"Model names: realesr-animevideov3 | RealESRGAN_x4plus_anime_6B | RealESRGAN_x4plus | RealESRNet_x4plus |"
" RealESRGAN_x2plus | realesr-general-x4v3"
"Default:realesr-animevideov3"
),
)
parser.add_argument(
"-o", "--output", type=str, default="results", help="Output folder"
)
parser.add_argument(
"-dn",
"--denoise_strength",
type=float,
default=0.5,
help=(
"Denoise strength. 0 for weak denoise (keep noise), 1 for strong denoise ability. "
"Only used for the realesr-general-x4v3 model"
),
)
parser.add_argument(
"-s",
"--outscale",
type=float,
default=4,
help="The final upsampling scale of the image",
)
parser.add_argument(
"--suffix", type=str, default="out", help="Suffix of the restored video"
)
parser.add_argument(
"-t",
"--tile",
type=int,
default=0,
help="Tile size, 0 for no tile during testing",
)
parser.add_argument("--tile_pad", type=int, default=10, help="Tile padding")
parser.add_argument(
"--pre_pad", type=int, default=0, help="Pre padding size at each border"
)
parser.add_argument(
"--face_enhance", action="store_true", help="Use GFPGAN to enhance face"
)
parser.add_argument(
"--fp32",
action="store_true",
help="Use fp32 precision during inference. Default: fp16 (half precision).",
)
parser.add_argument(
"--fps", type=float, default=None, help="FPS of the output video"
)
parser.add_argument(
"--ffmpeg_bin", type=str, default="ffmpeg", help="The path to ffmpeg"
)
parser.add_argument("--extract_frame_first", action="store_true")
parser.add_argument("--num_process_per_gpu", type=int, default=1)
parser.add_argument(
"--alpha_upsampler",
type=str,
default="realesrgan",
help="The upsampler for the alpha channels. Options: realesrgan | bicubic",
)
parser.add_argument(
"--ext",
type=str,
default="auto",
help="Image extension. Options: auto | jpg | png, auto means using the same extension as inputs",
)
args = parser.parse_args()
args.input = args.input.rstrip("/").rstrip("\\")
os.makedirs(args.output, exist_ok=True)
if mimetypes.guess_type(args.input)[0] is not None and mimetypes.guess_type(
args.input
)[0].startswith("video"):
is_video = True
else:
is_video = False
if is_video and args.input.endswith(".flv"):
mp4_path = args.input.replace(".flv", ".mp4")
os.system(f"ffmpeg -i {args.input} -codec copy {mp4_path}")
args.input = mp4_path
if args.extract_frame_first and not is_video:
args.extract_frame_first = False
run(args)
if args.extract_frame_first:
tmp_frames_folder = osp.join(args.output, f"{args.video_name}_inp_tmp_frames")
shutil.rmtree(tmp_frames_folder)
if __name__ == "__main__":
main()
|