NeuralFalcon's picture
Update app.py
4645ffe verified
raw
history blame
6.58 kB
import cv2
import numpy as np
import os
import zipfile
import uuid
import gradio as gr
import uuid
def remove_watermark_area(original_image, text_mask_path):
# Ensure the mask is binary
text_mask = cv2.imread(text_mask_path, cv2.IMREAD_GRAYSCALE)
_, binary_mask = cv2.threshold(text_mask, 1, 255, cv2.THRESH_BINARY)
# Resize the mask to match the size of the original image area
mask_resized = cv2.resize(binary_mask, (original_image.shape[1], original_image.shape[0]))
# Expand the mask to cover more area if needed
kernel = np.ones((5, 5), np.uint8)
expanded_mask = cv2.dilate(mask_resized, kernel, iterations=1)
# Inpainting using the mask
inpainted_image = cv2.inpaint(original_image, expanded_mask, inpaintRadius=5, flags=cv2.INPAINT_TELEA)
# Optionally apply post-processing to improve results
cleaned_image = cv2.GaussianBlur(inpainted_image, (3, 3), 0)
return cleaned_image
from PIL import Image
def remove_watermark(image_path,file_type="",saved_path=""):
# file_type="pil"
# file_type="opencv"
# file_type="filepath"
if file_type=="filepath":
# Load the image using OpenCV
image = cv2.imread(image_path)
if file_type=="pil":
image = cv2.cvtColor(image_path, cv2.COLOR_RGB2BGR)
if file_type=="opencv":
image=image_path
# cv2.imwrite("test.jpg",image)
image=cv2.resize(image,(1280,1280))
# Define the area of the watermark (adjust this based on the watermark size)
height, width, _ = image.shape
watermark_width = 185 # Adjust based on your watermark size
watermark_height = 185 # Adjust based on your watermark size
x_start = 50
y_start = height - watermark_height+17
x_end = watermark_width-17
y_end = height-50
# Extract the watermark area
watermark_area = image[y_start:y_end, x_start:x_end]
# cv2.imwrite('watermark_area.jpg', watermark_area)
# Create the mask for the watermark area
# text_mask_path = 'watermark_mask.png'
text_mask_path ='./mask/mask_1.png'
# text_mask_path ='./mask/mask_2.png'
cleaned_image = remove_watermark_area(watermark_area, text_mask_path)
# cv2.imwrite('cleaned_watermark.jpg', cleaned_image)
# Paste back the cleaned watermark on the original image
image[y_start:y_end, x_start:x_end] = cleaned_image
if saved_path=="":
pass
else:
cv2.imwrite(saved_path, image)
return image
def make_zip(image_list):
zip_path = f"./temp/{uuid.uuid4().hex[:6]}.zip"
with zipfile.ZipFile(zip_path, 'w') as zipf:
for image in image_list:
zipf.write(image, os.path.basename(image))
return zip_path
def random_image_name():
"""Generate a random image name."""
return str(uuid.uuid4())[:8]
def process_file(pil_image):
saved_path = f"./temp/{random_image_name()}.jpg"
remove_watermark(pil_image,"pil",saved_path)
return saved_path, saved_path
def process_files(image_files):
image_list = []
if len(image_files) == 1:
# saved_path = os.path.basename(image_files[0])
# saved_path = f"./temp/{saved_path}"
saved_path = f"./temp/{random_image_name()}.jpg"
remove_watermark(image_files[0],"filepath", saved_path)
return saved_path, saved_path
else:
for image_path in image_files:
# saved_path = os.path.basename(image_path)
# saved_path = f"./temp/{saved_path}"
saved_path = f"./temp/{random_image_name()}.jpg"
remove_watermark(image_path,"filepath",saved_path)
image_list.append(saved_path)
zip_path = make_zip(image_list)
return zip_path,None
import cv2
import numpy as np
def process_video(input_video_path):
print(input_video_path)
# output_video_path=""
# if output_video_path=="":
output_video_path=f"./temp/{random_image_name()}.mp4"
cap = cv2.VideoCapture(input_video_path)
if not cap.isOpened():
raise ValueError(f"Unable to open video file {input_video_path}")
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Create VideoWriter object for output video
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # You might try 'XVID' or 'H264' if issues persist
video_writer = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
# Process frames
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
no_watermark_frame=remove_watermark(frame,"opencv")
# Ensure the frame has the same size and type
if no_watermark_frame.shape[1] != width or no_watermark_frame.shape[0] != height:
no_watermark_frame = cv2.resize(no_watermark_frame, (width, height))
video_writer.write(no_watermark_frame)
cap.release()
video_writer.release()
return output_video_path,output_video_path
if not os.path.exists("./temp"):
os.mkdir("./temp")
meta_examples = ["./images/7.jpg","./images/6.jpg","./images/1.jpg", "./images/2.jpg", "./images/3.jpg", "./images/4.jpg", "./images/5.jpg"]
gradio_input=[gr.Image(label='Upload an Image')]
gradio_Output=[gr.File(label='Download Image'),gr.Image(label='Display Image')]
gradio_interface = gr.Interface(fn=process_file, inputs=gradio_input,outputs=gradio_Output ,
title="Meta Watermark Remover For Image",
examples=meta_examples)
# gradio_interface.launch(debug=True)
gradio_multiple_images = gr.Interface(
process_files,
[gr.File(type='filepath', file_count='multiple',label='Upload Images')],
[gr.File(label='Download File'),gr.Image(label='Display Image')],
title='Meta Watermark Remover For Bulk Images',
cache_examples=True
)
meta_video_examples = [ "./videos/2.mp4","./videos/1.mp4"]
gradio_video_input=[gr.Video(label='Upload Video')]
gradio_video_Output=[gr.File(label='Download Video'),gr.Video(label='Display Video')]
gradio_video_interface = gr.Interface(fn=process_video, inputs=gradio_video_input,outputs=gradio_video_Output ,
title="Meta Watermark Remover For Video",
examples=meta_video_examples)
demo = gr.TabbedInterface([gradio_interface, gradio_video_interface,gradio_multiple_images], ["Meta Watermark Remover For Image","Meta Watermark Remover For Video","Meta Watermark Remover For Bulk Images"],title="Meta Watermark Remover")
demo.launch(debug=True)