File size: 7,801 Bytes
9842c28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# flake8: noqa
# This file is used for deploying replicate models
# running: cog predict -i img=@inputs/00017_gray.png -i version='General - v3' -i scale=2 -i face_enhance=True -i tile=0
# push: cog push r8.im/xinntao/realesrgan

import os

os.system("pip install gfpgan")
os.system("python setup.py develop")

import cv2
import shutil
import tempfile
import torch
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.archs.srvgg_arch import SRVGGNetCompact

from realesrgan.utils import RealESRGANer

try:
    from cog import BasePredictor, Input, Path
    from gfpgan import GFPGANer
except Exception:
    print("please install cog and realesrgan package")


class Predictor(BasePredictor):
    def setup(self):
        os.makedirs("output", exist_ok=True)
        # download weights
        if not os.path.exists("weights/realesr-general-x4v3.pth"):
            os.system(
                "wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P ./weights"
            )
        if not os.path.exists("weights/GFPGANv1.4.pth"):
            os.system(
                "wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P ./weights"
            )
        if not os.path.exists("weights/RealESRGAN_x4plus.pth"):
            os.system(
                "wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P ./weights"
            )
        if not os.path.exists("weights/RealESRGAN_x4plus_anime_6B.pth"):
            os.system(
                "wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth -P ./weights"
            )
        if not os.path.exists("weights/realesr-animevideov3.pth"):
            os.system(
                "wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth -P ./weights"
            )

    def choose_model(self, scale, version, tile=0):
        half = True if torch.cuda.is_available() else False
        if version == "General - RealESRGANplus":
            model = RRDBNet(
                num_in_ch=3,
                num_out_ch=3,
                num_feat=64,
                num_block=23,
                num_grow_ch=32,
                scale=4,
            )
            model_path = "weights/RealESRGAN_x4plus.pth"
            self.upsampler = RealESRGANer(
                scale=4,
                model_path=model_path,
                model=model,
                tile=tile,
                tile_pad=10,
                pre_pad=0,
                half=half,
            )
        elif version == "General - v3":
            model = SRVGGNetCompact(
                num_in_ch=3,
                num_out_ch=3,
                num_feat=64,
                num_conv=32,
                upscale=4,
                act_type="prelu",
            )
            model_path = "weights/realesr-general-x4v3.pth"
            self.upsampler = RealESRGANer(
                scale=4,
                model_path=model_path,
                model=model,
                tile=tile,
                tile_pad=10,
                pre_pad=0,
                half=half,
            )
        elif version == "Anime - anime6B":
            model = RRDBNet(
                num_in_ch=3,
                num_out_ch=3,
                num_feat=64,
                num_block=6,
                num_grow_ch=32,
                scale=4,
            )
            model_path = "weights/RealESRGAN_x4plus_anime_6B.pth"
            self.upsampler = RealESRGANer(
                scale=4,
                model_path=model_path,
                model=model,
                tile=tile,
                tile_pad=10,
                pre_pad=0,
                half=half,
            )
        elif version == "AnimeVideo - v3":
            model = SRVGGNetCompact(
                num_in_ch=3,
                num_out_ch=3,
                num_feat=64,
                num_conv=16,
                upscale=4,
                act_type="prelu",
            )
            model_path = "weights/realesr-animevideov3.pth"
            self.upsampler = RealESRGANer(
                scale=4,
                model_path=model_path,
                model=model,
                tile=tile,
                tile_pad=10,
                pre_pad=0,
                half=half,
            )

        self.face_enhancer = GFPGANer(
            model_path="weights/GFPGANv1.4.pth",
            upscale=scale,
            arch="clean",
            channel_multiplier=2,
            bg_upsampler=self.upsampler,
        )

    def predict(
        self,
        img: Path = Input(description="Input"),
        version: str = Input(
            description="RealESRGAN version. Please see [Readme] below for more descriptions",
            choices=[
                "General - RealESRGANplus",
                "General - v3",
                "Anime - anime6B",
                "AnimeVideo - v3",
            ],
            default="General - v3",
        ),
        scale: float = Input(description="Rescaling factor", default=2),
        face_enhance: bool = Input(
            description="Enhance faces with GFPGAN. Note that it does not work for anime images/vidoes",
            default=False,
        ),
        tile: int = Input(
            description="Tile size. Default is 0, that is no tile. When encountering the out-of-GPU-memory issue, please specify it, e.g., 400 or 200",
            default=0,
        ),
    ) -> Path:
        if tile <= 100 or tile is None:
            tile = 0
        print(
            f"img: {img}. version: {version}. scale: {scale}. face_enhance: {face_enhance}. tile: {tile}."
        )
        try:
            extension = os.path.splitext(os.path.basename(str(img)))[1]
            img = cv2.imread(str(img), cv2.IMREAD_UNCHANGED)
            if len(img.shape) == 3 and img.shape[2] == 4:
                img_mode = "RGBA"
            elif len(img.shape) == 2:
                img_mode = None
                img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
            else:
                img_mode = None

            h, w = img.shape[0:2]
            if h < 300:
                img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)

            self.choose_model(scale, version, tile)

            try:
                if face_enhance:
                    _, _, output = self.face_enhancer.enhance(
                        img, has_aligned=False, only_center_face=False, paste_back=True
                    )
                else:
                    output, _ = self.upsampler.enhance(img, outscale=scale)
            except RuntimeError as error:
                print("Error", error)
                print(
                    'If you encounter CUDA out of memory, try to set "tile" to a smaller size, e.g., 400.'
                )

            if img_mode == "RGBA":  # RGBA images should be saved in png format
                extension = "png"
            # save_path = f'output/out.{extension}'
            # cv2.imwrite(save_path, output)
            out_path = Path(tempfile.mkdtemp()) / f"out.{extension}"
            cv2.imwrite(str(out_path), output)
        except Exception as error:
            print("global exception: ", error)
        finally:
            clean_folder("output")
        return out_path


def clean_folder(folder):
    for filename in os.listdir(folder):
        file_path = os.path.join(folder, filename)
        try:
            if os.path.isfile(file_path) or os.path.islink(file_path):
                os.unlink(file_path)
            elif os.path.isdir(file_path):
                shutil.rmtree(file_path)
        except Exception as e:
            print(f"Failed to delete {file_path}. Reason: {e}")