Spaces:
Runtime error
Runtime error
# flake8: noqa | |
# This file is used for deploying replicate models | |
# running: cog predict -i img=@inputs/00017_gray.png -i version='General - v3' -i scale=2 -i face_enhance=True -i tile=0 | |
# push: cog push r8.im/xinntao/realesrgan | |
import os | |
os.system("pip install gfpgan") | |
os.system("python setup.py develop") | |
import cv2 | |
import shutil | |
import tempfile | |
import torch | |
from basicsr.archs.rrdbnet_arch import RRDBNet | |
from basicsr.archs.srvgg_arch import SRVGGNetCompact | |
from realesrgan.utils import RealESRGANer | |
try: | |
from cog import BasePredictor, Input, Path | |
from gfpgan import GFPGANer | |
except Exception: | |
print("please install cog and realesrgan package") | |
class Predictor(BasePredictor): | |
def setup(self): | |
os.makedirs("output", exist_ok=True) | |
# download weights | |
if not os.path.exists("weights/realesr-general-x4v3.pth"): | |
os.system( | |
"wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P ./weights" | |
) | |
if not os.path.exists("weights/GFPGANv1.4.pth"): | |
os.system( | |
"wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P ./weights" | |
) | |
if not os.path.exists("weights/RealESRGAN_x4plus.pth"): | |
os.system( | |
"wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P ./weights" | |
) | |
if not os.path.exists("weights/RealESRGAN_x4plus_anime_6B.pth"): | |
os.system( | |
"wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth -P ./weights" | |
) | |
if not os.path.exists("weights/realesr-animevideov3.pth"): | |
os.system( | |
"wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth -P ./weights" | |
) | |
def choose_model(self, scale, version, tile=0): | |
half = True if torch.cuda.is_available() else False | |
if version == "General - RealESRGANplus": | |
model = RRDBNet( | |
num_in_ch=3, | |
num_out_ch=3, | |
num_feat=64, | |
num_block=23, | |
num_grow_ch=32, | |
scale=4, | |
) | |
model_path = "weights/RealESRGAN_x4plus.pth" | |
self.upsampler = RealESRGANer( | |
scale=4, | |
model_path=model_path, | |
model=model, | |
tile=tile, | |
tile_pad=10, | |
pre_pad=0, | |
half=half, | |
) | |
elif version == "General - v3": | |
model = SRVGGNetCompact( | |
num_in_ch=3, | |
num_out_ch=3, | |
num_feat=64, | |
num_conv=32, | |
upscale=4, | |
act_type="prelu", | |
) | |
model_path = "weights/realesr-general-x4v3.pth" | |
self.upsampler = RealESRGANer( | |
scale=4, | |
model_path=model_path, | |
model=model, | |
tile=tile, | |
tile_pad=10, | |
pre_pad=0, | |
half=half, | |
) | |
elif version == "Anime - anime6B": | |
model = RRDBNet( | |
num_in_ch=3, | |
num_out_ch=3, | |
num_feat=64, | |
num_block=6, | |
num_grow_ch=32, | |
scale=4, | |
) | |
model_path = "weights/RealESRGAN_x4plus_anime_6B.pth" | |
self.upsampler = RealESRGANer( | |
scale=4, | |
model_path=model_path, | |
model=model, | |
tile=tile, | |
tile_pad=10, | |
pre_pad=0, | |
half=half, | |
) | |
elif version == "AnimeVideo - v3": | |
model = SRVGGNetCompact( | |
num_in_ch=3, | |
num_out_ch=3, | |
num_feat=64, | |
num_conv=16, | |
upscale=4, | |
act_type="prelu", | |
) | |
model_path = "weights/realesr-animevideov3.pth" | |
self.upsampler = RealESRGANer( | |
scale=4, | |
model_path=model_path, | |
model=model, | |
tile=tile, | |
tile_pad=10, | |
pre_pad=0, | |
half=half, | |
) | |
self.face_enhancer = GFPGANer( | |
model_path="weights/GFPGANv1.4.pth", | |
upscale=scale, | |
arch="clean", | |
channel_multiplier=2, | |
bg_upsampler=self.upsampler, | |
) | |
def predict( | |
self, | |
img: Path = Input(description="Input"), | |
version: str = Input( | |
description="RealESRGAN version. Please see [Readme] below for more descriptions", | |
choices=[ | |
"General - RealESRGANplus", | |
"General - v3", | |
"Anime - anime6B", | |
"AnimeVideo - v3", | |
], | |
default="General - v3", | |
), | |
scale: float = Input(description="Rescaling factor", default=2), | |
face_enhance: bool = Input( | |
description="Enhance faces with GFPGAN. Note that it does not work for anime images/vidoes", | |
default=False, | |
), | |
tile: int = Input( | |
description="Tile size. Default is 0, that is no tile. When encountering the out-of-GPU-memory issue, please specify it, e.g., 400 or 200", | |
default=0, | |
), | |
) -> Path: | |
if tile <= 100 or tile is None: | |
tile = 0 | |
print( | |
f"img: {img}. version: {version}. scale: {scale}. face_enhance: {face_enhance}. tile: {tile}." | |
) | |
try: | |
extension = os.path.splitext(os.path.basename(str(img)))[1] | |
img = cv2.imread(str(img), cv2.IMREAD_UNCHANGED) | |
if len(img.shape) == 3 and img.shape[2] == 4: | |
img_mode = "RGBA" | |
elif len(img.shape) == 2: | |
img_mode = None | |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) | |
else: | |
img_mode = None | |
h, w = img.shape[0:2] | |
if h < 300: | |
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) | |
self.choose_model(scale, version, tile) | |
try: | |
if face_enhance: | |
_, _, output = self.face_enhancer.enhance( | |
img, has_aligned=False, only_center_face=False, paste_back=True | |
) | |
else: | |
output, _ = self.upsampler.enhance(img, outscale=scale) | |
except RuntimeError as error: | |
print("Error", error) | |
print( | |
'If you encounter CUDA out of memory, try to set "tile" to a smaller size, e.g., 400.' | |
) | |
if img_mode == "RGBA": # RGBA images should be saved in png format | |
extension = "png" | |
# save_path = f'output/out.{extension}' | |
# cv2.imwrite(save_path, output) | |
out_path = Path(tempfile.mkdtemp()) / f"out.{extension}" | |
cv2.imwrite(str(out_path), output) | |
except Exception as error: | |
print("global exception: ", error) | |
finally: | |
clean_folder("output") | |
return out_path | |
def clean_folder(folder): | |
for filename in os.listdir(folder): | |
file_path = os.path.join(folder, filename) | |
try: | |
if os.path.isfile(file_path) or os.path.islink(file_path): | |
os.unlink(file_path) | |
elif os.path.isdir(file_path): | |
shutil.rmtree(file_path) | |
except Exception as e: | |
print(f"Failed to delete {file_path}. Reason: {e}") | |