File size: 4,389 Bytes
1f786cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d310f4f
1f786cb
f26a3dd
1f786cb
2810ce6
09b820e
1ecfbd3
1f786cb
 
 
 
 
 
 
 
a0e889d
1f786cb
15da6f9
1f786cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ecfbd3
1f786cb
 
c737e29
1f786cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ecfbd3
1f786cb
 
 
 
716f62f
1f786cb
 
 
 
 
 
 
 
 
 
 
 
 
a665fd5
1f786cb
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import gradio as gr
import torch
import os
from glob import glob
from pathlib import Path
from typing import Optional

from diffusers import StableVideoDiffusionPipeline
from diffusers.utils import load_image, export_to_video
from PIL import Image

import uuid
import random
from huggingface_hub import hf_hub_download

device = 'cuda' if torch.cuda.is_available() else 'cpu'
torch.cuda.max_memory_allocated(device=device)
torch.cuda.empty_cache()
pipe = StableVideoDiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16, use_safetensors=True, variant="fp16" )
pipe.to("cuda")
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
#pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
#torch.set_float32_matmul_precision('high')
#pipe.enable_xformers_memory_efficient_attention()
torch.cuda.empty_cache()
max_64_bit_int = 2**63 - 1

def sample(
    image: Image,
    seed: Optional[int] = 42,
    randomize_seed: bool = True,
    motion_bucket_id: int = 127,
    fps_id: int = 6,
    version: str = "svd_xt_1-1",
    cond_aug: float = 0.02,
    decoding_t: int = 3,  # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
    device: str = "cuda",
    output_folder: str = "outputs",
):
    if image.mode == "RGBA":
        image = image.convert("RGB")
        
    if(randomize_seed):
        seed = random.randint(0, max_64_bit_int)
    generator = torch.manual_seed(seed)
    
    os.makedirs(output_folder, exist_ok=True)
    base_count = len(glob(os.path.join(output_folder, "*.mp4")))
    video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")

    frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=25).frames[0]
    export_to_video(frames, video_path, fps=fps_id)
    torch.manual_seed(seed)
    torch.cuda.empty_cache()
    return video_path, seed

def resize_image(image, output_size=(1024, 576)):
    # Calculate aspect ratios
    target_aspect = output_size[0] / output_size[1]  # Aspect ratio of the desired size
    image_aspect = image.width / image.height  # Aspect ratio of the original image

    # Resize then crop if the original image is larger
    if image_aspect > target_aspect:
        # Resize the image to match the target height, maintaining aspect ratio
        new_height = output_size[1]
        new_width = int(new_height * image_aspect)
        resized_image = image.resize((new_width, new_height), Image.LANCZOS)
        # Calculate coordinates for cropping
        left = (new_width - output_size[0]) / 2
        top = 0
        right = (new_width + output_size[0]) / 2
        bottom = output_size[1]
    else:
        # Resize the image to match the target width, maintaining aspect ratio
        new_width = output_size[0]
        new_height = int(new_width / image_aspect)
        resized_image = image.resize((new_width, new_height), Image.LANCZOS)
        # Calculate coordinates for cropping
        left = 0
        top = (new_height - output_size[1]) / 2
        right = output_size[0]
        bottom = (new_height + output_size[1]) / 2

    torch.cuda.empty_cache()
    cropped_image = resized_image.crop((left, top, right, bottom))
    return cropped_image

with gr.Blocks() as demo:
  
  with gr.Row():
    with gr.Column():
        image = gr.Image(label="Upload your image", type="pil")
        generate_btn = gr.Button("Generate")
    video = gr.Video()
  with gr.Accordion("Advanced options", open=False):
      seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
      randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
      motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
      fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30)
      
  image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
  generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, seed], api_name="video")
  

if __name__ == "__main__":
    demo.queue(max_size=20, api_open=False)
    demo.launch(show_api=False)