Manjushri commited on
Commit
1f786cb
·
verified ·
1 Parent(s): 17ed6d9

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +125 -0
app.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ #import gradio.helpers
3
+ import torch
4
+ import os
5
+ from glob import glob
6
+ from pathlib import Path
7
+ from typing import Optional
8
+
9
+ from diffusers import StableVideoDiffusionPipeline
10
+ from diffusers.utils import load_image, export_to_video
11
+ from PIL import Image
12
+
13
+ import uuid
14
+ import random
15
+ from huggingface_hub import hf_hub_download
16
+
17
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
18
+ torch.cuda.max_memory_allocated(device=device)
19
+ torch.cuda.empty_cache()
20
+ pipe = StableVideoDiffusionPipeline.from_pretrained("https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16, variant="fp16")
21
+ pipe.to("cuda")
22
+ pipe.enable_xformers_memory_efficient_attention()
23
+ #pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
24
+ #pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
25
+
26
+ max_64_bit_int = 2**63 - 1
27
+
28
+ def sample(
29
+ image: Image,
30
+ seed: Optional[int] = 42,
31
+ randomize_seed: bool = True,
32
+ motion_bucket_id: int = 127,
33
+ fps_id: int = 6,
34
+ version: str = "svd_xt",
35
+ cond_aug: float = 0.02,
36
+ decoding_t: int = 3, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
37
+ device: str = "cuda",
38
+ output_folder: str = "outputs",
39
+ ):
40
+ if image.mode == "RGBA":
41
+ image = image.convert("RGB")
42
+
43
+ if(randomize_seed):
44
+ seed = random.randint(0, max_64_bit_int)
45
+ generator = torch.manual_seed(seed)
46
+
47
+ os.makedirs(output_folder, exist_ok=True)
48
+ base_count = len(glob(os.path.join(output_folder, "*.mp4")))
49
+ video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
50
+
51
+ frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=25).frames[0]
52
+ export_to_video(frames, video_path, fps=fps_id)
53
+ torch.manual_seed(seed)
54
+
55
+ return video_path, seed
56
+
57
+ def resize_image(image, output_size=(1024, 576)):
58
+ # Calculate aspect ratios
59
+ target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
60
+ image_aspect = image.width / image.height # Aspect ratio of the original image
61
+
62
+ # Resize then crop if the original image is larger
63
+ if image_aspect > target_aspect:
64
+ # Resize the image to match the target height, maintaining aspect ratio
65
+ new_height = output_size[1]
66
+ new_width = int(new_height * image_aspect)
67
+ resized_image = image.resize((new_width, new_height), Image.LANCZOS)
68
+ # Calculate coordinates for cropping
69
+ left = (new_width - output_size[0]) / 2
70
+ top = 0
71
+ right = (new_width + output_size[0]) / 2
72
+ bottom = output_size[1]
73
+ else:
74
+ # Resize the image to match the target width, maintaining aspect ratio
75
+ new_width = output_size[0]
76
+ new_height = int(new_width / image_aspect)
77
+ resized_image = image.resize((new_width, new_height), Image.LANCZOS)
78
+ # Calculate coordinates for cropping
79
+ left = 0
80
+ top = (new_height - output_size[1]) / 2
81
+ right = output_size[0]
82
+ bottom = (new_height + output_size[1]) / 2
83
+
84
+ # Crop the image
85
+ cropped_image = resized_image.crop((left, top, right, bottom))
86
+ return cropped_image
87
+
88
+ with gr.Blocks() as demo:
89
+ gr.Markdown('''# Community demo for Stable Video Diffusion - Img2Vid - XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt), [paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets), [stability's ui waitlist](https://stability.ai/contact))
90
+ #### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)): generate `4s` vid from a single image at (`25 frames` at `6 fps`). this demo uses [🧨 diffusers for low VRAM and fast generation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/svd).
91
+ ''')
92
+ with gr.Row():
93
+ with gr.Column():
94
+ image = gr.Image(label="Upload your image", type="pil")
95
+ generate_btn = gr.Button("Generate")
96
+ video = gr.Video()
97
+ with gr.Accordion("Advanced options", open=False):
98
+ seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
99
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
100
+ motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
101
+ fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30)
102
+
103
+ image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
104
+ generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, seed], api_name="video")
105
+ gr.Examples(
106
+ examples=[
107
+ "images/blink_meme.png",
108
+ "images/confused2_meme.png",
109
+ "images/disaster_meme.png",
110
+ "images/distracted_meme.png",
111
+ "images/hide_meme.png",
112
+ "images/nazare_meme.png",
113
+ "images/success_meme.png",
114
+ "images/willy_meme.png",
115
+ "images/wink_meme.png"
116
+ ],
117
+ inputs=image,
118
+ outputs=[video, seed],
119
+ fn=sample,
120
+ cache_examples=True,
121
+ )
122
+
123
+ if __name__ == "__main__":
124
+ demo.queue(max_size=20, api_open=False)
125
+ demo.launch(show_api=False)