Create chain_problems.py
Browse files- chain_problems.py +44 -0
chain_problems.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# chain_problems.py
|
2 |
+
import json
|
3 |
+
import logging
|
4 |
+
from typing import Dict
|
5 |
+
from langchain import PromptTemplate, LLMChain
|
6 |
+
from models import chat_model
|
7 |
+
|
8 |
+
logger = logging.getLogger(__name__)
|
9 |
+
|
10 |
+
problem_prompt_template = PromptTemplate(
|
11 |
+
input_variables=["responses", "internal_report"],
|
12 |
+
template=(
|
13 |
+
"You are a wellness analyst. You have the following user responses to health-related questions:\n"
|
14 |
+
"{responses}\n\n"
|
15 |
+
"You also have an internal analysis report:\n"
|
16 |
+
"{internal_report}\n\n"
|
17 |
+
"From these inputs, determine a 'problem severity percentage' for the user in the following areas: "
|
18 |
+
"sleep, exercise, stress, and diet. "
|
19 |
+
"Return your answer in JSON format with keys: sleep_problem, exercise_problem, stress_problem, diet_problem.\n"
|
20 |
+
"Ensure severity percentages are numbers from 0 to 100.\n\n"
|
21 |
+
"JSON Output:"
|
22 |
+
)
|
23 |
+
)
|
24 |
+
problem_chain = LLMChain(llm=chat_model, prompt=problem_prompt_template)
|
25 |
+
|
26 |
+
def analyze_problems_with_chain(responses: Dict[str, str], internal_report: str) -> Dict[str, float]:
|
27 |
+
responses_str = "\n".join(f"{q}: {a}" for q, a in responses.items())
|
28 |
+
raw_text = problem_chain.run(responses=responses_str, internal_report=internal_report)
|
29 |
+
try:
|
30 |
+
start_idx = raw_text.find('{')
|
31 |
+
end_idx = raw_text.rfind('}') + 1
|
32 |
+
json_str = raw_text[start_idx:end_idx]
|
33 |
+
problems = json.loads(json_str)
|
34 |
+
for key in ["sleep_problem", "exercise_problem", "stress_problem", "diet_problem"]:
|
35 |
+
problems.setdefault(key, 0.0)
|
36 |
+
return {k: float(v) for k, v in problems.items()}
|
37 |
+
except Exception as e:
|
38 |
+
logger.error(f"Error parsing problem percentages from LLM: {e}")
|
39 |
+
return {
|
40 |
+
"sleep_problem": 0.0,
|
41 |
+
"exercise_problem": 0.0,
|
42 |
+
"stress_problem": 0.0,
|
43 |
+
"diet_problem": 0.0
|
44 |
+
}
|