Create chain_recommendations.py
Browse files- chain_recommendations.py +25 -0
chain_recommendations.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# chain_recommendations.py
|
2 |
+
import json
|
3 |
+
from typing import Dict
|
4 |
+
from langchain import PromptTemplate, LLMChain
|
5 |
+
from models import chat_model
|
6 |
+
|
7 |
+
recommend_prompt_template = PromptTemplate(
|
8 |
+
input_variables=["problems"],
|
9 |
+
template=(
|
10 |
+
"Given the following problem severity percentages:\n"
|
11 |
+
"{problems}\n\n"
|
12 |
+
"Using these rules:\n"
|
13 |
+
"- If sleep_problem > 70: Recommend Sleep Improvement Package\n"
|
14 |
+
"- If stress_problem > 70: Recommend Stress Reduction Package\n"
|
15 |
+
"- If exercise_problem > 70: Recommend Exercise Enhancement Package\n"
|
16 |
+
"- If all problems are between 30 and 70: Recommend Balanced Wellness Package\n"
|
17 |
+
"- If no severe problems: Recommend General Wellness Package\n\n"
|
18 |
+
"What are the recommended wellness packages?"
|
19 |
+
)
|
20 |
+
)
|
21 |
+
recommend_chain = LLMChain(llm=chat_model, prompt=recommend_prompt_template)
|
22 |
+
|
23 |
+
def generate_recommendations(problems: Dict[str, float]) -> str:
|
24 |
+
recommendations = recommend_chain.run(problems=json.dumps(problems))
|
25 |
+
return recommendations.strip()
|