Spaces:
Runtime error
Runtime error
Delete app.py
Browse files
app.py
DELETED
@@ -1,103 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import torch
|
3 |
-
import numpy as np
|
4 |
-
import modin.pandas as pd
|
5 |
-
from PIL import Image
|
6 |
-
from diffusers import StableVideoDiffusionPipeline
|
7 |
-
from huggingface_hub import login, hf_hub_download
|
8 |
-
import os
|
9 |
-
from glob import glob
|
10 |
-
from pathlib import Path
|
11 |
-
from typing import Optional
|
12 |
-
import uuid
|
13 |
-
import random
|
14 |
-
|
15 |
-
token = os.environ['HF_TOKEN']
|
16 |
-
login(token=token)
|
17 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
18 |
-
pipe = StableVideoDiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid", use_safetensors=True)
|
19 |
-
pipe = pipe.to(device)
|
20 |
-
#pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
21 |
-
pipe.enable_xformers_memory_efficient_attention()
|
22 |
-
max_64_bit_int = 2**63 - 1
|
23 |
-
|
24 |
-
def sample(
|
25 |
-
image: Image,
|
26 |
-
seed: Optional[int] = 42,
|
27 |
-
randomize_seed: bool = True,
|
28 |
-
motion_bucket_id: int = 127,
|
29 |
-
fps_id: int = 6,
|
30 |
-
cond_aug: float = 0.02,
|
31 |
-
decoding_t: int = 1, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
|
32 |
-
device: str = "cuda",
|
33 |
-
output_folder: str = "outputs",):
|
34 |
-
|
35 |
-
if image.mode == "RGBA":
|
36 |
-
image = image.convert("RGB")
|
37 |
-
|
38 |
-
if(randomize_seed):
|
39 |
-
seed = random.randint(0, max_64_bit_int)
|
40 |
-
generator = torch.manual_seed(seed)
|
41 |
-
|
42 |
-
os.makedirs(output_folder, exist_ok=True)
|
43 |
-
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
44 |
-
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
45 |
-
|
46 |
-
frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=25).frames[0]
|
47 |
-
export_to_video(frames, video_path, fps=fps_id)
|
48 |
-
torch.manual_seed(seed)
|
49 |
-
|
50 |
-
return video_path, seed
|
51 |
-
|
52 |
-
def resize_image(image, output_size=(768, 322)):
|
53 |
-
# Calculate aspect ratios
|
54 |
-
target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
|
55 |
-
image_aspect = image.width / image.height # Aspect ratio of the original image
|
56 |
-
|
57 |
-
# Resize then crop if the original image is larger
|
58 |
-
if image_aspect > target_aspect:
|
59 |
-
# Resize the image to match the target height, maintaining aspect ratio
|
60 |
-
new_height = output_size[1]
|
61 |
-
new_width = int(new_height * image_aspect)
|
62 |
-
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
63 |
-
# Calculate coordinates for cropping
|
64 |
-
left = (new_width - output_size[0]) / 2
|
65 |
-
top = 0
|
66 |
-
right = (new_width + output_size[0]) / 2
|
67 |
-
bottom = output_size[1]
|
68 |
-
else:
|
69 |
-
# Resize the image to match the target width, maintaining aspect ratio
|
70 |
-
new_width = output_size[0]
|
71 |
-
new_height = int(new_width / image_aspect)
|
72 |
-
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
73 |
-
# Calculate coordinates for cropping
|
74 |
-
left = 0
|
75 |
-
top = (new_height - output_size[1]) / 2
|
76 |
-
right = output_size[0]
|
77 |
-
bottom = (new_height + output_size[1]) / 2
|
78 |
-
|
79 |
-
# Crop the image
|
80 |
-
cropped_image = resized_image.crop((left, top, right, bottom))
|
81 |
-
return cropped_image
|
82 |
-
|
83 |
-
with gr.Blocks() as demo:
|
84 |
-
#gr.Markdown('''# Community demo for Stable Video Diffusion - Img2Vid - XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt), [paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets), [stability's ui waitlist](https://stability.ai/contact))
|
85 |
-
#### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)): generate `4s` vid from a single image at (`25 frames` at `6 fps`). this demo uses [🧨 diffusers for low VRAM and fast generation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/svd).
|
86 |
-
#''')
|
87 |
-
with gr.Row():
|
88 |
-
with gr.Column():
|
89 |
-
image = gr.Image(label="Upload your image", type="pil")
|
90 |
-
generate_btn = gr.Button("Generate")
|
91 |
-
video = gr.Video()
|
92 |
-
with gr.Accordion("Advanced options", open=False):
|
93 |
-
seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
|
94 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
95 |
-
motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
|
96 |
-
fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30)
|
97 |
-
|
98 |
-
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
|
99 |
-
generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, seed], api_name="video",)# inputs=image, outputs=[video, seed], fn=sample, cache_examples=True,)
|
100 |
-
|
101 |
-
if __name__ == "__main__":
|
102 |
-
demo.queue(max_size=20, api_open=False)
|
103 |
-
demo.launch(show_api=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|