Spaces:
Runtime error
Runtime error
File size: 7,801 Bytes
9842c28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
# flake8: noqa
# This file is used for deploying replicate models
# running: cog predict -i img=@inputs/00017_gray.png -i version='General - v3' -i scale=2 -i face_enhance=True -i tile=0
# push: cog push r8.im/xinntao/realesrgan
import os
os.system("pip install gfpgan")
os.system("python setup.py develop")
import cv2
import shutil
import tempfile
import torch
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.archs.srvgg_arch import SRVGGNetCompact
from realesrgan.utils import RealESRGANer
try:
from cog import BasePredictor, Input, Path
from gfpgan import GFPGANer
except Exception:
print("please install cog and realesrgan package")
class Predictor(BasePredictor):
def setup(self):
os.makedirs("output", exist_ok=True)
# download weights
if not os.path.exists("weights/realesr-general-x4v3.pth"):
os.system(
"wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P ./weights"
)
if not os.path.exists("weights/GFPGANv1.4.pth"):
os.system(
"wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P ./weights"
)
if not os.path.exists("weights/RealESRGAN_x4plus.pth"):
os.system(
"wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P ./weights"
)
if not os.path.exists("weights/RealESRGAN_x4plus_anime_6B.pth"):
os.system(
"wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth -P ./weights"
)
if not os.path.exists("weights/realesr-animevideov3.pth"):
os.system(
"wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth -P ./weights"
)
def choose_model(self, scale, version, tile=0):
half = True if torch.cuda.is_available() else False
if version == "General - RealESRGANplus":
model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=4,
)
model_path = "weights/RealESRGAN_x4plus.pth"
self.upsampler = RealESRGANer(
scale=4,
model_path=model_path,
model=model,
tile=tile,
tile_pad=10,
pre_pad=0,
half=half,
)
elif version == "General - v3":
model = SRVGGNetCompact(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_conv=32,
upscale=4,
act_type="prelu",
)
model_path = "weights/realesr-general-x4v3.pth"
self.upsampler = RealESRGANer(
scale=4,
model_path=model_path,
model=model,
tile=tile,
tile_pad=10,
pre_pad=0,
half=half,
)
elif version == "Anime - anime6B":
model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=6,
num_grow_ch=32,
scale=4,
)
model_path = "weights/RealESRGAN_x4plus_anime_6B.pth"
self.upsampler = RealESRGANer(
scale=4,
model_path=model_path,
model=model,
tile=tile,
tile_pad=10,
pre_pad=0,
half=half,
)
elif version == "AnimeVideo - v3":
model = SRVGGNetCompact(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_conv=16,
upscale=4,
act_type="prelu",
)
model_path = "weights/realesr-animevideov3.pth"
self.upsampler = RealESRGANer(
scale=4,
model_path=model_path,
model=model,
tile=tile,
tile_pad=10,
pre_pad=0,
half=half,
)
self.face_enhancer = GFPGANer(
model_path="weights/GFPGANv1.4.pth",
upscale=scale,
arch="clean",
channel_multiplier=2,
bg_upsampler=self.upsampler,
)
def predict(
self,
img: Path = Input(description="Input"),
version: str = Input(
description="RealESRGAN version. Please see [Readme] below for more descriptions",
choices=[
"General - RealESRGANplus",
"General - v3",
"Anime - anime6B",
"AnimeVideo - v3",
],
default="General - v3",
),
scale: float = Input(description="Rescaling factor", default=2),
face_enhance: bool = Input(
description="Enhance faces with GFPGAN. Note that it does not work for anime images/vidoes",
default=False,
),
tile: int = Input(
description="Tile size. Default is 0, that is no tile. When encountering the out-of-GPU-memory issue, please specify it, e.g., 400 or 200",
default=0,
),
) -> Path:
if tile <= 100 or tile is None:
tile = 0
print(
f"img: {img}. version: {version}. scale: {scale}. face_enhance: {face_enhance}. tile: {tile}."
)
try:
extension = os.path.splitext(os.path.basename(str(img)))[1]
img = cv2.imread(str(img), cv2.IMREAD_UNCHANGED)
if len(img.shape) == 3 and img.shape[2] == 4:
img_mode = "RGBA"
elif len(img.shape) == 2:
img_mode = None
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
else:
img_mode = None
h, w = img.shape[0:2]
if h < 300:
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
self.choose_model(scale, version, tile)
try:
if face_enhance:
_, _, output = self.face_enhancer.enhance(
img, has_aligned=False, only_center_face=False, paste_back=True
)
else:
output, _ = self.upsampler.enhance(img, outscale=scale)
except RuntimeError as error:
print("Error", error)
print(
'If you encounter CUDA out of memory, try to set "tile" to a smaller size, e.g., 400.'
)
if img_mode == "RGBA": # RGBA images should be saved in png format
extension = "png"
# save_path = f'output/out.{extension}'
# cv2.imwrite(save_path, output)
out_path = Path(tempfile.mkdtemp()) / f"out.{extension}"
cv2.imwrite(str(out_path), output)
except Exception as error:
print("global exception: ", error)
finally:
clean_folder("output")
return out_path
def clean_folder(folder):
for filename in os.listdir(folder):
file_path = os.path.join(folder, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
print(f"Failed to delete {file_path}. Reason: {e}")
|